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Abstract—In this paper, we present a novel model enabling
system-level decision making for time-triggered many-core archi-
tectures in automotive systems. The proposed application model
includes shared data entities that need to be bound to memories
during decision making. As a key enabler to our approach, we
explicitly separate computation and shared memory communica-
tion over a network-on-chip (NoC). To deal with contention on a
NoC, we model the necessary basis to implement a time-triggered
schedule that guarantees freedom of interference. We compute
fundamental design decisions, namely (a) spatial binding, (b)
multi-hop routing, and (c) time-triggered scheduling, by a novel
coupling of answer set programming (ASP) with satisfiability
modulo theories (SMT) solvers. First results of an automotive case
study demonstrate the applicability of our method for complex
real-world applications.

I. INTRODUCTION

The increase in system complexity and computational
demand of embedded systems is tremendous. In future au-
tomotive applications, for example, sophisticated control al-
gorithms are necessary to satisfy mandatory emission targets
and feature requests of customers. Though, increasing demands
require hardware platforms with more computational perfor-
mance. Many-core systems with a network-on-chip (NoC)
interconnecting the growing number of processing elements
are deemed to offer scalable performance [1]. A necessary
step in electronic system-level synthesis for such hardware
architectures is the process of decision making: fundamental
decisions concerning spatial binding of software components,
multi-hop routing of communication, and scheduling shared
resources have to be made [2]. In the presence of hard real-time
constraints, manual decision making approaches are likely to
fail or may result in inferior implementations. The reasons are
twofold: (1) exploiting massively parallel architectures requires
a concurrent application design and the potential for spatial
bindings of software components at a fine granular level; as a
result, the number of required decisions increases drastically.
(2) Decisions are interdependent and affect each other. Conse-
quently, efficient automated decision making has to deal with
growing system complexity and intricate relations.
In this paper, we present a novel model with semantics that
enable an automated decision making approach for many-core
systems with NoC. In contrast to related work [3]–[7], we
explicitly include shared data entities in our application model.
In the process of decision making, data entities have to be
bound to memories. Computational tasks then process the data.
With limited local memory, non-local access to shared data via

shared hardware resources in the NoC has to be addressed.
As a key enabler to our approach, we present execution seman-
tics that explicitly separate shared memory communication and
computation, resulting in an input-processing-output model.
Introducing the semantics provides two major benefits: (1)
we can integrate state-of-the-art worst-case execution time
(WCET) analyzers, e.g. [8], to compute tight WCETs. (2)
In combination with a time-triggered schedule, we ensure
contention-free access to shared resources.
On basis of the presented model, we propose a novel automated
decision making approach by coupling two constraint satis-
faction problem (CSP) solvers. Based on the system’s spec-
ification, a spatial binding of software components, namely
computational tasks and data entities, and multi-hop routes
of communication transactions are computed using answer
set programming (ASP) [9]. With its features to express
reachability directly in the modelling language, ASP enables
scalable multi-hop routing [3]. On basis of the ASP decisions,
a satisfiability modulo theories (SMT) [10] solver calculates
a time-triggered schedule satisfying all timing constraints if
possible.
Contributions of the paper at hand are as follows:
• We present a novel, formal model for control applications

that explicitly separates shared memory communication
and computation.

• We explicitly respect the placement of data entities in our
model and in our proposed decision making approach.

• We present a novel synthesis approach using a combina-
tion of ASP and SMT solving.

II. SYSTEM MODEL

The following section introduces the system model which
is composed of a platform model and an application model.

A. Platform Model

The homogeneous many-core hardware platform consists
of multiple resources of the type tile, router and intercon-
nection. A tile integrates one processing element (PE) and a
fixed amount S of local memory. Each tile’s memory is part
of a distributed shared memory that can be addressed directly.
Formally, the platform is modeled as a graph gP = (R,Ep).
A node r ∈ R represents a resource. With focus on tiled
architectures, a resource may either be a tile rt ∈ Rt ⊆ R or
a router rr ∈ Rr ⊆ R. A directed edge e ∈ Ep ⊆ (R ×R)
models an unidirectional communication connection between
two resources. As an example, Fig. 1 illustrates a hardware978-3-9815370-2-4/DATE14/ c© 2014 EDAA
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Fig. 1. Motivating example for system-level decision making in the context
of the presented system model. Decisions referring to spatial alignment are
illustrated: computational tasks ti are bound to PEs, data entities di are bound
to memories, and communication task ci are routed on the network-on-chip
(colored dashed lines).

platform with four tiles interconnected by a 2x2 mesh.
Program code of computational tasks is assumed to be avail-
able in the local memory of the tiles. PEs can access their local
memory without interference, e.g., by a bus with time-division-
multiplexing (TDM) arbitration. Consequently, local resource
access conflicts do not have to be considered. To enable time-
triggered scheduling, all tiles of the platform share one global
time base, e.g., a global clock.
Concerning the transport of data through the platform’s NoC,
we assume a packet switching protocol [1]. Further, commu-
nication between tiles is assumed to be asynchronous.

B. Application Model

An application is represented as a directed bipartite graph
gA = (Q,Ea) (see Fig. 2). The set of nodes Q = T ∪D is
the union of the set of computational task nodes T and the
set of data entity nodes D. A data entity d ∈ D holds exactly
one value, e.g., of type integer. In Fig. 1, spatial bindings are
illustrated by curved arrows. Computational tasks ti are bound
to PEs and data entities di to memories.
Directed edges ei ∈ Ea ⊆ (T×D)∪(D×T) specify read and
write relations between computational tasks and data entities.
We assume register semantics, i.e., every write access to a data
entity overwrites the previously stored information.
To integrate routing decisions for read and write transactions,
we introduce communication tasks ci ∈ C. A bijective function
j : Ea → C assigns each edge ei ∈ Ea exactly one commu-
nication task ci ∈ C from the set of communication tasks
C. For all non-local accesses to a data entity, the associated
communication task has to be routed on the NoC. In Fig. 1, the
decisions about the multi-hop routes of communication tasks
are illustrated as colored dashed lines.
The payload of each communication task equals the size si of
each data entity di ∈ D. For the sake of clarity, we assume
the size of each data entity equals the system’s data word size.
In general, data consistency of shared data entities that deviate
from this assumption has to be respected in the system model.
Depending on the system design, mutual exclusion mechanism
need to be considered in the scheduling of resources.
For each computational task ti ∈ T we define a tuple
(Ti, Di, Ci). A computational task’s relative deadline Di is
constraint to be less than or equal to the period Ti of the
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Fig. 2. Application graph of the the example presented in Fig. 1. Compu-
tational task nodes ti ∈ T are illustrated as circles, and data entity nodes
di ∈ D as boxes.

computational task ti (Di ≤ Ti). The decision making process
has to guarantee that the timing constraints of all computational
tasks are satisfied, i.e., all computational tasks access all their
associated data entities and process the data once per activation
without violation of their relative deadline.
The worst-case local execution time (WCLET) of computa-
tional task ti is denoted as Ci. The notion of local execution
time is one solution to allow computation of tight WCETs for
systems with interference on shared resources, as introduced
in the following.

Execution semantics. To decouple shared memory commu-
nication from computation, each computational task executes
in three phases: an input-phase (I-phase), a processing-phase
(P-phase) and an output-phase (O-phase), as depict in Fig. 3.
Recall that each tile includes local memory. In the I-phase, the
computational task ti acquires a local copy of all data entities
associated with a read access. The local copies of the input data
are processed in the P-phase. Finally, in the O-phase, results
of the computation are written to data entities associated with
a write access.
The IPO-semantic is a concept commonly implemented in
automotive systems [11], [12]. Consequently, the WCLET Ci
is defined as the maximal execution time of the P-phase.
According to the platform assumptions, processing the local
copies of data entities is not contended and program code
is assumed to be locally available, too. Thus, adequate tight
WCLET for each computational task can be computed using
state-of-the-art WCET analyzers, e.g. [8]. Note that the I-phase
or O-phase can be skipped if data is already available locally.
While the above IPO-semantic enables us to derive a tight
WCLET, interference on shared resources in the I- and O-
phase needs to be addressed separately.

C. Time-Triggered Scheduling

To avoid contention on shared resources that results in non-
deterministic latencies in the I- and O-phase, we compute a
time-triggered schedule that guarantees contention-free access
to shared resources. As an advantage of this approach, non-
determinism in the termination of a computational task ti be-
fore its WCLET Ci, which is common during runtime, does not
influence the communication behavior of other computational
tasks.
For all non-local read and write transactions the time triggered
schedule provides a designated point in time each transaction
has to be started to ensure contention-free access to shared
resources. Thereby, the start of each transaction is initialized
by a push task ρ that is executed on a PE. The execution time
of the push task is bound by Cρ. With contention-free access
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Fig. 3. Composed structure of a computational task ti ∈ T (k ∈ N). The
I-phase fetches local copies of data entities that are processed in the P-phase.
Non-local data entities are updated in the O-phase.

to shared resources, the latency of a transaction is given by
the route’s number of hops and the performance of the NoC.
To minimize latency of read transactions, we enforce that
information stored in non-local data entities is pushed to
computational tasks. Hence, we distinguish two sets of push
tasks: Dρ

di
and Tρ

ti . The push tasks ρdi ∈ Dρ
di

are associated
with all computational tasks that access the NoC to read a
non-local data entity di. These push tasks must be executed
on the PE of the tile where the data entity is bound. On the
contrary, the push tasks ρti ∈ Tρ

ti must be executed on the
tile the computational task ti is bound to. These push tasks
initialize the transfer of a computational task’s results.
The time-triggered schedule ensures that all data required
to start the processing-phase (P-phase) of a computational
task are locally available prior to its start time. Likewise,
the schedule ensures that all write transactions reach their
destination without violation of timing constraints.

Example. Fig. 4 illustrates the time-triggered schedule
focusing on computational task t1 of Fig. 1. The push task
ρd1 ∈ Dρ

d1
on tile 2 triggers the transaction represented as

communication task c1 at the start time sρd1 . For the start
time sc1 of c1 on the first subsequent interconnection of tile 2,
the equation sc1 = sρd1 +Cρ holds. The earliest start point st1
of computational task’s t1 P-phase Pt1 is the point in time the
data, transferred by the transaction modeled as communication
task c1, is available at tile 1. Since contention-free access is
guaranteed, the latency of communication task c1, whose route
consists of three hops between tile 1 and tile 2, is 3 · Cc. We
denote the latency per hop of each communication task with
Cc. Consequently, for the start time of the processing-phase
of t1, st1 ≥ sρd1 + Cρ + 3 · Cc holds. Push task ρd2 ∈ Tρ

t1
starts the transaction represented as communication task c2.
With the strict separation of communication and computation
by the IPO-semantic, sρd2 ≥ st1 + C1 holds. In the time-
triggered schedule, all start times are assigned such that data
entity d2 on tile 4 is changed before the relative deadline D1

is reached.

III. DECISION MAKING COMBINING ASP AND SMT

We propose a novel coupling of two CSP solvers for
decision making: Employing ASP, we compute the binding of
computational tasks and data entities to PEs, and the routing
of communication tasks; based on these decisions, the SMT
solver then computes a time-triggered schedule satisfying all
timing constraints if one exists.
Due to page limitations, we cannot present the full ASP and
SMT encoding. Instead, we highlight the main differences to
the encodings of related work.
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Fig. 4. The time-triggered schedule of computational task t1 from Fig. 1 is
depicted (k ∈ N). Push Task ρd1 ∈ Dρ

d1
on tile 2 triggers the transaction

represented as communication task c1 on the NoC. The processing-phase Pt1
of t1 starts at the earliest with the completion of this transaction on tile 1.
Push task ρd2 ∈ Tρt1 initializes the write transaction of d2 (represented as
communication task c2).

A. Spatial Binding and Routing Based on ASP

Related work on symbolic system synthesis commonly
employs Pseudo-Boolean Satisfiability (PB-SAT) solving tech-
niques to decide binding and routing in bus-based automotive
controller networks [5]–[7]. In contrast to our work, the search
space for routing decisions is significant smaller due to the
reduced interconnection of resources.
ASP is a declarative problem solving paradigm from the area
of knowledge representation and reasoning [9]. Andres et al.
[3] study the problem of decision making with ASP concerning
binding and routing for NoC. They show that their approach
scales better for densely connected NoC, as in the case of
the paper at hand, compared to equivalent PB-SAT encodings.
Thereby, the scalability of ASP is enabled by the possibility
to express reachability, required for multi-hop routing, in the
modeling language directly [3]. The results of Andres et al.
encouraged us to favor ASP over PB-SAT solving for decision
making concerning binding and routing.
We modified the ASP formulation presented in [3] to fit the
requirements of our system model. The ASP instance defines
tiles with a fixed memory capacity and we added facts of data
entities. An additional constraint in the ASP encoding ensures
that no memory stores data entities beyond its capacity. The
additional utilization of PEs due to push tasks Dρ

di
and Tρ

ti
is respected. While we do not change the routing formulation
of [3], we explicitly model the utilization of communication
tasks on interconnections of the NoC.

B. Time-Triggered Scheduling Based on SMT Solving

On basis of the binding and routing decisions provided by
ASP, we propose SMT solving to compute a time-triggered
schedule. SMT solvers compute solutions to decision prob-
lems on logical formulae where formulae are interpreted by
background theories [10]. Our SMT encoding is based on a
non-preemptive scheduling formulation for an integer linear
programming (ILP) solver presented in [4]. In contrast to a
ILP approach, we employ a SMT solver. We are interested
in computing feasible schedules fast and, if timing constraints



cannot be satisfied, we appreciate a quick response that the
instance is unsatisfiable. With our scope towards satisfiability
and the fact that SMT solving stems from the area of deciding
the satisfiability of propositional formulas (SAT) we decided
to implement a SMT solver into our approach.
The authors of [4] propose time-triggered scheduling for the
automotive bus system FlexRay. While the focus of their
investigations is on electronic control unit (ECU) networks,
our system model covers the characteristics of applications
implemented in a single many-core ECU with NoC. The
proposed ILP encoding of [4] is altered to match our model
and adapted for SMT solving. Especially the formulation of
timing constraints is modified to comply with the requirements
of computational tasks in our application model. Push tasks
are scheduled on PEs together with computational tasks for
non-local data access. Further, each communication tasks is
synchronized with its adjacent push task and scheduled on all
interconnections of its route on the NoC.

IV. EXPERIMENTAL RESULTS

To demonstrate the applicability of our approach, we eval-
uated the combined ASP and SMT decision making method
based on three early case studies. The case studies were derived
from a real-world automotive ECU application. All experi-
ments were performed on a 3.2GHz Intel i7-960 processor with
12GB RAM. We used the ASP grounder gringo (version
3.0.5; [13]) and the ASP solver clasp (version 2.1.3; [14])
with the same (sequential) search strategy as in [3]. For SMT
solving, we used the Z3 solver (version 4.3.0; [15]).
The case studies vary in their number of computational tasks
|T|, number of data entities |D| and number of communication
tasks |C| (cf. Table I). Periods Ti of computational tasks
ti ∈ T range between 1ms and 200ms. In the case studies,
deadlines Di equal corresponding periods (Di = Ti). We
selected a platform with a regular 5x5 mesh as our target many-
core hardware architecture.
Table I summarizes the particular runtimes of each solver. For
all three case studies, the SMT solver returned a feasible time-
triggered schedule on basis of a binding and routing computed
by the ASP solver. The runtimes of each solver are reasonable
and demonstrate the general applicability of our approach.
Compared to our case studies, the number of computational
tasks |T|ref1 and communication tasks |C|ref1 scheduled in
the ECU network case study of [4] is considerably smaller
(|T|ref1 = 48, |C|ref1 = 29). The short runtime (≈ 3s) of the
employed ILP solver was observed by extending an already
existing time-triggered schedule of functions incrementally.
While we do not implement an incremental scheduling strategy
for the extensive case studies at hand, the runtimes of the
SMT solver are still fair. The scheduling strategy of [4] was
improved in [5] using hierarchical scheduling to enabled a con-
current optimization approach of a case study with |T|ref2 = 66
and |C|ref2 = 43.
Although it is challenging to compare the scientific findings
for automotive ECU networks to the systems discussed in this
paper, our preliminary results encourage further research into
the presented decision making approach. While the scalability
of ASP enables us to exploit densely connected many-core
systems with NoC [3], the runtimes of the proposed time-
triggered scheduling using SMT solving are very reasonable
with respect to the size of our case studies. The time to
compute time-triggered schedules might still be improved

TABLE I. RUNTIMES OF THE INVESTIGATED CASE STUDIES.

|T| |D| |C| Runtime ASP Runtime SMT

Case study1 141 127 420 3s 16s
Case study2 178 190 549 4s 26s
Case study3 216 222 731 7s 52s

using incremental or hierarchical scheduling approaches as in
[4], [5].

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel model for decision
making concerning time-triggered automotive many-core sys-
tems with NoC. The presented application model explicitly
includes shared data entities with associated read and write
accesses of computational tasks. The IPO-semantic separates
shared memory communication from computation and, in com-
bination with a time-triggered schedule, enables contention-
free access to the shared resources of a NoC. Thereby, push
tasks ensure that communication is initialized at the predefined
points in time. On basis of our system model, we proposed
a novel combination of ASP and SMT solving for system-
level decision making. Early results of real-world case studies
demonstrate the applicability of our proposed approach.
Inspired by the approaches of [5]–[7], we plan to combine
the ASP and SMT solver more closely to prune the search
space based on the analysis of infeasible solutions. With this
extension to our approach, we intend to evaluate our system
model in a concurrent optimization framework exploiting the
advantages of ASP and SMT solving.
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