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Abstract—We propose a dynamic scheduling approach for
the concurrent execution of logical actor instances on a single
synthesized actor instance. Based on a formal dataflow model
of computation, the proposed approach can be applied to a wide
range of applications in a model-based design flow. As case-study,
we evaluate a bus-cycle-accurate SystemC RTL model based on
an InfiniBand network adapter in a PCI Express system.

I. INTRODUCTION AND RELATED WORK

Moving design flows for increasingly complex systems to
a higher level of abstraction allows many forms of verification
to be performed much earlier in the design process, thus
reducing time to market, and lowering cost by discovering
problems earlier. Here, executable High-Level Models (HLM)
can be identified as a key factor, as they can be used to drive
architectural exploration [1], hardware and software design
flows, and integration & verification processes. In this context,
dataflow models have successfully been used for high-level
modeling in ESL tools [6]. In a dataflow model, concurrent
actors communicate via packets (tokens) transmitted over
channels. As actors naturally expose the parallelism contained
in the application, they yield well to synthesis for platforms
with multiple computing resources.

In the context of hardware synthesis, synthesizing each
actor as a dedicated entity in order to exploit the available
parallelism becomes infeasible if the number of actors becomes
very large (cf. Fig. 1a). In this case, resource sharing across
process boundaries is required in order to reduce the design
area. However, existing high-level synthesis (HLS) tools [8]
do not support resource sharing across process boundaries.

In [5], resources are shared between processes based on
fixed time slots. While this approach permits static scheduling,
time slots cannot be reused if the corresponding process is not
active. Our approach is based on dynamic resource assignment,
thereby improving resource utilization. In [9], resource sharing
in the context of pipeline scheduling is described. However, the
approach only addresses synchronous dataflow graphs [7]. Our
approach targets more general, dynamic dataflow graphs.

We propose a concept to multiplex logical actor instances
onto a single physical (synthesized) actor instance in order
to reduce the design area compared to the parallel approach,
while still providing for the concurrent execution of logical
actor instances. To this end, we build on the concept of reser-
vation stations as commonly found in out-of-order processor
architectures: The logical actor instances are assigned to a
small number of reservation stations based on the availability
of tokens and free places on channels. Here, the concept of col-
ored tokens and colorless tokens is introduced: While colored
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Fig. 1. Modeling approaches: a) parallel actor instances, and b) single
physical instance with additional multiplexing logic. For InfiniBand, n = 224.

tokens target a specific logical actor instance, colorless tokens
represent shared resources between logical actor instances.
When assigned to a reservation station (RS), a logical actor
instance becomes eligible for execution on the functional units
(FUs) comprising the physical actor instance (cf. Fig. 1b).

As additional multiplexing logic is required, the approach
is advantageous only if an actor is instantiated more than once.
For example, in the video processing domain, actors may be
duplicated to model the color channels separately [3], thereby
providing for a parallel execution on a suitable platform. In
the networking domain, modeling the complex behavior of
a single communication end-point (EP) (sockets in TCP/IP)
and instantiating the resulting actor multiple times can also
be beneficial [10]. We show that the approach can handle a
large number of logical actor instances by means of a case-
study based on an InfiniBand (IB) network adapter [4] in a
PCI Express (PCIe) system.

II. SYSTEM-LEVEL OVERVIEW

The example used throughout the paper is based on an
InfiniBand network adapter contained in a PCI Express system
(cf. Fig. 2). PCIe employs point-to-point links to overcome the
limitations of a shared bus. In a PCIe system, a root complex
device connects the processor and memory subsystem to the
PCIe switch fabric comprised of one or more switch devices.
As a packet-based protocol, PCIe consists of three layers as
known from the networking domain, namely the transport
layer, the data link layer, and the physical layer.

The network adapter implements the InfiniBand SEND op-
eration defined on the transport layer. With a SEND operation,
the local end-point (EP) transmits data to a remote EP. To this
end, each EP has an associated send queue (SQ) and a receive
queue (RQ) where work queue elements (WQEs) are inserted
by the user. A WQE specifies where to fetch and store the
transmitted data. Each EP processes its posted WQEs, and,
for each finished WQE, places a completion queue element
(CQE) in an associated completion queue (CQ) polled by the
user. The InfiniBand specification provides for a total number978-3-9815370-2-4/DATE14/ c©2014 EDAA
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Fig. 2. System-level overview of the running example based on an InfiniBand
network adapter in a PCI Express system.

of 224 EPs. Note that an EP can simultaneously process WQEs
from its SQ and its RQ. In our example, the SQs, RQs, and
CQs are stored in main memory (cf. Fig. 2).

In order to reduce the complexity of the example, only
the unreliable connection mode specified by InfiniBand [4]
has been implemented. In this mode, the requester receives no
acknowledgments for transmitted packets, and no guarantees
concerning the packet order are given.

III. SCHEDULING

In this section, we describe our approach for the mul-
tiplexing of logical actor instances on just one (or a few)
physical actor instances. Actors in our model consist of a set
of transitions T . A transition t ∈ T specifies the number of
tokens and free places required on input and output ports, a
guard function fg , and an action function fa, which is invoked
only if enough tokens and free places are available, and the
guard function evaluates to true.

Fig. 1b gives a more detailed view of the multiplexing
process: The incoming and outgoing edges correspond to
tokens from/to the PCIe switch fabric, tokens from/to the link
interface, tags which are assigned to memory read requests
issued by the model, and link credits consumed by the model
before sending a link packet. Note that link credits are gener-
ated by the link interface.

First, the logical EP instances are assigned to reservation
stations. When assigned to a RS, an EP becomes eligible for
execution on the physical EP instance. In the following, the
two stages are explained in more detail.

A. Token Color Assignment

First, a set of end-points {EP1, . . . ,EPn} is multiplexed
onto a set of available reservation stations {RS1, . . . ,RSm}
with n > m in the general case. In our example, n = 224

as specified by InfiniBand, while m ≥ 6 as will be seen later.
Thus, a simple round-robin scheme in order to find an EP with
an enabled transition cannot be applied in the general case.
However, for our dataflow model, the availability of sufficient
tokens and free places is a necessary condition for a transition
to be enabled. Therefore, the EP selection process can be
based solely on tokens available on input ports, and free places
available on output ports.

Concerning input ports, two cases can be distinguished: On
the one hand, an input port is a colored port if a specific target
EP can be determined by analyzing the token stream. This
process will be referred to as token coloring in the following.
Only the target EP can consume its colored tokens. On the
other hand, an input port is a colorless port if no target EP
can be determined by analyzing the token stream. Colorless
tokens can be consumed by any EP. For output ports, no such
classification is required.

In our example, the PCIe and IB input ports are colored
ports: For PCIe packets, the target EP can be determined
from the read/write address specified by the packet. IB packets
directly specify the target EP. Note that PCIe and IB packets
are transmitted by means of multiple 32 bit tokens in our
example. For example, in Fig. 3, three IB tokens have been
assigned the color white, while the subsequent token has been
assigned the color black.

The remaining input ports are colorless ports: Concerning
the tags, any EP which wants to issue a PCIe read request
must consume a tag token. However, it can consume any tag
token. The tag is returned by the read response and is then
used during token coloring to determine the target EP.

B. Reservation Station Assignment based on Colored Tokens

The colored tokens from a colored port p are dispatched to
a smaller set of colored fifos Cp which are ultimately fed to
the FUs of the physical actor instance. A colored fifo contains
only tokens of the same color. Thus, in order to forward a
token of color i to a colored fifo, two conditions must be met:
EPi must be assigned to a reservation station RSj , and one of
the channels c ∈ Cp must either be empty, or already contain
tokens of color i.

In order to prevent different colors from the same colored
port from occupying all reservation stations, the number of
colored fifos |Cp| allocated for a colored port p should be less
than the number m of reservation stations. Thus, |Cp| will
be referred to as credits of p in the following. An EPi has
acquired a credit for p if a colored channel c ∈ Cp contains
at least one token of color i.

For example, consider Fig. 3, where both RS1 and RS2
already have an EP assigned (namely EPblack and EPwhite).
For each colored port, a single colored fifo is allocated, each
of which is currently acquired by RS1. Thus, while the black
PCIe tokens can be forwarded to the only colored fifo for
PCIe tokens, the white IB tokens cannot be forwarded until
the remaining black token has been consumed from the only
colored fifo for IB tokens.

If for a token of color i from port p, EPi is not yet assigned
to a reservation station, we wait 1) until a credit for p is
available, and 2) any RSj becomes idle. RSj is idle if the
assigned EPv has no longer acquired any credits from colored
input ports. If both conditions are met, we evict EPv currently
assigned to RSj , and assign EPi to RSj . In order to efficiently
re-activate EPv , the corresponding EP number v is stored in
an initiative queue. Basically, an initiative queue corresponds
to an additional colored input port, but requires no colored
fifos, as tokens stored on an initiative queue are solely used
for scheduling purposes and are not forwarded to any FU.

Note that a minimum number of one colored fifo must be
allocated for each colored input port. However, allocating more
than one colored fifo allows tokens of different colors to be
consumed by FUs in parallel, thereby enabling multiple logical
EPs to be processed concurrently.

In the next section, the forwarding of tokens from colored
fifos to FUs, as well as the forwarding of produced tokens to
output ports is described.

C. Forwarding of Tokens to/from Functional Units

For each guard function fg and action function fa, at least
one FU is instantiated (cf. Fig. 4). Thus, executing a guard
or action function means executing the corresponding FU. In
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Fig. 3. Forwarding of colored tokens to colored fifos: both colored fifos are
acquired by RS1, and no credits (i.e., free colored fifos) remain.

order to provide for the concurrent execution of different EPs,
each FU can be individually configured with the desired RS
before executing the FU.

According to the underlying dataflow MoC, guard FUs may
read actor variables and peek the first token from an input
port. Actor variables are stored in the corresponding RS, and
can be accessed by the FUs as desired. The tokens to peek
are provided through the colored fifos and the colorless input
ports. For example, the guard functions fisRead and fisWrite in
Fig. 4 may peek the first (black) PCIe token from the (only)
colored fifo allocated for PCIe tokens.

Action functions consume tokens. In fact, two action func-
tions fa 6= fb may consume tokens from the same port p in
the general case. Consequently, an implementation must ensure
that if fa and fb are executed in parallel, no token conflicts (as
known from Petri nets) occur, i.e., that each action function
can indeed consume its requested number of tokens.

For colored tokens, this condition is trivially satisfied, as we
never execute multiple action FUs for the same RS in parallel
in order to avoid data hazards w.r.t. the actor variables which
are stored in a RS and accessed by the action FUs.

In contrast, colorless tokens can only be assigned to an
action FU when it is about to be executed. Otherwise, dead-
locks could be introduced into the model. Thus, in order to
avoid token conflicts, the requested number of tokens must be
reserved for fa before fb can be executed (and vice versa).
Here, a simple token reservation scheme consists in allocating
dedicated token buffers for fa and fb and copying the reserved
tokens to the respective buffer before starting the other action
FU. For example, in Fig. 4, one tag token has been reserved
for each action FU ffetchWqeSq and ffetchWqeRq.

Analogously, free places on an output port must be reserved
for fa before fb can be started (and vice versa) if both action
functions produce tokens on the same output port. To this end,
we allocate a dedicated output fifo for each RS as shown in
Fig. 4. Here, ffetchWqeSq is currently producing black tokens
on the output fifo allocated for RS1, while ffetchWqeRq is
producing white tokens on the output fifo allocated for RS2.
Thus, interleaving of tokens of different colors is avoided
at this point. Finally, the state machine for outbound tokens
forwards tokens to the output port from the same output fifo
until a complete token sequence (e.g., a complete PCIe packet)
has been forwarded.

In the next section, we describe an algorithm for the
assignment of reservation stations to FUs.

D. Functional Unit Assignment

Assume that EPi is assigned to RSj . In order for a
transition to be enabled, enough tokens and free places must
be available, and the guard function fg must be evaluated.
Consider again Fig. 3 and Fig. 4: Four PCIe tokens and one
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Fig. 4. Token forwarding from colored fifos and colorless ports to FUs (upper
part), and forwarding of tokens produced by FUs to output ports (lower part).
Note that for IB packets, the colored fifo and dedicated output fifos are omitted.

IB token are currently available for EPblack. In contrast, no
PCIe or IB tokens are currently available for EPwhite. Note
that three colorless tag tokens are still available for any EP.

The guard FU can be executed for RSj if it is not currently
executed for any RS. After the execution of fg is finished, the
result is cached in RSj . This prevents multiple executions of
fg for EPi, and allows other transitions of EPi to reuse the
cached result of fg .

If the cached result of fg is true , the action function fa
can be finally executed. The corresponding action FU can be
executed for RSj if it is not currently executed for any RS.
Executing fa has the following consequences: 1) All guard
results cached in RSj are invalidated, as they must be re-
evaluated after the action FU is finished. 2) All guard FUs
which are currently executed for RSj are reset, thereby freeing
the FUs for different reservation stations. 3) RSj is blocked
from starting any guard or action FU until the current action
FU is finished. 4) For other reservation stations RSk 6= RSj ,
cached guard results are invalidated and active guard FUs
are reset, but only if the associated guard function may have
peeked tokens that are now reserved for the action FU being
executed. In our example, the set of invalidated guards is empty
for all action functions.

IV. RESULTS

We show that the approach can multiplex a large number
of logical actor instances without introducing deadlocks into
the system by means of a bus-cycle-accurate SystemC [2]
simulation. To this end, the functionality of a single EP has
been implemented within the dataflow modeling framework
presented in [11]. Subsequently, the multiplexing logic has
been semi-automatically generated for the single EP actor
by analyzing the transitions of the EP actor as described in
the previous sections. At a glance, the only inputs required
from the designer are the state machines for token color
assignment (cf. Fig. 3) and for the forwarding of outbound
token sequences (cf. Fig. 4). Two variants have been generated:
1) a functional implementation realized as a hierarchical actor
within the modeling framework, and 2) a bus-cycle-accurate
SystemC RTL model. While the former is used for functional
verification, the latter is used to obtain performance estimations
of the proposed multiplexing approach. In the following, only
the SystemC model is discussed in more detail.

In order to obtain a bus-cycle accurate model, certain
assumptions about the target platform have been made. Con-
sidering a Xilinx Virtex 6 FPGA platform, the various latencies
are given in Table I. The compound EP state consists of the
actor variables (104 bytes), the current actor mode (16 bits),
and a bit vector which indicates the initiative queues where
an EP is enqueued to avoid enqueuing the EP to the same



 

5

50

500

5000

50000

A
v

g
. 
W

Q
E

 l
a

te
n

cy
 [

C
y

cl
es

] 
x
 1

0
0

0
0

 

WQE post delay per SQ/RQ [Cycles] 

1 EP

4 EPs

16 EPs

64 EPs

256 EPs

1024 EPs

4096 EPs

16384 EPs

 

0

0.5

1

1.5

2

2.5

3

3.5

T
h

ro
u

g
h

p
u

t 
[B

y
te

s/
C

y
cl

e]
 

WQE post delay per SQ/RQ [Cycles] 

1 EP

4 EPs

16 EPs

64 EPs

256 EPs

1024 EPs

4096 EPs

16384 EPs

a) Throughput for m = 12 reservation stations. b) Latency for m = 12 reservation stations.

Fig. 5. Results for simulation parameters given in Table I. In contrast to m = 6 reservation stations (not shown), peak throughput and latency are improved
by a factor of approx. 2.6 for test cases with more than 16 EPs.

initiative queue more than once (4 bits). Thus, for 224 EPs,
a backing store of ca. 1.6 GB is required for the compound
EP state, which is therefore assumed to be mapped to an off-
chip memory. Note that the DDR3 RAM in the target platform
has an interface data width of 512 bits, i.e., the compound EP
state can be written back in two cycles. In order to hide the
memory read latency, our implementation uses a direct-mapped
cache for the compound EP state. Actor variables are assumed
to be kept in registers of each RS. For each FU, a SystemC
thread has been instantiated. This allows subsequent high-level
synthesis tools to generate parallel modules for each FU.

The various parameters of the evaluated test cases are also
given in Table I. For each test case, a certain number of EPs
is initialized prior to the posting of WQEs. Then, WQEs are
simultaneously posted to the SQ of an EP and to the RQ of its
peer EP after the WQE post delay has elapsed for the SQ.
A WQE is retired when the corresponding CQE has been
generated by the associated EP. The simulation is finished
when all WQEs have been retired.

The results are shown in Fig. 5: On the one hand,
throughput denotes the ratio between the total number of bytes
transferred between the EPs and the total number of cycles of
the simulation. On the other hand, avg. WQE latency denotes
the average number of cycles from the posting of a WQE
to the receiving of the corresponding CQE. The following
observations can be made: 1) The WQE latency does not
approach infinity because we post only a limited number of 64
WQEs to each SQ/RQ. 2) A single EP cannot fully utilize the
FUs even if the WQE post frequency is increased, resulting in
a low throughput. 3) For the minimum number of reservation

TABLE I. SIMULATION PARAMETERS

Parameter Value
Number of active EPs 1, 4, 16, 64, 256, 1024, 4096, 16384
Number of WQEs per SQ/RQ 64
WQE size 1024 bytes
IB/PCIe MTU size 256 bytes (64 tokens)
WQE post delay per SQ/RQ 150,000,000 cycles – 1 cycle
Number of reservation stations 6, 12
Number of colored fifos per colored port 1, 4
Number of credits per initiative queue 1
Number of FUs per guard/action function 1
Size of compound EP state cache 1024 EPs
BRAM/FIFO write latency 1 cycle
BRAM/FIFO read latency 1 cycle
Off-chip mem. write latency (EP state) 1 cycle
Off-chip mem. read latency (EP state) 60 cycles
Main mem. write latency (PCIe) 1 cycle
Main mem. read latency (PCIe) 60 cycles
Link delay 20000 cycles

stations m = 6 (not shown), the throughput for 4 and 16 EPs
is slightly better than the throughput for more EPs. As only
one colored fifo is allocated per colored port in this case, EPs
have to be evicted more often from a RS for more than 16
EPs. Eliminating this bottleneck by doubling the number of
reservation stations improves both peak throughput and latency
by a factor of ca. 2.6 for test cases with more than 16 EPs,
because more logical EPs can now be executed concurrently
by the FUs of the single physical EP instance. 3) The peak
throughput can be sustained even for a large number of EPs
in case of 12 reservation stations. 4) Increasing the number
of FUs has only a negligible effect on the peak throughput in
this case, as it already approaches the theoretical maximum
throughput of 4 bytes/cycle for the 32 bit data path.

V. SUMMARY

We showed how logical actor instances can be multiplexed
onto a single physical actor instance such that the logical actor
instances can still be executed concurrently. Based on guarded
actions, the proposed approach can be used for dynamic
dataflow actors and is therefore applicable to a wide range of
applications. We showed that a large number of logical actor
instances can be multiplexed without introducing deadlocks
into the system by means of an InfiniBand network adapter in
a PCI Express system.
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