EDT: A Specification Notation for Reactive Systems

R Venkatesh, Ulka Shrotri, G Murali Krishna, Supriya Agrawal
Tata Consultancy Services Ltd.
Email: {r.venky, ulka.s, g.muralikrishna, supriya.agrawall } @tcs.com

Abstract—Requirements of reactive systems express the
relationship between sensors and actuators and are usually
described in a natural language and a mix of state-based
and stream-based paradigms. Translating these into a for-
mal language is an important pre-requisite to automate the
verification of requirements. The analysis effort required
for the translation is a prime hurdle to formalization gain-
ing acceptance among software engineers and testers. We
present Expressive Decision Tables (EDT), a novel formal
notation designed to reduce the translation efforts from
both state-based and stream-based informal requirements.
We have also built a tool, EDTTool, to generate test data
and expected output from EDT specifications.

In a case study consisting of more than 200 infor-
mal requirements of a real-life automotive application,
translation of the informal requirements into EDT needed
43% lesser time than their translation into Statecharts.
Further, we tested the Statecharts using test data generated
by EDTTool from the corresponding EDT specifications.
This testing detected one bug in a mature feature and
exposed several missing requirements in another. The
paper presents the EDT notation, comparison to other
similar notations and the details of the case study.

I. INTRODUCTION

Reactive systems interact with their environment via
sensors (inputs) and actuators (outputs). These interac-
tions are usually described informally using a combina-
tion of natural language, state-based paradigms such as
state transition tables and stream-based paradigms such
as timing diagrams. Translating these informal require-
ments to a formal notation is necessary for automated
analysis, simulation and test case generation. Current
popular formal notations are primarily state-based and
hence the transition from non state-based informal re-
quirements to these need a lot of analysis and is effort
intensive. This often deters software engineers and testers
from readily adopting formal notations. To address this
issue, we propose an easy to use executable notation,
Expressive Decision Tables (EDT). The notation is reg-
ular expression based and combines both the paradigms

978-3-9815370-2-4/DATE14/(©)2014 EDAA

in a novel manner leading to compact specifications that
are easy to manage. We adopted a tabular format for
EDT, because tables are more readable, easier to edit and
less error prone when compared to textual, graphical or
logical notations [1]. We have also built a tool, EDTTool,
to generate test data and expected output from EDT
specifications.

The compactness of specifications in EDT compared
to other notations is illustrated through three require-
ments of the wiper of a vehicle shown in Figure 1.
The requirements are taken verbatim from a real world
automotive application.

1) If the ignition and wiper switch are on and
there is no fault in the wiper, then send a
wipe message to the wiper.

2) If wiper is vibrating between park and
notpark position, that is, if the wiper is
stuck, send a dontwipe message to the
wiper. Note: Wiper is considered to be stuck
if the wiper switches between park and
notpark position thrice within a second.

3) To reset the wiper error, while ignition is on,
the wiper switch needs to be switched on and
of f within half a second.

Fig. 1. Wiper Example

The first requirement is based on the state of ignition
and wiper switch (state-based), the second is based on
the pattern of input values read by the wiper position
sensor (stream-based) and the third combines the state of
ignition and the input pattern of the wiper switch (state-
based and stream-based).

Such requirements are typically formalized using a
state-based notation like Statecharts [2] or Software Cost
Reduction (SCR) [3]. Users of these notations need to
distinguish between events and states. They also have to
introduce intermediate states and auxiliary variables to

TABLE 1.

EDT FOR WIPER EXAMPLE

capture event patterns of stream-based requirements such
as the second requirement above. This leads to lengthy
specifications that are difficult to create and manage.
These limitations are partially addressed by Stream-
based I/0 tables [4] that supports both stream-based
and state-based requirements. However, the notation is
not powerful enough to specify the second and third
requirement of the Wiper Example.

We have shown the EDT specification of the Wiper
Example, in Table I. It illustrates the power of EDT as it
requires fewer rows than the corresponding specification
in comparable notations like SCR (Table II) or Stream-
based I/O tables (Table III). Details of this comparison
can be found in Section IV.

To evaluate the power of EDT and its ease of use, we
conducted a case study where novice testers successfully
specified seven features of a real life automotive appli-
cation. It took lesser time for them to create EDT than
the time required to create Statemate [5] Statecharts for
the same features. When testers tested the Statecharts
specifications using test cases generated by EDTTool
they detected a bug in one of the already tested features.

EDT is introduced informally in Section II and a
formal semantics of the notation is given in Section III.
Comparison of EDT with other notations is shown in
Section IV. Case study details are presented in Section V.
Section VI provides conclusion and future work.

II. EXPRESSIVE DECISION TABLES (EDT)

Table I shows an EDT specification of the Wiper
Example described in the Figure 1. The column headers
specify four input ports - ignition, wiperswitch,
parksensor and error and two output ports
wipercmd and error. error is an input and output
(I/O) port. The table has three row-sequences with the
first two row-sequences having only one row each and the
third having two rows, depicted by the common sequence
number 3, for rows three and four. Each requirement
stated above is specified in the table as a separate row-
sequence and should be interpreted as follows:

1) If the wvalues at ports ignition and

sno | in ignition | in wiperswitch in parksensor in error out wipercmd | out error
1. on on false wipe
2. (park;notpark){= 3}{<I s} dontwipe true
3. on true
on{<0.5 s};off false
TABLE II. SCR TABLES FOR WIPER EXAMPLE

Mode Transition Function for Wipe

Source Mode Events Destination
Mode
NoWipe_S @T(ignition = on) WHEN (wiper- | Wipe_S
switch == on) AND NOT error
NoWipe_S @T(wiperswitch = on) WHEN (igni- | Wipe_S
tion == on) AND NOT error
NoWipe_S @F(error) WHEN (ignition == on) | Wipe_S
AND (wiperswitch == on)
Wipe_S @T(error) NoWipe_S
Event Function for wipercmd
Events
@T(Wipe = Wipe_S) @T(Wipe = NoWipe_S)
wiperemd’ = wipe dontwipe
Event Function for cnt
Events
@T(parksensor = notpark) WHEN cnt <3
ent’ = cnt + 1
Resetting cnt to zero is non trivial (not shown for brevity)
Event Function for starttime
Events
@T(parksensor = park) WHEN (cnt = 0)
starttime’ = time
Event Function for wiperontime
Events
@T(wiperswitch = on)
wiperontime’ = | time
Event Function for error
Events
@T(cnt=3) WHEN @T(wiperswitch = off)
(time - starttime < 1 | WHEN (time - wiperon-
sec) time < 0.5 sec)
error’ = TRUE FALSE
TABLE III. STREAM-BASED I/O TABLE FOR WIPER EXAMPLE
Iwiper- Tignition Ipark- Terror Owiper- Annota-
switch sensor cmd tion
one* one* . false wipe Reql
one* on false €* wipe Reql
on one* false e* wipe Reql

Requirements 2 and 3 cannot be specified using Stream-based I/O tables

wiperswitch are both on and the value
at error is false then output wipe at
wipercmd port as soon as all inputs arrive.

2) If park followed by notpark repeats thrice
within one second at the parksensor port,

output dontwipe at the wipercmd port and
true at the error port.

3) If the last value for ignition is on, and
error is true, and then wiperswitch has
value on followed by off within 0.5 seconds,
then output false at the error port.

An EDT specification consists of one or more tables
where the column headers specify the input and output
ports and the rows specify the relationship between input
and output values. Each cell in a row consists of a regular
expression that is used to match input streams at that
port. Input values arrive as a stream at input ports at
discrete time units and output values are generated as a
stream at output ports at discrete time units. The rules for
regular expression pattern are explained by the following
examples:

- The pattern on matches if the last value seen is on.

- on{<0. 5s} matches if the last value seen is on and
not more than 0.5 seconds have passed since on was
seen. (same is applicable to <, =, > and >)

- on{<0.5s};0f £ matches if the last two values are on
followed by of f and off occurs within 0.5 seconds of
on.

- (park;notpark){=3}{<1s} matches if the pattern
park followed by notpark repeats thrice within 1
second.

- An empty cell matches any value if all corresponding
cells before it in the row sequence are also empty, else it
matches nothing. In the third row-sequence of the Wiper
Example, both cells of the parksensor match any
value whereas in the second row, the cell for ignition
will match only if there is no value.

The first row of any row-sequence matches if each
input cell of that row matches. Subsequent rows match
when all rows before it match and all its input cells
match. Once a row matches the system outputs values
as specified by the patterns of that row’s output cells.
Once a row has matched, if no further inputs arrive at
those ports, the row will continue to match but no new
output will be generated.

The matching rules are illustrated for the wiper ex-
ample below. For the EDT specification in Table I:

- Consider the set of input strings at the end of four time
units as wiperswitch = [on € € €] , ignition = [e on € €
and error = [false € € €], where € represents the absence
of any value at that time. At time 2, row-sequence one
matches and the value wipe is output to wipercmd at

time 3 and hence its output stream will be [e € wipe €].
Note that although this row-sequence continues to match
at time 3, there is no output at time 4 because this is
just an extension of the previous match with no further
inputs.

- Consider the set of input strings at the end of three
time units as ignition = [on € €|, error = [true € €| and
wiperswitch = [e on of f]. At time 1, the first row of
row-sequence three matches and at time 3, the second
row matches (assuming each time unit corresponds to
100ms). This results in false being output to error and
its string becomes [true € € false]

It is evident from the example that both the state-
based and stream-based requirements map directly to
row-sequences in EDT. The third row-sequence illus-
trates how complex time ordering dependencies between
inputs and outputs can be expressed succinctly.

The following section presents the formal syntax and
semantics of EDT.

III. FORMAL SYNTAX AND SEMANTICS

An EDT specification consists of a set of tables. These
tables are merged into a single table by taking a union of
columns and rows adding empty cells wherever required.
Due to space constraints only a few key elements of the
formal syntax and semantics are given below.

A. Syntax

Each cell in a table is either empty or consists of a
pattern expression. The syntax of a pattern expression is:
e:=vle;ele{op t s}e{ op n}|(e) where-

v is a value

; denotes sequence

-op e{<,<,=,>,>}

t is a floating point constant for time

s indicates seconds

n is an integer constant for multiplicity

B. Semantics

EDT employs a discrete unit of time and hence at any
given time ¢, a string is present at each port, consisting
of values from the port’s domain or €. € represents the
absence of any value at that time. The semantics of EDT
define which rows of a given table match the input strings
at a given time ¢. The row matching semantics assume
cell matching predicates which are standard regular ex-
pression pattern-matching predicates. Each value v in a

pattern is translated to v - ex and a time expression is
translated to an appropriate €”. The first row of a row-
sequence is matched if all the cells of the row match.
Subsequent rows are matched if all previous rows match
and current row also matches. Formally, matching of a
row at time ¢ is defined as:

J R

; m,(r;,t) if 1

my(rl,t) = r Y) i]
my(r;,t) otherwise

m}ﬂ(rg,t) =V -m*(s,et?) Volc)

cr-c

mi(r] 1) =
Ay <t -me(r) A
Ve ¢~ () v

dte-t1 <ta <t A

m(sg " e?) A

shotel — e A

deg -t =t1 + 1

m,(r,t) is a predicate that is true if row r matches

at time t.

is the j' row of row-sequence i

¢, cp are columns

is the pattern expression of row-sequence ¢,

row j and column c.

m®(s,e) is a predicate that checks if a suffix of string
s matches the regular expression e.

m(s,e) is a predicate that checks if the complete
string s matches the regular expression e.
is the string corresponding to column c at
time t
si1—t2 ig the sub-string from ¢; to ¢y for column ¢

¢(c) checks for emptiness of a cell
¢~ (c) checks for emptiness of that cell and all

corresponding cells in previous rows of the
same row-sequence

Output of a row is triggered every time a row matches
afresh, that is either the row did not match at the previous
time unit or there is some non-e¢ value which caused the
row to match. This is formalized by the predicate o(r,t)
which is true if the row r triggers an output at time t.

o(r,t) = my(r,t) A
(—=my,(r,t — 1) V 3e- —o(c) ANv(e,t) # ¢€)

where v(c,t) is the value present at time ¢ in the input
string for column c.

In case multiple rows are output enabled at the same
time, outputs of each such row are triggered, and in case
of a conflict in the outputs, it is considered as an error
in the specification.

IV. COMPARISON WITH OTHER NOTATIONS

Several notations have been proposed to specify re-
active systems. These can be classified either as textual,
tabular or graphical, based on their concrete syntax, or
based on their underlying formalism, as mathematical
logic-based, state-based or stream-based. Tabular nota-
tions are the easiest to use and less error prone than
the other two [1]. Interestingly, as per Leveson [1], even
for requirements for which viewing the requirements as
state-based is beneficial, using tables to specify the state-
based requirements is better than using state-based graph-
ical notations. Additionally, graphical notations need
specialized editors.

Notations such as Z [6] require strong mathematical
background which average software engineers and testers
do not often possess. State-based notations such as graph-
ical Statecharts [2], SCR [3], RSML [7], state-based
synchronous notations like Esterel [8] and others [9]
require the user to analyze and re-structure non state-
based requirements to a state-based format. Stream-
based notations such as timing diagrams [10] have the
converse problem of users having to analyze and re-
structure requirements described in state-based format
to a stream-based format. Stream-based notations such
as live sequence charts [11] are mainly used to specify
interactions across processes, whereas EDT is used to
specify interactions within a single process.

We compare EDT with SCR [3] and Stream-based I/O
tables [4] using the Wiper Example given in Figure 1.
EDT specification for this example is given in Table I.

In the SCR specification shown in Table II, the first ta-
ble defines mode transitions and the other tables are event
functions. To capture the first requirement, SCR requires
three rows in the mode transition table. To capture the
second and third requirements which are stream-based
and have time ordering dependencies between inputs and
outputs, the specifications are spread across many event
tables in SCR. Additionally, an SCR user has to introduce
auxiliary variables such as cnt and starttime to keep
track of the count of park and notpark events and the
time at which the first park event occurred. Introducing

these variables requires analysis and re-structuring of
the requirements. The Statecharts specification too needs
auxiliary variables and states. We are not presenting the
Statecharts specification here due to lack of space.

Stream-based I/O tables is a stream-based notation
that has support for state-based requirements. A specifi-
cation of the Wiper Example in this notation is given
in Table II. Similar to SCR specifications, this too
needs three rows to specify the first requirement and the
pattern language of the notation is not powerful enough
to specify the second and third requirements.

Unlike existing notations EDT has a simple yet pow-
erful pattern language eliminating the need for complex
concepts in semantics. For example, there is no need to
introduce auxiliary variables and states for the second
and third requirement.

V. CASE STUDY

To evaluate the power of EDT and its ease of use we
conducted a case study in which requirements of seven
features from a real life automotive application were
specified in EDT. We also compared the time required
to specify in EDT with the time required to create
Statemate Statecharts for the same features. The selected
seven features had more than 200 requirements and they
covered a wide variety of complex requirements of the
body functionality of a vehicle. Each feature was split
into multiple logic blocks and requirements documents
informally describing the functionality of the logic blocks
were available. Mature Statemate Statecharts models for
all these features were available. Note that these models
were created to formalize and test the requirements and
not for code generation and hence, contained the same
level of detail as the corresponding EDT specifications.
We therefore used these models for comparison in our
case study.

A. Details of the Case Study

We chose seven features from a real life automo-
tive application, for the case study. We selected five
testers who were undergraduates with automotive domain
knowledge but without a strong mathematical back-
ground and unfamiliar with the selected features. Initially
we trained three testers for two weeks on the EDT
language and they in turn trained two others with a sim-
ilar background for two weeks. From the requirements
documents, the testers created an EDT specification
corresponding to each logic block of each feature. Testers

trained by us converted the requirements of sixteen logic
blocks of four features to EDT specification in two days.
The newly trained testers converted the remaining three
features in one and half days. Using EDTTool the testers
were able to generate test cases and expected output at
the feature level from the EDT specifications of that
feature’s logic blocks. These test cases were executed
on Statecharts models which were created by a separate
team with expertise in both domain knowledge as well as
creating Statecharts. The outputs were compared to check
that the Statecharts specifications and EDT specifications
were consistent. They also recorded and compared the
time required to create EDTs and Statecharts.

Table IV presents the details and findings of our case
study, including the number of logic blocks for each
feature, number of input and output ports of each logic
block and the time taken to specify a logic block. The
table also gives time needed to convert the requirements
of these features to Statecharts models.

In most cases, each independent requirement of a
logic block mapped to one row-sequence in EDT. Com-
plexity of a feature can be judged by the number of row-
sequences needed to specify the feature. Since testers
specified EDTs only at the logic block level, no single
EDT was too big. For example, Rear Wiper feature was
split into 6 logic blocks specifying the functionalities
including Normal Wiping, Multi-Speed Wiping, Washer,
Rain Sensing and Reverse Wiping. Although the feature
had 57 requirements in all, no logic block level EDT had
more than 15 rows. Capturing the requirements of rear
wiper feature in EDT needed a total of 14 hours, whereas
Statecharts modeling had taken 21.5 hours. Similarly,
Statecharts modeling of Rear Defogger feature took 7.75
hours more than that of EDT specifications.

B. Findings

Our case study clearly showed that testers without
a strong mathematical background were able to capture
requirements with two weeks of training. The training
time required was comparable to that required for State-
charts training and the time needed to create EDTs was
43% less. Further, when EDTTool generated test data was
run on the Statecharts models, the testers detected a bug
in the Rear Defogger feature which was already tested
before this case study. Because of the success of the case
study the team started using EDT for specifying other
features as well and found several missing requirements
in the document describing enhancements to the turn
indicator feature.

TABLE IV.

CASE STUDY DETAILS AND FINDINGS

Feature Logic Block | Inputs/Outputs | Row- EDT Statecharts Savings %
sequences Time Time Hrs
Hrs
LB1 4/1 13 2.75 4 31.25
LB2 3/1 10 2.5 4 37.5
LB3 4/2 8 2.75 4 31.25
Rear Wiper LB4 772 15 3 4 25
LBS 4/1 5 1.5 2.75 45.45
LB6 572 6 1.5 2.75 45.45
LB1 6/3 17 3.5 5 30
Rear Defogger LB2 4/3 20 3.5 6.5 53.84
LB3 2/2 4 1.5 4.75 68.42
LB1 171 4 1.5 5.5 72.72
LB2 2/2 14 2.5 7 64.28
Auto Backdoor 53 2T 3 T 75 78.94
LB1 6/2 11 3 5 40
LB2 6/2 26 4 6 33.33
Headlamp Washer | LB3 2/1 5 1 35 71.43
LB4 2/1 3 1 3.5 71.43
Auto HiLo-Beam | LBI1 6/2 15 2.5 4.75 47.37
LBI 372 5 1.5 1.5 0
LB2 3/1 5 0.5 1.5 66.67
LB3 3/1 6 0.75 1.5 50
Warning Buzzer LB4 3/1 5 0.5 1.5 66.67
LB5 472 10 4 3 -33.33
LB6 5/3 12 4 3 -33.33
LB7 8/1 9 0.5 1.5 66.67
Shorting Pin LB1 4/4 12 3 3 0
VI. CONCLUSION [4] J. Thyssen and B. Hummel, “Behavioral specification of re-
. . . active systems using stream-based /O tables,” Software and
In this paper, we presented a simple, user-friendly Systems Modeling, 2011.
notation to specify requirements for reactive systems. [5S] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
Our case Study showed that testers who did not have R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot, “STATE-
strong mathematical background were able to formally MATE: A working environment for the development of com-
)) . L. plex reactive systems,” IEEE Transactions on Software Engi-
Speley several requlrements of various features with Just neering, vol. SE-16, no. 4, PP 403-414, Apr. 1990.
two weeks of training. Time taken to create the EDTs [6] 1. Bowen, Formal specification and documentation using Z: A
was nearly half of that needed for creating Statecharts. case study approach. International Thomson Computer Press,
Further, when EDT generated test data was run on the 1996, vol. 66.
Statecharts models, the testers detected missing require- [71 N.G. Ije"eson’ M. P; E. He‘mdahl’ H. Hildreth, and J. D. Reese,
. . “Requirements specification for process-control systems,” Soft-
ments in a feature and also found a bug in another feature Encincerine. IEEE T :
ware Engineering, ransactions on, vol. 20, no. 9, pp.
that was already tested before. Going ahead we will be 684707, 1994.
exploring scalable techniques to analyze EDTs for state [8] G. Berry and G. Gonthier, “The esterel synchronous program-
reachability and also interesting coverage criteria that can ming language: Design, semantics, implementation,” Science
help detect common implementation errors. of computer programming, vol. 19, no. 2, pp. 87-152, 1992.
[9] M. Herrmannsdorfer, S. Konrad, and B. Berenbach, “Tabular
notations for state machine-based specifications,” Crosstalk,
REFERENCES vol. 21, no. 3, pp. 18-23, 2008.

[1] M. K. Zimmerman, K. Lundqvist, and N. Leveson, “Inves- [10] C. Antoine, B. L. Goff, and J.-E. Pin, “A graphic
tigating the readability of state-based formal requirements language based on timing diagrams,” in Proceedings of the
specification languages,” International Conference on Software 13th Conference on Foundations of Software Technology
Engineering, 2002. and Theoretical Computer Science. London, UK, UK:

[2] D. Harel, “Statecharts: A visual formalism for complex sys- Springer-Verlag, _199,3’ pp- _306_316' [Online]. Available:
tems,” Science of Computer Programming, 1987. http://dl.acm.org/citation.cfm?id=646831.707726

[11] W. Damm and D. Harel, “LSCs: Breathing life into message

[3] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj, “SCR*:
A toolset for specifying and analyzing software requirements,”

Computer Aided Verification, pp. 526-531, 1998.

sequence charts,” Formal Methods in System Design, vol. 19,
pp. 45-80, 2001.

