
Automatic Specification Granularity Tuning for
Design Space Exploration

Jiaxing Zhang, Gunar Schirner
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA

Email: {jxzhang, schirner}@ece.neu.edu

Abstract— Algorithm Design Environments (ADE), such as Simulink,
have been shown to be efficient for development, analysis, and evaluation
of algorithms. Recent tools propose to facilitate algorithm / architecture
co-design by bridging the gap from ADE to System-Level Design Envi-
ronments (SLDE) through automatic synthesis from algorithm models
to SLDL specifications. With the wide range of block characteristic
(from simple logic functions to complex kernels) in the algorithm model,
however, it is challenging to select a suitable compositional granularity
for SLD Language (SLDL) blocks in the synthesized specification. A high
volume of SLDL blocks of little computation will increase the number of
mapping possibilities, whereas large blocks with heavy computation on the
other hand allow inter-block fusion reducing the computational demands
in the overall specification yet sacrificing the mapping flexibility.

In this paper, we introduce an automatic specification granularity
tuning mechanism to determine the granularity in the synthesized
specification model hierarchy guided by the computational demands of
algorithm blocks. Our granularity selection significantly simplifies the
early design space exploration as only a meaningful block decomposition
is exposed in the synthesized specification. It leads to an overall system
with less computational demands by leveraging the block fusion capabil-
ities in the ADE. At the same time our granularity decision ensures that
sufficient flexibility remains in the system for exploring heterogeneous
mapping of the algorithm. Our results on real world examples show that
specification models can be synthesized with 80% efficiency through block
fusion with 70-90% fewer but coarser grained blocks.

I. INTRODUCTION

With exponentially increasing chip capacities, the increas-
ing heterogeneity, exploding functional demands while still
meeting shrinking time to market, designing modern Multipro-
cessor System-On-Chip (MPSoC) has become a tremendous
challenge. Top-down design methodologies are one solution to
cope with design complexities. These methodologies start at a
high abstraction level while keeping the system-level overview
and incrementally define and realize the details of the overall
solution [15]. Within the context of top-down methodologies,
algorithm / architecture co-design that successively matches
and adapts both algorithm and architecture to optimize power
and performance offers great opportunities.

One promising approach to realize algorithm / architecture
co-design combines the strengths of a dedicated Algorithm
Design Environment (ADE) and a System-Level Design Envi-
ronment (SLDE) [16]. ADEs, such as Simulink, offer exten-
sive algorithm modeling capabilities supported by algorithm
databases, comprehensive toolboxes and analysis capabili-
ties [13]. SLDEs, such as PEACE/HOPE [5], Dedalus [1] and
SCE [4], focus on system-level explorations through generated
Transaction-level Models (TLM) investigating into allocation
and configuration of processing elements and communication
infrastructures; mapping of applications over these hetero-
geneous architectures and application scheduling. To bridge
the gap between ADE and SLDE, Specification Synthesis
automatically generates a system specification in a System-
Level Design Language (SLDL), such as SystemC, out of the
algorithm description captured in an ADE’s model.

Fig. 1: Granularity and Efficiency Trade-off

The quality of the system specification is pivotal for
the following system-level exploration. Important specification
synthesis decisions include granularity of the SLDL specifica-
tion, along with scheduling and exposed parallelism. These
decisions impact the suitability of mapping computation to
different processing element classes.

Of particular importance for the specification synthesis is
the granularity selection. It defines the size (computational
demands) for each SLDL block. When using an ADE model
(i.e. Simulink) as an input, the ADE blocks may have a large
variance in computational demands. It can range from blocks
of simple logical operations with negligible computation to
blocks containing a complex kernel, such as edge detection al-
gorithms, with huge computational demands. A trade-off exists
when selecting the specification granularity between number
of blocks in the specification (more mapping alternatives), and
reduction in the overall computational demands (efficiency).
Fig. 1 illustrates the trade-off.

One extreme, the finest possible granularity, preserves all
ADE blocks in the SLDL. This leads to the highest number of
SLDL blocks and the greatest mapping flexibility. However,
with many trivial blocks that potentially only contribute negli-
gibly to the overall specification execution time, this only leads
to an unnecessary high degree of freedom. It is not beneficial
to split blocks that barely computationally contributing to
different Processing Elements (PEs). At the same time, the
unnecessary fineness in the model granularity selection may
lead to additional overhead in block-to-block communication
depending on system-level synthesis. The other extreme is the
coarsest granularity that merges all algorithm blocks into a sin-
gle SLDL block. This maximizes inter-block optimization op-
portunities, e.g. leveraging the block reduction techniques [8].
When synthesizing ANSI-C code with Simulink Embedded
Coder (SEC) [8] we have observed 5-12% reduction (see Sec-
tion V) in the total computational demands in the synthesized
specifications between the finest and the coarsest granularities.
However, due to merging all computation into a single block,978-3-9815370-2-4/DATE14/ c©2014 EDAA



the mapping alternatives are dramatically impeded and parallel
explorations become impossible.

Hence, when synthesizing SLDL specifications out of
algorithm models, one important challenge is the granularity
selection that strikes a balance between mapping possibilities
(i.e. number of SLDL blocks) and inter-block optimizations
(i.e. block fusions). Manually defining a proper granularity
is impractical due to model size (with hundreds of blocks)
and complexity with deeply nested hierarchy levels. Therefore,
automatic methods for specification granularity tuning are
needed.

In this paper, we analyze the granularity and efficiency
trade-off for a set of media applications. We propose an
automatic approach that, as part of the specification synthesis,
selects certain algorithm blocks for fusion and thus tunes
the effective granularity of the specification. Our automated
granularity tuning approach, Computation-Guided Granularity
Tuning (CGGT), bases the merging decision on computational
demands of algorithm blocks. With a selectable merging
threshold, the user is empowered to navigate the granularity
and efficiency trade-off.

Our experimental results on three real-world examples
demonstrate that the CGGT-based synthesis produces specifi-
cations achieving 80% of the maximal possible computational
demand reduction (with single block only), while retaining suf-
ficient number of blocks for further design space explorations.

This paper is structured as following: Section II intro-
duces relevant work. Section III examines the background of
specification performance analysis. Section IV discusses the
granularity decisions. Section V demonstrates the benefits on
experimental studies. Section VI concludes the paper.

II. RELATED WORK

Intense research effort has been invested into system-level
design usually from system specifications. However, the speci-
fications still need to be authored manually and little attention
was given to how to synthesize a specification automati-
cally. Approaches appeared for bridging multiple abstraction
layers together, such as using UML as part of SoC design
methodologies [7], [9] and language conversion techniques that
translate UML models into SystemC [14], [12]. A framework
for co-simulation between MATLAB and UML under a co-
design flow with application specific UML customizations
was provided in [10]. However, these work mostly focused
on structural conversions and yet behavior translation, with
exception of state machines, was less explored and the issue
of the trade-off between block volumes and model performance
was not observed.

A top-down refinement flow from Simulink to SystemC
TLM was presented in [6], [11]. Refinement and component
exploration in their work happened in Simulink, requiring
direct annotation, rewriting and modifications of Simulink
models. Unlike their methodologies focusing on the top-
down workflow, we focus on the issues and opportunities
emerged in bridging the two environments together. A re-
coding approach [3] was proposed to transform flat C code
into a structured SLDL specification. The effort similarly
aimed to close the specification gap, but directly targeted C
as the input language. Our approach, on the other hand, starts
from a higher abstraction by using Simulink as input models.
Furthermore, their approach relied on a re-coding scheme by

manually determining the granularity without inter-component
optimization.

III. BACKGROUND: SPECIFICATION PERFORMANCE

ANALYSIS

This section analyzes a video MJPEG Encoder to provide
further background information and substantiate the motivation
for this work. For this paper we chose Simulink as an ADE.
The Encoder model in Simulink contains 94 leaf blocks (not
sub-divided into further blocks) and 70 hierarchical blocks
with a nested hierarchical depth of 12. We analyze each leaf
block in the Simulink model for its computational demands by
defining it as the number of operations that a block performs in
the total execution period. For simplicity, we define BlockSize
as the computational demands of a block.

To gain insight into the model composition, Fig. 2 plots
a histogram over the algorithm blocks regarding BlockSize.
The logarithmically scaled x-axis sorts blocks into bins by
BlockSize. For each bin, it shows the relative number of
blocks in yellow (left), and the relative contribution to total
execution time in blue (right). Fig. 2 shows that more than
83% of all leaf blocks have BlockSize less than 1 Million
operations performing only simple and individual operations.
While largely contributing to the total number of blocks, these
do not contribute to the total computational cost. Only a few
blocks (less than 17%) are of 1 Million operations or larger in
size. In our model, these blocks include kernel computations
such as template matching and DCT (Discrete Cosine Trans-
form) for processing arrays of pixels. Often, computationally
intense blocks are predefined library blocks in Simulink with
un-explorable internal structures as encrypted MATLAB code
or binary distributions. In this model, essentially only the large
blocks contribute to the overall computational demands.

The Pareto principle (i.e. 80-20 rule) is clearly observable
in the MJPEG Encoder analysis; where about the 20% of
blocks contribute to 80% of the total computational load. At
the same time we observe a strong drop in contribution to
the total computation as the blocks get smaller in BlockSize.
We therefore chose BlockSize as a metric to decide which
blocks should be merged together during SLDL specification
synthesis. Merging blocks controls the SLDL specification
granularity and leverages the inter-block code optimization
potential for synthesizing SLDL leaf blocks. This will result
in a reduced overall computational demands of the generated
SLDL specification while still offering sufficient number of
blocks for heterogeneous DSE at system-level. At the same
time this exposes only blocks with meaningful computational
contributions, simplifying the DSE by reducing the total num-
ber of blocks to be mapped.

 0%

10%

20%

30%

40%

50%

60%

70%

< 10
1

< 10
2

< 10
3

< 10
4

< 10
5

< 10
6

< 10
7

< 10
8

 

 

Relative Number of Blocks
Relative Computation

Fig. 2: MJPEG Encoder Algorithm Block Characteristics



IV. SPECIFICATION GRANULARITY TUNING

With the large number of blocks and high model com-
plexities, automated methods are required for identifying al-
gorithm blocks to be merged in the specification synthesis.
Motivated by the strong correlation of BlockSize to the
total computational demands, we propose our Computation-
Guided Granularity Tuning (CGGT) approach. This section
first overviews the overall specification tuning / synthesis flow
and then introduces the CGGT algorithm in detail.

A. Specification Granularity Tuning Flow

Fig. 3 illustrates the overall flow. The input to the flow
is an algorithm model captured in Simulink. The algorithm
model is then profiled to determine the computational de-
mands (BlockSize) of each algorithm block. CGGT utilizes
BlockSize of each block in the model to determine the leaves
for the SLDL specification. Finally, Specification Synthesis
module realizes the granularity decision and generates accord-
ingly the SLDL specification as an input to the system-level
design space exploration.

Fig. 3: CGGT Flow

Profiling: The BlockSize of all blocks the algorithm
model is estimated as a target-independent metric (e.g. add,
subtract, multiply, divide) for gauging the computational im-
pacts. The BlockSize is not a measure of execution time.
Nonetheless, it can be correlated to execution time taking into
account target-specific processing capabilities and algorithm
mapping of the specification.

For the purpose of this work, we chose the profiling
phase of [2], which obtains basic block execution information
through simulation and statically analyzes the code to compute
the computational demands. For this, the algorithm model
is synthesized into the SLDL specification at the original
granularity and analyzed through the profiling phase of [2].
Other methods for determining the BlockSize, such as static
analysis, are feasible, however do not change our overall
proposed approach1.

CGGT: Blocks in the algorithm model are distinguished
between leaf and hierarchical blocks. In this step, CGGT
identifies the suitable leaves (i.e. selecting hierarchical blocks
to be leaf blocks) by comparing the BlockSize against a
computational lower bound threshold P and an upper bound
threshold U . If the BlockSize of a hierarchical block (e.g.
sum of all children’s demands) sits between these two bounds,
it will be marked as a leaf for later synthesis. Details of

1The Simulink integrated profiler currently only provides host execu-
tion time during simulation, which is insufficient for determining platform-
independent processing demands.

(a) Input Model Tree (b) CGGT Process (c) Output Spec. Tree

Fig. 4: Graph Representation for CGGT Example

the selection algorithm are discussed in Section IV-B. As
its output, CGGT defines the Leaf Selection for Specification
Synthesis.

Specification Synthesis: Given the selection of leaves
identified by CGGT, Specification Synthesis produces the
SLDL specification converting the decision into reality. Each
designated leaf is generated into ANSI-C code using the
Simulink Embedded Coder (SEC). Inter-block optimizations
are enabled to reduce the overall computational demands
if a designated leaf contains multiple blocks. In addition,
Specification Synthesis transposes the generated leaf ANSI-
C code into SLDL and generates SLDL hierarchical blocks
according to the algorithm model. Details of this process
described in [16]. The resulting SLDL specification is input
to a top-down system-level design space exploration flow to
evaluate heterogeneous platform and specification mapping
alternatives. The next section describes CGGT at the heart of
our approach.

B. Computation-Guided Granularity Tuning

To more formally define CGGT, we define the following
notations: an algorithm model hierarchy can be viewed as a
spanning tree graph (G(v, e)) where a vertex (v) is a block and
tree edges (e) represents containment relationship. The exam-
ple in Fig. 4 shows a simple Simulink model structure with
top-level block A containing B and C, which in turn contain
other sub-blocks (e.g. Child(A) returns B,C and Parent(C)
returns A). For simplicity of explanation, we assume unique
block instances; hence blocks have a single parent. Only tree
edges are allowed which describe hierarchical relationships and
therefore back edges, forward edges or cross edges do not
exist in our formulation. Each leaf block is annotated with the
BlockSize reflecting the computational demands obtained by
the profiling – see Tabl. I for our example. The BlockSize of
a hierarchical block (i.e. a block with children) is defined as
the sum of all its children.

To identify blocks based on the BlockSize, CGGT
employs a lower bound threshold P . P denotes the mini-
mal BlockSize of a block to be considered as a leaf (i.e.
BlockSize(v) > P ). Otherwise, the leaf identification needs
to propagate up the hierarchical tree to combine more blocks
together to meet P . Meanwhile, the merging needs to be
stopped with an upper bound threshold U which controls the
largest tolerable BlockSize of a block. Not using the threshold
U would lead to a single root block as all the blocks will be



TABLE I: Leaf BlockSize and Tuning Threshold

H I K L M F G P U
BlockSize 100 40 20 30 50 120 5
Threshold 90 130

merged. In essence, a block is declared as a leaf, if:

P <
∑

∀v∈Child(block)

BlockSize(v) < U (1)

The CGGT algorithm (see Algorithm 1) builds upon the
Depth-First Search (DFS) to cover all nodes in the graph (i.e.
all blocks in the model) using a maker labeling approach
for the leaf block selection. During the tree traversal by
the algorithm it declares a node (block) as either leaf or
hierarchical block by Mark(block) ← LEAF ∨ HIER. To
illustrate the operation, Fig. 4 together with Tabl. I shows an
example. Prior to the algorithm running, all blocks in the model
have no markers. CGGT thus marks all blocks that are without
children (i.e. leaves in the algorithm model) as leaves (line 13)
by recursively reaching to the deepest blocks. In our example,
these are H, I,K,L,M,F,G.

Upon encountering a leaf block v with BlockSize(v) >
P , such as H and F (highlighted in gray), it will mark its
parent as HIER (line 19). As H,F are leaves with sufficient
computation, they label their parents as a hierarchical block
(HIER) because CGGT works heuristically by separating
blocks of big BlockSize as much as possible within a parent
block. By setting the HIER marker, it signals that there are
heavy blocks within such block. Thus, this parent block cannot
be overwritten by the LEAF maker anymore to preserve the
earlier identified leaf blocks (H,F ). On the other hand, these
light leaf blocks are only able to claim their parents to be a leaf
unless there is no other blocks have marked it as HIER. The
LEAF label of a block can be overwritten by other sibling
blocks if any has a BlockSize > P (line 14 - line 20).

Nevertheless, if none of the block’s children has
BlockSize larger than P , the block (with clean makers) will
be marked as a LEAF (line 16). Essentially, v propagates the
leaf to one level above based on computational compositions.
The BlockSize of the recent marked leaf block is again
examined to decide if it needs to be further aggregated up
in the MERGE procedure (line 1). In our example shown
in Fig. 4(b), K,L,M are all pruned off by marking their
parents to be a leaf, yet their parent J satisfies the threshold P
(i.e. BlockSize(K)+BlockSize(L)+BlockSize(M) > P ),
which makes it a leaf that should be preserved in the hierarchy.

Once a hierarchical block is reached in the tree traversal,
MERGE procedure (line 2 - line 9) examines the BlockSize
of it against U to check if the block can be still considered as
a leaf to further prune off undesired computational demands.
The input block to MERGE has a marker of either LEAF
or HIER labeled by its child blocks. If the BlockSize
of this hierarchical block is less than U , it will be marked
as a leaf and propagate up the leaf marker. Otherwise, it
remains as HIER and sets its own parent to be HIER.
In our example, F,G are merged to their parents because
the BlockSize of C, which is the combined size of F and
G, is less than U , and similarly J is merged because it is
the only block, which apparently satisfies the requirement of
U . The CGGT algorithm recursively walks through the entire
model tree. Once the root node is visited, the leaf identification

Algorithm 1 Computation-Guided Granularity Tuning

1: procedure MERGE(block, U )
2: if BlockSize(block) < U then
3: Mark(block)) ← LEAF
4: if Mark(Parent(block)) �= HIER then
5: Mark(Parent(block)) ← LEAF
6: end if
7: else
8: Mark(Parent(block)) ← HIER
9: end if

10: end procedure
11: procedure CGGT(block, P, U )
12: if Child(block) = ∅ then
13: Mark(block) ← LEAF
14: if BlockSize(block) < P then
15: if Mark(Parent(block)) �= HIER then
16: Mark(Parent(block)) ← LEAF
17: end if
18: else
19: Mark(Parent(block)) ← HIER
20: end if
21: else
22: for all v ∈ Child(block) do
23: CGGT(v, P, U )
24: end for
25: MERGE(block, U )
26: end if
27: end procedure

process completes. Fig. 4(c) shows the output specification
tree. Most of the trivial blocks (K,L,M,G) are pruned off as
their BlockSize is smaller than P . The merging threshold U
contributes further to trim off combinations of heavy and small
blocks. J and F are merged to a level up without impeding
their parent BlockSize too much. However, I remains in the
final specification as the BlockSize of its parent block D
is above the merging threshold (i.e. U < BlockSize(D) =
BlockSize(H)+BlockSize(I)). Therefore, it stays as a leaf.
This kind of leaf blocks are considered as forced leaf blocks.
The number of forced leaf blocks is an important metric in
order to evaluate the efficiency and performance of the tuning
parameter selection. The goal is to minimize the number of
forced leaves since they have small computation, thus are not
desirable for later DSE.

V. EXPERIMENTAL RESULTS

To demonstrate the benefits of CGGT, we have imple-
mented our approach and applied to real world examples. In
this section, we first outline the realization of our approach
and describe the experimental setup. We then introduce our
examples which are three media applications: MJPEG Encoder,
MJPEG CODEC and Corner Detection, and their characteris-
tics. We will analyze CGGT on MJEPEG Encoder in detail
and lastly generalize over all examples.

To validate the CGGT approach we have integrated it into
our Specification Synthesis approach [16]. It uses a Simulink
model as an input and generates an SLDL specification for
further design space exploration. The Specification Synthesis
relies on Simulink Embedded Coder (SEC), release 2011b, for
generating the computation code (in ANSI-C) for the SLDL
leaves. We have enabled the inter-block optimizations in SEC



TABLE II: Media Application Characteristics

Model Num. Num. Comp. of Comp. of Speed-
Characteristics of of leaf original model all merged up

Blocks Blocks (operations) (operations)
MJPEG Encoder 140 93 83.8M 75.2M 10%
MJPEG CODEC 315 202 113.2M 99.1M 12%
Corner Detection 57 45 195.4M 184.3M 5%

to reduce computational demands for SLDL leaves containing
multiple algorithm blocks. To obtain target-independent com-
putational information, we integrated a C source code based
profiler [2]. To demonstrate the efficiency of the algorithm, we
have applied it to three real-world media examples: MJPEG
Encoder, MJPEG CODEC and Harris Corner Detection. The
examples stem from Simulink toolboxes as part of the 2011b
release. For run-time validation, the MJPEG examples operate
on a VGA size video stream of 900 frames, and the Corner
Detection on a 1000 frame stream of the same size.

Tabl. II lists the model characteristics of our three media
applications. MJPEG Encoder and CODEC consist of 140 and
315 blocks respectively. Out of these, 93 and 202 blocks are
leaf blocks. The Corner Detection is smaller, containing only
57 blocks, among which 45 are leaves. Many of the core blocks
of the Corner Detection are described in isolated units (S-
Function or library modules) that express a large computational
demands. With the limited visibility, these blocks cannot be
decomposed into smaller blocks.

To obtain an indication of the optimization potential,
we synthesized each model once as original model (i.e. all
blocks are preserved in the SLDL specification), and once
as all merged yielding the coarsest possible granularity (i.e.
synthesizing one SLDL block representing the root of the
algorithm). Tabl. II lists the total amount of computation for
both extremes. The total computational demands drops by
10% and 12% for the MJPEG examples. However, the Corner
Detection example profits less with only 5% since it starts
out with coarser algorithm blocks. The following paragraphs
analyze how much the optimization potential can be retained
while merging computationally non-contributing blocks.

A. Granularity Tuning Evaluation

As described in the CGGT algorithm, the lower bound
threshold P is used for leaf identification. As such, it impacts
the resulting number of blocks and the inter-block optimization
potential. In order to make our measurements independent of
the example size, we seek an example-relative definition of P .
For this, we propose the BlockSize cumulative contribution
percentile for P . For instance, P = 80% indicates the
threshold has the value such that 80% of all blocks in an
example model has equal or smaller BlockSize. In the MJPEG
Encoder example, P = 80% = 1.1MOps (see Fig. 2). For
simplicity, we define the upper bound merging threshold U
as U = 1.1P . The overall effect of both parameters on a
resulting specification can be observed while tuning P to a
larger value yielding more coarse-grained model hierarchy.
Fig. 5 visualizes the results when varying the threshold P
from 0% to 100% at three intervals: 20%, 40% and 80%
using the MJPEG Encoder example. The plot shows how
leaf blocks with increasing BlockSize (X-axis) contribute
to the cumulative computation (Y-axis). Note that both axes
are in log scale. The cumulative computation indicates that

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

Block Sizes

C
u

m
u

la
tiv

e
 C

o
m

p
.

 

 

P=Min(0)
P=0.03M(20%)
P=0.4M(40%)
P=1.1M(80%)
P=Max(100%)

Fig. 5: MJPEG Block Reduction

blocks of a certain BlockSize or smaller have contributed to
the total computational demands. To give an example: in the
original granularity (blue line), blocks with a BlockSize of
100 operations or less attribute to total computational demands
of 10000 operations.

Given in Tabl. III, we observed that tuning P from a lower
to a higher threshold introduces a block removal associated
with P . Both Fig. 5 and Tabl. III show that a higher P produces
fewer total blocks with bigger BlockSize as small blocks
have been merged together. Due to the model hierarchical
limitations, it is not possible to remove all trivial blocks while
only keeping heavy blocks. The number of forced leaves shows
this effect. By increasing P , the forced leaves are reduced
from 17 blocks to 5 blocks as some of these trivial blocks
exist at a higher hierarchical level and they cannot be merged
without merging other extra heavy blocks together. The most
effective block reduction is obtained with P = 80%, which
produces a specification with 12 leaf blocks and only 5 forced
leaves. The total model speedup is around 8% comparing to
the original model with full block specification synthesis. As
previously highlighted in Fig. 2, blocks between 0.1M and 1M
size contribute over 80% to the total computational demands.
Only 20% of blocks have a BlockSize larger than 1.1M, yet
they constitute 80% of the total model computational cost.

TABLE III: Tuning Effect on MJPEG Encoder

Threshold Num. Num. Num. of Model Speedup Efficiency
(P ) of of leaf Forced Comp.

Blocks Blocks Leaves Demands
P = 0 140 93 0 83.8M 0% 0%
P = 20% 94 71 17 81.4M 2% 28%
P = 40% 46 31 9 78.6M 6% 60%
P = 80% 19 12 5 76.7M 8% 82%
P = 100% 1 1 0 75.2M 10% 100%

In order to simplify the comparison across examples, we
define efficiency as a relative metric. It shows how much
of the best possible intra-block optimization (i.e. when all
blocks are merged into one) is achieved by the model. For
instance, in the MJPEG Encoder the optimization potential is
83.8M − 75.2M = 8.6M . With P = 80%, the total computa-
tional demands is 76.7M. In absolute terms, 7.1M operations
were avoided, yielding an efficiency of 82%. Tabl. III lists
the efficiency in the last column. Fig. 6 illustrates the effect of
increasing the threshold P in finer detail. It shows the threshold
P on the X-axis. The left (blue) Y-axis indicates the resulting
number of blocks, and the right (green) Y-axis the efficiency.
The MJPEG Encoder starts out with many blocks and low
efficiency. As P increases, number of SLDL blocks decreases
and efficiency increases. Both correlations are almost linear.



0 20 40 60 80 100
0

100

200
N

u
m

b
e

r o
f 

Bl
o

c
ks

 

 

0 20 40 60 80 100
0

0.5

1

Ef
fic

ie
n

c
y

Threshold P

Number of Blocks
Model Efficiency

Fig. 6: MJPEG Granularity vs. Efficiency

B. Block Fusion Optimization and Mappablity Trade-off

In order to generalize our observations, we have expanded
to include all three media applications. Fig. 7 illustrates the
trade-off between number of blocks, which impact mapping
flexibility, and efficiency (utilizing the inter-block optimiza-
tions). In order to normalize across all applications, the y-
axis shows the number of blocks relative to the maximum
number (i.e. original granularity). The x-axis denotes efficiency
as defined earlier. Each application is shown as a line obtained
by sweeping the threshold P at multiple intervals.

0 20 40 60 80 100
0

20

40

60

80

100

Computation Efficiency (%)

R
e

la
tiv

e
 N

u
m

. o
f 

Bl
o

c
ks

 (
%

)

 

 

Encoder
Codec
Corner Detection

Fig. 7: Granularity vs. Efficiency

All three models converge to higher efficiency with a higher
threshold P . The Corner Detection, with its predominantly
large blocks, increases very little in efficiency with small P
(P < 50%), showing a limited block reduction. With larger P
(P > 50%), it follows the same trend as the other examples,
with linearly increasing efficiency.

Fig. 7 numerically validates the trade-off introduced in our
motivating discussion (see Section I). It serves a tremendous
value for designers to determine the leaf selection for a syn-
thesized specification. The CGGT approach enables designers
to navigate the granularity / efficiency trade-off, and to balance
the number of blocks for exploration with overall performance.

VI. CONCLUSION

In this paper we have identified the trade-off between
model granularity and intra-block optimization in a specifi-
cations synthesis process. Model granularity impacts the spec-
ification mapping flexibility as well as efficiency. Many small
blocks with negligible contribution to computation may only
introduce overhead, may not lead to meaningful design space
exploration alternatives, and thus only artificially complicates
any DSE. Conversely, few large blocks reduce the overall

computational demands through inter-block optimizations dur-
ing the specification synthesis, but will limit the mapping
flexibility. In this paper, we have analyzed and quantified the
trade-off through three real-world media examples.

To aid the designer in navigating the trade-off, we in-
troduced Computation-Guided Granularity Tuning (CGGT). It
identifies leaf blocks with block fusion to produce an overall
specification model in desired granularity as specified by the
user. Our approach enables designers to navigate the trade-
off to produce specifications with up to 80% computational
performance efficiency with 70-90% block reduction. Our
future work will enhance the metric for leaf selection to include
communication, and we will analyze the impact of the mapping
flexibility with heterogeneous platforms mapping.

ACKNOWLEDGMENT

The work presented in this paper is partially supported by
the National Science Foundation under Grant No. 1136027.

REFERENCES

[1] M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov. A methodology
for automated design of hard-real-time embedded streaming systems.
In Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pages 941–946, 2012.

[2] L. Cai, A. Gerstlauer, and D. D. Gajski. Retargetable profiling for
rapid, early system-level design space exploration. In Proceedings of
the Design Automation Conference (DAC), San Diego, CA, June 2004.

[3] P. Chandraiah and R. Dömer. Code and data structure partitioning
for parallel and flexible MPSoC specification using designer-controlled
recoding. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(6):1078 –1090, June 2008.

[4] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi,
and D. D. Gajski. System-on-Chip Environment: A SpecC-based
Framework for Heterogeneous MPSoC Design. 2008(647953):13, 2008.

[5] S. Ha, S. Kim, C. Lee, Y. Yi, S. Kwon, and Y. pyo Joo. PeaCE:
A hardware-software codesign environment for multimedia embedded
systems. ACM Transactions on Design Automation of Electronic
Systems, 12, 2007.

[6] A. A. Jerraya, A. Bouchhima, and F. Ptrot. Programming models and
HW-SW interfaces abstraction for multi-processor SoC. In Design
Automation Conference, pages 280–285, 2006.

[7] G. Martin and W. Mueller. UML for SOC Design. Springer, 2005.

[8] The MathWorks, Inc. Simulink Embedded Coder Ref. R2011b, 2011.

[9] S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley Professional, May 2002.

[10] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. De-
haene, and Y. Vanderperren. UML for ESL design: basic principles,
tools, and applications. In International Conference on Computer Aided
Design, page 7380, 2006.

[11] K. M. Popovici. Multilevel Programming Envrionment for Hetero-
geneous MPSoC Architectures. PhD thesis, Grenoble Institute of
Technology, 2008.

[12] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A SoC design
methodology involving a UML 2.0 profile for SystemC. In Design,
Automation, and Test in Europe, pages 704–709, 2005.

[13] The MathWorks Inc. MATLAB and Simulink, 1993-2013.

[14] Y. Vanderperren and W. Dehaene. From UML/SysML to MAT-
LAB/Simulink: current state and future perspectives. In Design,
Automation, and Test in Europe, 2006.

[15] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor System-on-Chip
(MPSoC) Technology. IEEE Transactions on Computer-aided Design
of Integrated Circuits and Systems, 27:1701–1713, 2008.

[16] J. Zhang and G. Schirner. Joint algorithm developing and system-level
design: Case study on video encoding. In Embedded Systems: Design,
Analysis and Verification, pages 26–38. Springer, 2013.


