
Hardware Implementation of a Reed-Solomon
Soft Decoder based on Information Set Decoding

Stefan Scholl, Norbert Wehn
Microelectronic Systems Design Research Group

University of Kaiserslautern

67663 Kaiserslautern, Germany

Email: {scholl, wehn}@eit.uni-kl.de

Abstract—Soft decision decoding of Reed-Solomon codes can
largely improve frame errors rates over currently used hard
decision decoding. In this paper, we present a new hardware
implementation for soft decoding of Reed-Solomon codes based
on information set decoding. To our best knowledge this is the first
hardware implementation of information set decoding for long
Reed-Solomon codes. We propose a reduced complexity version
of the decoding algorithm, that is optimized for efficient hardware
implementation and enables high throughput. The decoder was
implemented on a Virtex 7 FPGA, achieving a gain of 0.75
dB compared to conventional hard decision decoding and a
throughput of up to 1.19 GBit/s for the widely used RS(255,239).
This gain in FER is achieved with less complexity and more than
15x larger throughput than other state-of-the-art architectures.

I. INTRODUCTION

Forward error correction is an essential component of
today’s communication systems. In many applications and
communication standards Reed-Solomon (RS) codes are uti-
lized, either as a standalone channel code or in concatenation
with convolutional codes, e.g. [2]. In this paper, we will put
our main focus on the RS(255,239) code, because of its capital
importance for real world communication systems.

Traditionally Reed-Solomon codes are decoded with a
hard decision decoder (HDD), using e.g. the well known
Berlekamp-Massey algorithm [17]. In contrast to hard decision
decoding, soft decision decoding uses probabilistic information
on the received bits, which can lead to large improvements in
frame error rate (FER) over HDD [8].

Soft decoding for block codes gained a lot of attraction
in the last 20 years driven by Turbo and LDPC codes [11].
These codes have previously demonstrated the advantage of
soft decoding. RS codes are mainly hard decoded with HDD,
because the decoding heuristics for Turbo and LDPC codes can
not directly be applied to RS codes (due to the dense struc-
ture of RS codes). However recently soft decoding heuristics
have been proposed using different approaches, that exhibit
very different FER and complexity. A selection of interesting
algorithms can be found in [5], [6], [8], [9], [14], [16], [19].

In contrast to Turbo and LDPC codes, hardware imple-
mentations of soft decoding of RS codes are yet not well
investigated. Therefore, it is so far not obvious which algorithm
leads to efficient hardware implementations, that feature good
FER gain over HDD and high throughput. This is important,
because real world applications often require high throughputs,

that can not be provided by software implementations. Hence,
dedicated hardware implementations of decoders on FPGAs or
ASICs are mandatory to meet throughput requirements.

Up to now, few hardware implementations on ASICs
and FPGAs have been proposed for soft decoding of the
RS(255,239) code. One trend becoming apparent are imple-
mentations based on Chase decoding [6], especially the closely
related low-complexity chase (LCC) algorithm [5]. These
hardware implementations feature low hardware complexity
[4] [10] [13]. However, this low complexity comes at the
expense of a rather poor FER. Implementations based on LCC
provide only little FER gain over HDD in the order of 0.3−0.4
dB.

Another trend are implementations, that provide larger
gains in FER. In [15] a FPGA implementation of a soft
decoder for a (shortened) RS(255,239) was presented based
on the adaptive belief propagation (ABP) algorithm [14]. It
features 0.75 dB gain (@FER = 10−4) and a throughput of
32 MBit/s on a Stratix II FPGA. Another implementation based
on the stochastic Chase algorithm in [12] features 0.7 dB gain
(@FER = 10−4) at a throughput of 50 MBit/s on a Virtex 5
FPGA. Although the implementations based on ABP [15] and
the stochastic Chase algorithm [12] feature a comparatively
large gain in FER, they achieve only small throughputs. So it
is desirable to look for new algorithms, that provide a more
efficient approach and lead to implementations with a large
FER gain and high throughput. Hardware implementations that
provide larger gains in FER and high throughput are yet not
known.

In this paper, we present a new hardware implementation
based on a different algorithmic approach, that was so far not
considered for RS codes. We implement a decoder based on
information set decoding [7] called ordered-statistics decoding
(OSD) [9] in a reduced complexity version (a modificated ver-
sion of [3]). To our best knowledge this is the first implementa-
tion of information set decoding for long Reed-Solomon codes.
Instead of implementing the OSD algorithm straightforward,
we consider a simplified version, which considerably reduces
the hardware complexity. We present a FPGA implementation
for the RS(255,239) and RS(63,55) code. For the RS(255,239)
we achieve a gain of 0.75 dB at a throughput of 1.19 GBit/s.
For the RS(63,55) code FER gain is 1.4 dB at a throughput
of 690 MBit/s.

The paper is structured as follows: In Section II we will
introduce the necessary notation. Section III reviews original978-3-9815370-2-4/DATE14/ c© 2014 EDAA

OSD and its reduced complexity version for hardware imple-
mentation. The proposed hardware architecture can be found
in detail in Section IV. Implementation results for a Xilinx
Virtex 7 FPGA and a comparison with other state-of-the-art
decoders are presented in Section V.

II. NOTATION

A binary linear (N,K) code C has N code bits and K
information bits. The number of redundant bits is denoted as
M = N−K, the code rate is R = K

N
. C is defined by a parity

check matrix H of dimension M ×N . hij denotes the bit in
the ith row and the jth column, hi denotes the ith column
vector of H.

In the assumed transmission system, a binary vector of
information bits u = (u0, u1, ..., uK−1), ui ∈ GF (2) is
encoded to obtain a binary code word x = (x0, x1, ..., xN−1),
xi ∈ GF (2), which is modulated using BPSK and transmitted
over an additive white Gaussian noise (AWGN) channel. After
demodulation the received bits are described as a vector of log
likelihood ratios (LLRs) y = (y0, y1, ..., yN−1), yi ∈ R, with

yi = ln
(

p(xi=0)
p(xi=1)

)

Let ȳ be the hard decision vector of y.

The reliabilities of the received LLRs are given by |y|. The
transmission can be interpreted as an addition of a binary error
vector e, such that ȳ = x+e. The syndrome vector is denoted
by s = HȳT = HeT.

Soft decision maximum likelihood decoding is performed
by finding the code word with minimum value of the following
metric:

W (x,y) =

N−1
∑

i=0

xiyi (1)

xML = argmin
x∈C

W (x,y) (2)

Note, that RS codes are non-binary codes, which are
defined over a Galois Field (GF) GF

(

2P
)

of size q = 2P .
However, the non-binary code words and parity check matrix
can be transformed into the binary domain. To transform the
non-binary parity check matrix to its binary counterpart, binary
image expansion is used. In binary image expansion the non-
binary matrix entries of the original RS parity check matrix
are replaced by P × P binary matrices [8]. E.g. the non-
binary RS(255,239) code (P = 8) can be described as a binary
(2040, 1912) code, having a 128 × 2040 parity check matrix
H. In the remainder of this paper we treat the RS code as a
binary code, so the decoding algorithms for binary codes can
be applied.

III. DECODING ALGORITHM

This section investigates the algorithm, which is the basis
of our hardware implementation. First, we review the original
OSD algorithm, as proposed by Fossorier et al. [9]. Then, we
review a reduced complexity version of OSD using syndrome
weights [3]. We demonstrate the advantages of this modified
OSD for hardware implementations and propose further im-
provements.

�����������
��� ��
�

�
�
����	��

�����������
���
�� �

����	��

��
�������
����
������������

�����������
	�����

� �
	�����	��

���

���� 	���

�

Fig. 1. H after Gaussian elimination with sorted bit positions, resp. columns

A. Original Ordered Statistics Decoding

OSD has been proposed in [9] and belongs to the class of
information set decoders, that originate from [7].

In OSD the received bits and their bit positions in ȳ are
first sorted according to their reliabilities |y|. The received bit
positions are divided into two groups: the M least reliable
independent positions (LRIP) and the remaining K more
reliable positions (MRPs).

In a first step OSD erases the M LRIPs. Then the remaining
K MRPs are used to reconstruct the M erased LRIPs using
the M parity check equations. To perform the reconstruction,
the parity check matrix has to be put into a diagonalized form
Ĥ by Gaussian elimination, see Fig.1. This process always
outputs a valid code word and is called order-0 reprocessing
or OSD(0). OSD(0) corrects all errors in the low reliable part,
if the K MRPs are correct.

To perform successful correction in the case of one error
in the K MRPs, the reconstruction process is repeated several
times, each time with exactly one of the MRPs flipped. This
results in a list of K + 1 possible code words from which
the best code word is chosen by evaluating the metric of Eq.
(1). This improved decoding is called order-1 reprocessing or
OSD(1).

High order reprocessings, like OSD(2), further improve
FER, but are not considered in this paper, because of their
computational complexity.

1) Sorting: determine M independent bit positions with
lowest reliability |y| (LRIPs)

2) Erasure: erase the M LRIPs
3) Gaussian Elimination: diagonalize H at the LRIP

columns to obtain Ĥ
4) OSD(0): reconstruct the LRIPs using Ĥ to obtain a

code word x
5) OSD(1): flip every bit in the MRP once and recon-

struct again to obtain K code words x
6) List decoding: among all code words found: select

the one with the smallest metric W (x,y) (Eq. 1)

Fig. 2. Original OSD algorithm, here with order-1 reprocessing

B. Reduced Complexity OSD for Hardware

The computational bottleneck of the original algorithm are
the dynamic reconstructions of the M LRIPs. E.g. in case of
decoding a RS(255,239) with OSD(1) this operation is required
2041 times. To overcome this problem we use a reduced
complexity algorithm which makes use of the syndrome weight
[3].

The reduced complexity algorithm starts (as the original
OSD) with determining the LRIPs and Gaussian elimination.
However, the reconstruction process of the original OSD is
replaced by determining the corrupted bits using the syndrome
vector and then flipping these erroneous bits.

If the syndrome vector is calculated using the diagonalized
parity check matrix, i.e. ŝ = ĤȳT, two distinct cases for the
binary weight of the syndrome vector can be observed:

• The syndrome weight is small: In this case, it can be
assumed, that only errors in the LRIPs are present, i.e.
OSD(0) processing is sufficient.

• The syndrome weight is large: In this case, it can be
assumed, that also errors in the MRP are present. Then
OSD(1) processing is performed.

A (fixed) weight threshold to decide between the two cases is
denoted by Θ ∈ N and determined by simulation.

OSD(0) (small syndrome weight) is performed by simply
flipping the LRIPs that have lead to the 1s in the syndrome
vectors. Conducting OSD(1) (large syndrome weight) to cor-
rect one MRP error is done by first flipping the bit position

j = argmin
i=0,...,N−1

wgt
(

ŝ⊕ ĥi

)

After flipping the MRP error bit at j, the syndrome is calcu-
lated again and the remaining LRIPs errors are corrected by
performing OSD(0).

We have to point out, that the syndrome weight based
OSD does not exactly perform OSD, but merely approximates
OSD behaviour. The crucial part is the decision for OSD(0)
(only LRIP errors) or OSD(1) (MRP and LRIP errors), which
can not always be accomplished correctly by the syndrome
weight. However, as can be seen in Fig. 3, this approach
works well for the RS(255,239) code and considerably reduces
the complexity of OSD. For more detailed information on the
syndrome weight OSD please refer to [3].

C. Remarks and Modifications of the Syndrome Weight OSD

In this subsection some characteristics of the reduced
complexity approach are discussed and modifications to the
algorithm are proposed to reduce hardware complexity and to
improve FER.

1) HDD aided decoding: One disadvantage of OSD is the
tendency for a weak FER performance if SNR increases. To
improve FER we propose to extend OSD with a conventional
HDD, which may provide an additional code word for the list
decoding. The FER gain for HDD aided decoding is shown in
Fig. 3.

2) stopping criterion: The syndrome weight can also be
used to decide early in the decoding process, if OSD(0)
processing is sufficient or also OSD(1), which is much more
time consuming, is necessary. Since in practical cases OSD(1)
needs to be executed only very rarely, this feature speeds up
decoding considerably.

5 5.5 6 6.5 7 7.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

RS(255,239), R=0.937

HDD

OSD(1)

OSD(1), HDD aided

reduced complexity
algorithm

Fig. 3. Algorithmic considerations for the RS(255,239)

3) list decoding: Since OSD is a list decoding algorithm,
it is usually required to calculate the sum in Eq. 1 for every
candidate code word. The candidate code words include the
OSD(0) and the HDD code word as well as K code words
from OSD(1). Calculating Eq. 1 is very costly in costly both
in time and hardware resources. However here the calculation
is avoided by evaluating syndrome weights. In OSD(1) the
syndrome weights after the bit flips are immediately evaluated.
Among all K OSD(1) candidates the one with the smallest
weight is selected (Step 4 in Fig. 4). If finally the syndrome
weight falls below the weight threshold Θ additional OSD(0)
is assumed to be successful, otherwise OSD is declared as
decoding error and the HDD solution is output (Step 5 in Fig.
4). Since the syndrome weight is a sum of M 1 bit values,
it is much less complex than evaluating the sum of N (fixed
point) LLRs values in Eq. 1.

The reduced complexity OSD algorithm for our hardware
implementation is summarized in Fig. 4. An evaluation of the
FER performance is shown in Fig. 3.

1) Sorting:
determine the M least reliable bit positions (LRP)

2) Gaussian Elimination:
diagonalize H at the LRIPs to obtain Ĥ

3) calculate the syndrome ŝ = ĤȳT

and its binary weight wgt (̂s)

4) If wgt (̂s) > Θ: /* MRP errors */
flip the received bit at position

j = argmin
i=0,...,N−1

wgt
(

ŝ⊕ ĥi

)

update the syndrome ŝ = ŝ⊕ ĥj and wgt (̂s), goto 5

5) If wgt (̂s) ≤ Θ: /* only LRIP errors remaining */
For all ŝi = 1, flip the LRIP l, for which ĥil = 1
output OSD result, terminate
else
perform HDD on ȳ and output HDD result, terminate

Fig. 4. Reduced complexity OSD(1) based on the syndrome weight, that we
have implemented

IV. HARDWARE ARCHITECTURE

In this section we present a hardware architecture based on
the previously introduced algorithm in Fig. 4.

Architecture Overview

Fig. 5 shows the overall hardware architecture. P LLRs
are fed in parallel into the decoder and stored in the “I/O
bit memory”. During data input the LLRs are sorted in a
parallelized sorter and the low reliable bit positions (LRPs) are
stored in the “LRP memory”. Simultaneously, the syndrome is
calculated and HDD is carried out, whose result is stored in
the ”HDD memory”.

Then the column generator outputs the columns of H
corresponding to the LRPs for Gaussian elimination. These
LRP columns are fed into the Gaussian Elimination Unit to
dynamically set up the unit (see below). After setting up the
Gaussian Elimination Unit, the syndrome s is put into the
elimination unit to obtain ŝ.

After determining the initial syndrome, the Correction Unit
calculates the syndrome weight and determines the decoding
strategy (OSD(0) or OSD(1)). If OSD(1) is executed, the
Column Generator outputs every column of H one after
another, which are then transformed into the columns of Ĥ
by the Gaussian Elimination Unit. Finally, the Correction Unit
determines the erroneous bit positions and flips these bits in the
“I/O bits memory”. Furthermore, the Correction Unit decides
if the best OSD code word or the HDD code word is output.

��������������

���	��
�
���������

���	��
�
���������

������
���
������

������
���
������ ��������������������

��	���������
����	��

��	���������
����	��

���� ����
�
��������

����
�
��������

����
��

��������
�
���

����
�
���

�����
�����������

������
����

�
�
�
�

�

�
��

�

�

����
����������

Fig. 5. Decoder architecture overview

Sorting Unit

The first step of decoding is finding the least reliable bit
positions. This is accomplished by the Sorting Unit depicted
in Fig. 6. Sorting is performed by using a shift register based
insertion sort. At every stage the “minimum” registers contain
the current minimum reliability value |yi| together with its bit
position. New received LLRs (and their corresponding position
value) are shifted through the shift register from left to right
and compared with each current minimum. If a new LLR is
less than the content of the current “minimum” register the
register is updated with this new value.

To reduce the latency for sorting, this shift register is
partitioned in P parts. Each part is calculated in parallel. The
reduction in latency is achieved without any significant in-
crease in hardware resources. However, the results provided by
the parallelized Sorting Unit are not exactly the overall LRPs,
but rather an approximation of the LRPs. This introduces a
loss in FER, but simulations show, that this loss is less than
0.1 dB (RS(255,239), P = 8).

Finally the LRPs are read out of the shift register and stored
in the “LRP memory” for further processing.

�
���

���� �
���

���

�������

��
���

���

�������

�

�������

�	
����������	
���������

�	
����������	
���������

�	
������������	
�����������

�

�����
�������
�	����	��

����

����

����

�����
����	����	��

���

Fig. 6. Parallelized Sorting Unit

Syndrome Calculation Unit

The syndrome is determined by calculating s = HȳT.
For RS codes this calculation can be done using Galois field
arithmetic as it is well known in literature [17]. Our syndrome
unit is a parallelized implementation, that can handle one
received symbol (P bits) per clock cycle.

�����
���� �

	

	�
�

�������
	

	�
�

	

	�
���

��
�

Fig. 7. Syndrome calculation using GF addition and GF multiplication

After the syndrome calculation s is fed into the Gaussian
Elimination Unit to obtain the required ŝ = ĤȳT.

Column Generator Unit

The columns generator consists of a ROM, which holds the
original parity check matrix H. The Column Generator accepts
a column number at its input and outputs the requested column
of H.

Gaussian Elimination Unit

If Gaussian elimination is implemented in a straightforward
manner, the parity check matrix is stored in a memory. During
Gaussian elimination read and write operations are performed
to find the pivot elements and to eliminate the columns step
by step. This iterative process is not only time consuming but
also involves usually elaborated memory accesses.

A more elegant architecture for Gaussian elimination has
been proposed in [18]. This architecture consists of a pipelined
array, which eliminates the columns on the fly. The columns
of the original matrix H are input from the left and the
corresponding columns of the eliminated matrix Ĥ are output
at the right. Each of the M column eliminators is responsible

for carrying out the operations needed to eliminate exactly one
of the M columns corresponding to the LRIPs.

The array works in two phases:

1) The Setup Phase: The M columns of the LRPs
are passed into the array to dynamically set up the
structure for row adding in the column eliminators.

2) The Elimination Phase: Columns of the original ma-
trix are passed into the array. After a latency of M
clock cycles the columns of the eliminated matrix are
output.

Note, that linear independency of LRPs is inherently
checked in during the setup phase. If a LRP turns out to be
dependent on some other LRP it is simply discarded, resulting
is neglectable loss in correction performance. Hence finally Ĥ
is diagonalized at independent positions (at LRIPs).

This two phase architecture has proven to be an efficient
solution for this application and outperforms standard Gaus-
sian elimination architectures, like systolic arrays. For more
information on the functionality and the architecture of the
Gaussian elimination, please refer to [18].

�

�

�

�

��
��
��
��
	
�
��

�
��
�
��

��	

��
��
��

�
�
��
��
�
��
	
�
��

�
��	
��

��
�
�	

��
��
��

����	�����	������

����������
���������

Fig. 8. Array for Gaussian elimination (here with M = 4)

Correction Unit

The main task is to determine erroneous data positions. In
case of an error, the erroneous bits are read from the “I/O bits
memory”, flipped and afterwards written back. The unit further
determines if OSD(0) or OSD(1) has to be performed. To
determine the decoding strategy and the erroneous bit positions
syndrome weights have to be calculated.

The weight calculation of binary vectors is accomplished
by an adder tree of P stages. Several pipeline stages have been
added between the adder stages to reduce the critical path.

Hard Decision Decoder

Here we use a HDD IP core for Reed-Solomon codes from
Xilinx [1]. It supports the considered codes and provides the
necessary throughput for our architecture.

Quantization Issues and Parameters

Since soft information (LLRs) is only processed in the
Sorting Unit, quantization of the LLR values affects only this
small part of the decoder. Yet the number of quantization bits
is to be chosen as low as possible to reduce the complexity
in the Sorting Unit. By simulations we have determined that

TABLE I. IMPLEMENTATION RESULTS FOR THE RS(255,239) AND

THE RS(63,55) FOR A VIRTEX 7 DEVICE (NUMBER IN BRACKETS ARE FOR

ARCHITECTURE 2)

RS(255,239) RS(63,55)

LUTs 15.9k 3100
FFs 41.7k 7480

BRAMs (36K/18K) 7/8 (7/6) 1/5 (1/3)
fmax 280 MHz 300 MHz

throughput 1190 (200) MBit/s 690 (170) MBit/s
gain 0.75 dB 1.4 dB

a LLR quantization of 7 bits for the RS(255,239) and 5 bits
for the RS(63,55) code does not noticeable impact the FER
performance.

Furthermore the threshold Θ for the syndrome weight
is of major importance. Simulations show best results when
choosing Θ = 35 for the RS(255,239) and Θ = 10 for the
RS(63,55). Parallelism in the Sorting Unit is chosen to be P ,
which equals the number of bits per GF symbol.

Pipelining and Latency Issues

We present two different implementations of our RS de-
coder:

• Architecture 1: variable latency with pipelining

• Architecture 2: fixed latency without pipelining.

In the proposed decoding architectures, performing OSD(0)
and OSD(1) has a latency of 795 and 2838 clock cycles,
respectively (RS(255,239)). Therefore OSD(1) is much more
costly than OSD(0). In conjunction with the thresholding of
the syndrome weight (see Section III-C), decoding throughput
can be increased tremendously, if OSD(1) is only performed,
if it is actually needed. This leads to a huge improvement of
throughput, especially for high SNR values. This approach is
used for Architecture 1. Moreover, we propose to use a two
stage pipelining for Architecture 1:

• Stage 1: LLR input, sorting, syndrome calc., HDD

• Stage 2: Gaussian elimination and error correction

Architecture 2 has a fixed latency, that equals the worst case,
i.e. OSD(1). For this architecture no pipelining is considered.

V. IMPLEMENTATION RESULTS

In this section, we present the implementation results for
the RS(255,239) and the RS(63,55) codes based on our new
architecture. FPGA implementations have been done on a
Virtex 7 (xc7vx690t-3) device using Xilinx ISE 14.4. All
results have been obtained after place & route.

Implementation results for the RS(255,239) and for the
RS(63,55) can be found in Table I. The results are obtained for
Architecture 1 and 2. The results for Architecture 2 are given
in brackets. For throughput calculations for Architecture 1 we
consider FER=10−4. The communication performance of the
proposed decoders is shown in Fig. 9. For the RS(255,239)
a gain of 0.75 dB and for the RS(63,55) a gain of 1.4 dB is
achieved.

It should be mentioned, that the major part of resource
utilization is contributed by the Gaussian elimination. Gaussian

elimination utilizes approximately 10.5k out of 15.9k LUTs
and 35.7k out of 41.7k FFs.

4.5 5 5.5 6 6.5 7 7.5 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 / dB

F
E

R

hardware implementations vs HDD

RS(255,239) HDD

RS(63,55) HDD

RS(255,239) hardware

RS(63,55) hardware

0.75 dB

1.4 dB

Fig. 9. FER for the hardware implementations

A comparison with other state-of-the-art FPGA soft de-
coders for RS codes is shown in Table II. Since the other
decoders rely on older FPGAs, we implemented our design
also on Virtex 5, which provides a more fair comparison
between the different architectures.

TABLE II. COMPARISON WITH OTHER SOFT DECODER

IMPLEMENTATIONS FOR RS(255,239) ON FPGA

implementation
(algorithm)

FPGA LUTs FFs throughput
(MBit/s)

gain over HDD
(FER=10−4)

[15] (ABP) Stratix II 43.7k n/a 32 0.75 dB

[12] (Chase) Virtex 5 117k 143k 50 0.7 dB

new proposed

(information set)

Virtex 5 13.7k 41.8k 805 0.75 dB

In terms of FER gain, our architecture is comparable to
the state-of-the-art implementations (gain of 0.7-0.75 dB).
However our decoder achieves this FER gain with significantly
higher throughput and considerably less resource utilization.

It shows, that the previously disregarded information set
decoding is a viable way to implement soft decoders for RS
codes efficiently.

VI. CONCLUSION

To our best knowledge we presented the first soft decoder
for long RS codes based on information set decoding. We
implemented a reduced complexity version of ordered-statistics
decoding, that simplifies the implementation and improves
FER. The decoder has been implemented on a Xilinx Virtex
7 FPGA. The decoder’s FER performance is state-of-the-art.
This is achieved with more than 15x higher throughput and
less resource consumption than state-of-the-art solutions. It
shows, that information set decoding is an efficient approach
for hardware implementations of soft decision RS decoding.

ACKNOWLEDGEMENT

We gratefully acknowledge partially financial support by
the DFG (project-ID: KI 1754/1-1) as well as by the Center of

Mathematical and Computational Modelling of the University
of Kaiserslautern. We thank Frank Kienle for his valuable
comments and suggestions.

REFERENCES

[1] Xilinx LogiCORE IP Reed-Solomon Decoder.
http://www.xilinx.com/products/intellectual-property/DO-DI-RSD.htm,
March 2013.

[2] IEEE 802.16. Local and metropolitan area networks; Part 16: Air

Interface for Fixed and Mobile Broadband Wireless Access Systems;

Amendment 2:Physical and Medium Access Control Layers for Com-

bined Fixed and Mobile Operation in Licensed Bands.

[3] A. Ahmed, R. Koetter, and N. R. Shanbhag. Performance analysis of the
adaptive parity check matrix based soft-decision decoding algorithm. In
Proc. Conf Signals, Systems and Computers Record of the Thirty-Eighth

Asilomar Conf, volume 2, pages 1995–1999, 2004.

[4] Wei An. Complete VLSI Implementation of Improved Low Complexity

Chase Reed-Solomon Decoders. PhD thesis, Massachusetts Institute of
Technology, September 2010.

[5] J. Bellorado and A. Kavcic. A Low-Complexity Method for Chase-
Type Decoding of Reed-Solomon Codes. In Proc. IEEE Int Information

Theory Symp, pages 2037–2041, 2006.

[6] D. Chase. Class of algorithms for decoding block codes with channel
measurement information. IEEE Transactions on Information Theory,
18(1):170–182, 1972.

[7] B. Dorsch. A decoding algorithm for binary block codes andJ-ary
output channels (Corresp.). IEEE Transactions on Information Theory,
20(3):391–394, 1974.

[8] M. El-Khamy and R. J. McEliece. Iterative algebraic soft-decision list
decoding of Reed-Solomon codes. IEEE Journal on Selected Areas in

Communications, 24(3):481–490, 2006.

[9] M. P. C. Fossorier and Shu Lin. Soft-decision decoding of linear block
codes based on ordered statistics. IEEE Transactions on Information

Theory, 41(5):1379–1396, 1995.

[10] F. GarcÃa-Herrero, J. Valls, and P.K. Meher. High-Speed RS(255,
239) Decoder Based on LCC Decoding. Circuits, Systems, and Signal

Processing, 30:1643–1669, 2011.

[11] K. Gracie and M.-H. Hamon. Turbo and Turbo-Like Codes: Principles
and Applications in Telecommunications. Proceedings of the IEEE,
95(6):1228–1254, June 2007.

[12] R. Heloir, C. Leroux, S. Hemati, M. Arzel, and W.J. Gross. Stochastic
chase decoder for reed-solomon codes. In New Circuits and Systems

Conference (NEWCAS), 2012 IEEE 10th International, pages 5 –8, june
2012.

[13] Chih-Hsiang Hsu, Yi-Min Lin, Hsie-Chia Chang, and Chen-Yi Lee. A
2.56 Gb/s soft RS (255,239) decoder chip for optical communication
systems. In Proc. ESSCIRC (ESSCIRC), pages 79–82, 2011.

[14] Jing Jiang. Advanced Channel Coding Techniques using Bit-Level Soft

Information. Dissertation, Texas A&M University, August 2007.

[15] M. Kan, S. Okada, T. Maehara, K. Oguchi, T. Yokokawa, and
T. Miyauchi. Hardware implementation of soft-decision decoding for
Reed-Solomon code. In Proc. 5th Int Turbo Codes and Related Topics

Symp, pages 73–77, 2008.

[16] R. Koetter and A. Vardy. Algebraic soft-decision decoding of
Reed-Solomon codes. IEEE Transactions on Information Theory,
49(11):2809–2825, 2003.

[17] S. Lin and D.J. Costello Jr. Error Control Coding 2nd. Prentice Hall
PTR, Upper Saddle River, New Jersey, USA, 2004.

[18] S. Scholl, C. Stumm, and N. Wehn. Hardware Implementations of
Gaussian Elimination over GF(2) for Channel Decoding Algorithms.
In Proc. IEEE AFRICON 2013.

[19] Jin Wenyi and M. Fossorier. Towards Maximum Likelihood Soft
Decision Decoding of the (255,239) Reed Solomon Code. IEEE

Transactions on Magnetics, 44(3):423–428, 2008.

