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Abstract—Worst-case design is one of the keys to practical
engineering: create solutions that can withstand the most ad-
verse possible conditions. Yet, the ever-growing need for higher
energy efficiency suggest a grim outlook for worst-case design
in the future. In this paper, we propose opportunistic run-
time approximations to enable a continuous adaptation of the
processing precision (operator type and bitwidth) to the actual
execution context without modifying the algorithm functionality.
We show that by relaxing the processing precision whenever
possible, a VLSI implementation of an advanced wireless receiver
algorithm based on opportunistic run-time approximations can
save about 40% of the energy consumed by an optimized static
implementation. These energy savings are achieved at the expense
of a slight increase in overall chip area.

I. INTRODUCTION

The limitations of battery capacity, the slowing progress in
CMOS scaling, and the ever-growing need for more compu-
tational power claim for new methodologies to design digital
implementations of higher energy efficiency. Advanced digital
signal processing algorithms are usually executed in static im-
plementations despite typically operating under highly varying
execution contexts (e.g., a wireless channel). In this paper, we
introduce the concept of opportunistic run-time approxima-
tions in a fundamental departure from the notion of a static
worst-case processing precision design point. Opportunistic
run-time approximations move in a new practical direction
by (1) generating a multiplicity of context-dependent relaxed
specifications, (2) creating optimized implementations—by
adapting the operation type, number and precision of each
specification—, and (3) continuously monitoring the execution
conditions. Thereby, the cheapest implementation that applies
to the actual execution context can opportunistically be se-
lected without compromising the quality experienced by the
user. Opportunistic run-time approximations do not modify the
algorithmic functionality but only its processing precision.

We use the VLSI implementation of an advanced Mulitple
Input, Multiple Output (MIMO) wireless receiver to illustrate
the application of opportunistic run-time approximations on a
practical example. Our results show that the new approach is
able to save about 40% of the energy consumed by a manually
optimized static implementation designed to work under all
conditions. Such an improvement in energy efficiency comes
at the expense of a small overall area increase.
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II. MOTIVATIONAL EXAMPLE

To illustrate the concept of opportunistic run-time approx-
imations, let us consider the implementation of the reciprocal
square-root operator, b = 1/

p
a, where a corresponds to

the input signal and b to the output. Fig. 1(a) shows the
energy consumption, delay and area of two different imple-
mentation approaches: the DesignWare component provided
by Synopsys [13], and a Custom component that consists
of a piece-wise linear approximation of the operator. The
latter includes an initial scaling of the input range to [ 14 , 1),
a linear approximation of the operation for that particular
input range, and a final rescaling of the output. Fig. 1(a)
also includes the minimal Signal-to-Implementation-Noise Ra-
tio (SINR), which represents the level of approximation of
the operator compared to its infinite precision version—i.e.,
SINR = 20 · log10 bIP

|bIP�bFP | , where bIP and bFP correspond
to the infinite (a very high precision in practice) and finite
precision version of the output b.

The DesignWare component consistently increases its en-
ergy consumption, delay and area when the input bitwidth
grows from 10bit to 15bit. This tendency is similar to what
can be observed in other elementary operators, such as adders
or multipliers. Instead, the Custom component reaches a sat-
uration point (at 13bit) from which wider bitwidths do not
translate into a more accurate implementation. This condition
corresponds to the maximum precision that can be achieved
with such a linear approximation. If the target application
requires higher precision (e.g., SINR � 35dB), design B of
Custom (see top graph of Fig. 1(a)) cannot be used because it
violates the specification; therefore, design A1 of DesignWare
must be selected for implementation. Unfortunately, such a
high precision comes at a cost: design A is 3.4⇥ slower and
consumes 32⇥ more energy than design B.

However, the high precision requirement (worst case) of
the application does not need to be met at all times in
most complex real systems. Actually, such a high precision is
required only in a small percentage of the possible deployment
situations. Accordingly, we propose an adaptive approach that
can track the variations in the required level of approxima-
tion and accordingly select the cheapest implementation that
satisfies the actual precision requirement. Figure 1(b) sketches
the proposed approach, where a monitor ⌦ processes the input
and selects the cheapest implementation that applies to the
given context. The possible implementations, A1, A2 and B,
correspond to Pareto points in the space defined by design



(a) Reciprocal square root operator implemented with two approaches for
different bitwidth configurations. Configurations A1, A2 and B are Pareto in
the energy consumption-SINR design space.

(b) Opportunistic processing using the selected Pareto configurations.

Fig. 1. Motivational example. Opportunistic run-time approximations to
reduce the processing precision whenever possible.

objective(s) and the level of approximation (i.e., SINR). This
approach has the potential to reach efficiencies close to B
while offering the user experience of implementation A1.
Importantly, families of components and of design techniques
that would not make sense in a worst-case context where
the high-precision result alone is needed suddenly become of
interest due to their extreme economy (i.e., design B).

III. APPROXIMATING IMPLEMENTATIONS

Before discussing opportunistic run-time approximations,
this section describes the different types of approximations
that can be considered while refining a real Digital Signal
Processing (DSP) implementation. First, algorithmic approxi-
mations can be used to transform the original algorithm to a
different one of lower precision. For example, an estimation
algorithm can replace the ideal 2-norm distance by a less
complex 1-norm distance at the expense of some loss in
convergence optimality. Then, Algebraic approximations are
a second family of transformations that can be applied once
the algorithmic approximations have fixed the algorithm. These
approximations replace the ideal operators with approximated
ones. For example, consider the Custom implementation of
the reciprocal square root used as a motivational example in
Section II. Finally, signal approximations can be applied once
the algebraic approximations have defined the operators. These
approximations assign a finite number of bits to the inputs and
outputs of each operator in the algorithm.

Accordingly, we define Implementation Noise (IN) as the
difference on the output of the final approximated implemen-
tation with respect to the original ideal precision specification,
the power of which is used to compute the SINR. The final
IN is the aggregate of the three types of approximations

Fig. 2. Finite precision wireless system. The Implementation Loss (IL) is the
difference in SNR between a finite precision implementation and its infinite
precision spec at the target BER, e.g., � = 10�3. Here the finite precision
implementation is not within constraints as IL is larger than the maximum
degradation specified by the designer,  .

described earlier. Ideally, the opportunistic run-time approx-
imations entail a separate IN budgeting for each of the Pareto
configurations, e.g., for A1, A2 and B in the example of
Fig. 1(b). However, algorithmic approximations are already
discussed by Min Li et al. [7], and this paper focus in the
complementary algebraic and signal approximations. Still, the
we do make use of the algorithmic transformations to design
the monitor discussed in Section V and the general framework
to handle approximations proposed in this paper also covers
algorithmic transformations.

A. Approximated Wireless Systems

The tolerable amount of IN is domain dependent. In
wireless communication systems, the application performance
is typically characterized by a Bit Error Rate (BER) curve. As
shown in Fig. 2, the BER decreases monotonically with the
Signal-to-Noise Ratio (SNR): the cleaner the channel, the more
reliable the wireless link. After applying the approximated
transformations described earlier, wireless systems experience
a shift in the BER curve. The curve of a finite precision system
will always need a higher SNR than its infinite precision
version to reach the same BER. Such an increase in SNR is
typically known as Implementation Loss (IL). Thus, the finite
precision refinement of a wireless system is often defined as:

argmin C(�) s. t. IL   , BER = �. (1)

where C corresponds to the cost metric objective of the
optimization (e.g., energy, area, etc.), � is the vector of signal
configurations (i.e., a signal configuration defines the operator
approximation as well as the operator bitwidths), � is the
maximum BER tolerated by the data transmission link1, and
 is the maximum IL. However, in practice BER can only be
estimated after running a Monte Carlo simulation that takes a
particular SNR as input. Accordingly, we propose remapping
the original constraints to an equivalent set as follows:

IL   , BER = � ) BER  �, SNR = ⌘ + IL, (2)

1BER that guarantees the maximum packet error rate stated in the standard.



1 input : � [ 1 . . numSig ] , � ;
2 output : � [ 1 . . numSig ] ;
3 Ber = simBer (� ) ; / / Monte C a r l o s i m u l a t i o n
4 Cos t = g e t C o s t (� ) ; / / c o s t model f u n c t i o n
5 whi le Ber  � / / d e g r a d a t i o n c o n s t r a i n t
6 f o r s i g = 1 to numSig / / t r y a l l s i g n a l s
7 � ( s i g ) = � ( s i g ) � 1 ; / / p r e c . r e d u c t i o n
8 t h i s D e l t a B e r = simBer (� ) � Ber ;
9 t h i s D e l t a C o s t = Cos t � g e t C o s t (� ) ;

10 t h i s M e t ( s i g ) = Cos t / t h i s D e l t a C o s t +
t h i s D e l t a B e r / Ber ;

11 � ( s i g ) = � ( s i g ) + 1 ;
12 end f o r
13 / / f i n d s i g n a l m i n i m i z i n g m e t r i c Met
14 t h i s S i g = f i n d ( t h i s M e t == min ( t h i s M e t ) ) ;
15 � ( t h i s S i g ) = � ( t h i s S i g ) � 1 ; / / r e d u c t i o n s t e p
16 Ber = t h i s B e r ( t h i s S i g ) ;
17 end whi l e
18 � ( t h i s S i g ) = � ( t h i s S i g ) + 1 ; / / r e c o v e r co n f

Fig. 3. Pseudocode of the finite precision optimization heuristic. The
sequential search [6] uses a complexity-distortion measure and iteratively
chooses a signal to be reduced until finding the last configuration that satisfies
the precision constraint.

where ⌘ corresponds to the SNR at which the infinite precision
version delivers BER = �. Thereby, the optimization con-
straints can be checked with a single Monte Carlo simulation
that only needs to evaluate whether BER  �.

B. Finite Precision Optimization

The optimization problem of Eq. 1 has been proven to
be non-convex [3], and thus, a heuristic approach is required.
In this paper, we use a slight adaptation of the sequential
search heuristic [6], described in Fig. 3. This heuristic greedily
reduces an initial overprecise configuration � by decreasing
at each iteration the precision of the signal that minimizes
a complexity-distortion metric. Such metric combines the
two effects of reducing the signal precision: the complexity
reduction (e.g., area reduction) and the increase in distortion
(e.g., increase in BER). The objective is to prioritize the
precision reduction of the signals that have a high impact
on the optimization metric and a low impact on the appli-
cation performance metric. Ultimately, the heuristic selects
the configuration that includes the most precision reduction
iterations while still satisfying the BER degradation constraint.
The precision reduction of a signal implies that the operator
producing that signal changes. For instance, let us consider
the motivational example illustrated in Fig. 1, where the
reciprocal square root operator can take any of the three Pareto
configurations, i.e., [A1, A2, B]. The optimization will attempt
to replace configuration A1 with a cheaper implementation,
pushing hard to include B in order reduce the complexity
significantly.

The estimation of the complexity reduction caused by a
particular precision reduction step is based on a model. First,
we create a database with the estimated area of each of the
operators for the different bitwidths. Then, every time that the
complexity needs to be estimated, the operators composing the
particular configuration � are selected from the database and
their areas are added up together. The purpose of the model is
not to predict accurately the absolute complexity of the circuit
but to guide relative decisions in the optimization process.

IV. THE DRIVER: A MIMO RECEIVER

The Hybrid Lattice Reduction (HLR) algorithm, introduced
by Ahmad et al. [1], is an effective way of improving the
performance of modern wireless communication systems. Ac-
cordingly, this type of algorithm is expected to be implemented
in future handhelds and be responsible for an important share
of their energy consumption [2].

An NT ⇥ NR Multiple Inputs, Multiple Outputs (MIMO)
communication system includes NT antennas at the transmitter
and NR antennas at the receiver. Assuming ideal conditions,
this system can multiply the throughput by the number of
transmit antennas. However, in practice, the simultaneous
transmissions interfere with each other and reduce the achiev-
able throughput. The HLR algorithm can reduce these inter-
ferences by transforming the NT ⇥ NR channel matrix, H ,
experienced by each of the frequency subcarriers. Our HLR is
instantiated as a 4 ⇥ 4 MIMO design for a 3GPP Long Term
Evolution (LTE) system. Accordingly, every symbol includes
512 subcarriers, each with a 4 ⇥ 4 channel matrix that is
generated based on the standardized channel model.

HLR is a good example of the type of algorithms that
are expected to run in future energy limited platforms. HLR
includes non-standard operations such as reciprocal or recip-
rocal square root and it exhibits a heavily input-dependent
execution flow. It includes a variable iteration loop and three
iterations over two conditionally executed Basic Blocks (BB).
Thus, depending on the input, the HLR executes 0 to 36 BBs.
Harsh channels will trigger more computations, while good
channels will require few or even no computations at all. Thus,
if the type of channel can be identified before running the
HLR algorithm, a more energy-efficient implementation can be
optimized to process only the good channels. The next section
discusses whether such a monitor is feasible.

V. MONITORING THE DEPLOYMENT CONTEXT

The monitor required by our opportunistic run-time approx-
imations should be able to derive the execution context out of
the analysis of some input data. The design of such a monitor
involves detailed knowledge of the application as the monitor
often needs to exploit complex correlations that are different
for each application. Moreover, these correlations may not even
be explicit in the application code. Thus, we must rely on our
expertise of wireless communications to propose an effective
monitor for the HLR algorithm. The question to ask is the
following: What external conditions can stress our algorithm?

In the case of wireless applications, the channel is a natural
external condition. A perfect MIMO channel matrix would be
orthogonal, meaning that no mutual influence exists between
the transmitted streams. For an orthogonal channel matrix,
the simplest Zero Forcing (ZF) detector performs equal to the
optimal and prohibitively computationally expensive Maximum
Likelihood (ML) detector [15]. Thus, a metric able to measure
the distance between the current channel matrix and an or-
thogonal one should be a good candidate to predict the HLR
computational effort. Such a metric is called Orthogonality
Defect (OD) [14] or �, and is computed as follows:

� =
kr1k2 · kr2k2 . . . krMk2

detRHR
, (3)



Fig. 4. Correlation between the HLR monitor and the BER. The pseudo-
orthogonality defect can be used to identify the channels causing high BER.

where R is one of the matrix inputs of the HLR algorithm
and includes M vector columns ri. RH is the hermitian
of R, det is the matrix determinant and k · k is the norm
operator. The OD involves heavy computations; so we propose
to reduce its complexity through the approximate algorithmic
transformations described in Section III and derive a Pseudo-
Orthogonality Defect (POD) or ⇢, that captures the same
principles but simplifies the implementation complexity:

� ⇠ ⇢ =
|r11| · |r22| · · · |r44|QM

j=1(
Pj

i=1(|Re(rij)|+ |Im(rij)|))
=
⇢N
⇢D

, (4)

where |·| is the absolute value operator and, Re and Im select
the real and imaginary part of the operand, respectively.

To check the effectiveness of our approximated metric,
we run an experiment and rank all the subcarriers of 51,200
channels according to POD. Fig. 4 shows that the proposed
metric can successfully detect the good channels, which cause
a small BER. E.g., when ordering all the channels according
to the metric, the first 70% of the channels contribute to only
4% of the total BER.

Once we know that the POD is a good metric to differenti-
ate good from harsh channels, we analyze whether the metric is
also useful to predict the number of HLR computations. Fig. 5
demonstrates that the channels with lower POD execute fewer
number of BBs. E.g., 70% of the channels will never execute
more than 20 BBs. The execution of fewer operations also
means that the implementation noise budget can be distributed
over fewer operations, which enables a further approximation
of the signals and operators. Accordingly, our monitor will
include the computation of the numerator ⇢N and denominator
⇢D of Equation 4 and will trigger the execution of a relaxed
implementation whenever ⇢N < ⇢D · T , where T corresponds
to the threshold detailed in the next section.

VI. EXPLOITING RELAXATION

After showing in the previous section that identifying
relaxed execution contexts for the HLR is possible, this section
proposes a method to safely design the relaxed implementa-
tions that will deliver ultimate energy efficiency. A critical
design parameter is the definition of the threshold value T . In
this work, we sweep this parameter to study the effect on the
global system. Moreover, we consider only two scenarios: a
worst-case precision scenario, which is valid in any context,
and a relaxed scenario, which is valid only for good channels.
Accordingly, we select three different thresholds that basically

Fig. 5. Correlation between the HLR monitor and the algorithmic
complexity. Subcarriers with a lower pseudo-orthogonality defect execute less
BBs. Moreover, most of the subcarriers exhibit rather low POD, providing
evidence that a worst-case implementation overprovisions in most of the
deployment situations.

determine that 90%, 70% or 50% of channels—with the
smallest POD—are used to design the relaxed implementation.
Each of these percentages reflects the coverage of the relaxed
implementation and is represented with the variable x. Bx

represents a BER simulation where only the x% best chan-
nels are used. Also, the finite precision configuration design
resulting from the finite precision optimization of coverage x
corresponds to �x.

Because any further loss of precision in the system will vi-
olate the original BER constraint, we need a new constraint in
order to accommodate our relaxed implementation. This does
not mean that the opportunistic run-time approximations incur
a higher BER degradation than a worst-case implementation,
but that the former needs to be built in a two-step approach.
Thus, we define:

�0 = �(1 + d/100), (5)

where d is the BER percentage increase. Accordingly, if
B100(�100)  �, then the new constraint to be satisfied while
optimizing the relaxed implementation is the following:

B100(�100) +
x

100
(Bx(�

0)�Bx(�100))  �0, (6)

where �0 is iteratively reduced in the optimization heuris-
tic until violating the new constraint. The latter expresses
that the bit errors produced by the relaxed channels when
selecting configuration � are now replaced by the errors
produced by the alternative relaxed configuration �0. Fig. 6
shows the result of optimizing the relaxed implementation
for x = [100, 90, 70, 50] and for d = 5, which increases
the original BER constraint by 5%. Note that the starting
point of all the optimizations is the same finite precision
configuration, however, the BER largely varies depending on
the channel coverage x. This shows that the sensitivity to the
precision reduction steps also varies and the better channels
can accommodate more precision reduction iterations before
violating the new optimization constraint.

VII. RESULTS

In this section, different VLSI implementations of the HLR
algorithm are compared. First, we detail our experimental
setup, then present the area and energy consumption results.



Fig. 6. Finite precision refinement of the relaxed implementation. The
relaxed implementation can increase up to 5% the initial BER constraint �.
All the fixed-point configurations satisfying such a constraint are marked with
a full circle. For the selected configuration, the full circle is darkened.

TABLE I. POST-LAYOUT RESULTS.

Name Cov. [%] Max BER Area [µm2] DynPow [mW] Leakage [mW]

WC 100 1.00E-3 (�) 415K 97.47 6.03

RefWC 100 1.05E-3 (�0) 389K (94%) 93.09 (96%) 5.41
Rel90 90 1.05E-3 (�0) 312K (75%) 52.82 (54%) 3.78
Rel70 70 1.05E-3 (�0) 239K (58%) 29.50 (30%) 2.80
Rel50 50 1.05E-3 (�0) 225K (54%) 28.09 (29%) 2.51

Monitor - - 5K (01%) 1.73 (02%) 0.17

A. Area and Power Estimation Flow

The RTL-level description of the different designs was
developed in Verilog and synthesized for a 65-nm STMi-
croelectronics standard cell technology with Synopsys De-
sign Compiler. The synthesized netlist was then placed and
routed with Cadence SoC Encounter. The area and delay
were estimated from the resulting layout. Then the post-layout
netlist (gate-level netlist annotated with extracted parasitics)
was simulated with Mentor Graphics Modelsim to record in
Value Change Dump (VCD) format the switching activity of
the design while executing relevant inputs extracted from our
Matlab model. Finally, the post-layout netlist and the switching
activity traces were used to estimate the power consumption
with Synopsys PrimeTime.

B. Opportunistic Run-Time Approximations on HLR

First, the static worst-case (WC) design is synthesized
targeting a delay of zero. Obviously, such synthesis will fail at
satisfying the timing constraint. However, the delay achieved
by the tool before giving up is a good indication of the
minimum circuit delay. Such minimum delay is then relaxed
10% in a second synthesis run, which yields a rather fast
circuit but with moderate area and power consumption. Table I
indicates the area and power consumption for the reference
WC circuit, which was optimized to achieve a BER of �.

As discussed in Section VI, we do enable extra degradation
to accommodate our relaxed implementations. Accordingly,
the processing precision of the WC implementation is further
relaxed to achieve the new BER degradation �0, resulting in
the configuration �0100, which is synthesized for the same delay
as the WC design leading to the RefWC implementation. This
represents a fair static reference for our opportunistic run-time
approximations.

Fig. 7. Area-Energy consumption Pareto space. The implementations using
opportunistic run-time approximations achieve a higher energy efficiency,
however, not all the design points are Pareto optimal.

Intuitively, one should do better if this extra degradation
budget is used to include a second implementation optimized
only for a “gentle” subset of the channels. Three different
instantiations of our opportunistic run-time approximations are
explored: Rel90, Rel70, and Rel50 targeting a 90%, 70% and
50% channel coverage, respectively. The resulting circuits, also
synthesized for the same delay, consume significantly lower
power than the RefWC implementation. Finally, the monitor
described in Section V together with the mux and decoder
shown in Fig. 1(b) are also implemented and the results
show that their contribution to the overall area and energy
is minimal.

C. Analysis and Discussion

To compare the different implementation alternatives we
use the area and energy consumption estimations of Table I.
The overall energy consumption, E of an run-time approxi-
mated implementation corresponds to the following:

E = x ·Ex+(1� x

100
) ·EWC +EM +Lx+LWC +LM , (7)

where Ex, EWC and EM are the energy consumption in
the dynamic power of the HLR implementation designed to
cover the best x% channels, the WC implementation and the
Monitor, respectively. The other components correspond to
the energy consumed in leakage. The area, A, corresponds
to the aggregate of the areas of the mentioned components.
Accordingly, Fig. 7 plots in a two-dimensional Pareto space the
area and energy consumption of the different implementations
using opportunistic run-time approximations relative to the
RefWC implementation. The results show that our adaptive
implementations achieve higher energy efficiency than the one
optimized to be valid in all channel conditions. However,
the design targeting a relaxed mode coverage of 70% of the
channels achieves the highest energy efficiency. This is because
Rel90 has a more consuming relaxed implementation and
Rel50 can trigger less often the relaxed implementation.

The implementations using opportunistic run-time approx-
imations are significantly bigger than the reference implemen-
tation. However, one should consider that this number includes
only datapath area. The latter is usually a big contributor to the
overall energy consumption but only represents a small portion
of the overall area of a wireless baseband implementation,
which is usually dominated by memories. For example, the
area or our reference WC design represents only a 2.5% of
the overall area of an entire baseband chip [4].



Fig. 8. Identical performance. BER simulation over 400 channels different
from the training set. The simulation shows no meaningful performance
difference between our adaptive approach and the worst-case design.

Finally, we select the most energy efficient implementation
of our opportunistic run-time approximations and run a BER
simulation with an extended set of 400 new symbol channels
not used during the design phase, which included 100 symbol
channels. Fig. 8 shows that the opportunistic run-time ap-
proximations deliver a BER which is indistinguishable from a
traditional system, which means that from an application layer
perspective both implementations are equivalent. However the
one using opportunistic run-time approximations, uses the
relaxed implementation 71.4% of the time, which leads to
almost 40% savings in energy consumption.

VIII. RELATED WORK

Opportunistic run-time approximations are a form of
system-scenarios [5]. Such scenarios are used to reduce the
system cost by exploiting information about what can happen
at run-time to make better design decisions at design-time,
and to exploit the time-varying behavior at run-time. However,
opposite of this work, typical implementations of system-
scenarios are bounded to maintain the bit-true I/O correct-
ness. Other work extends classic system-scenarios proposing
communication mode dependent fixed-point refinement for
communication systems, which could then be exploited in both
hardware [8] and software [10] implementations to achieve
higher processing efficiency. However, communication modes
are just a subset of the scenarios that can be exploited with
opportunistic run-time approximations. Alternatively, Novo et
al. [11] propose to select different software mappings depend-
ing on the communication mode and on the amplitude of the
channel coefficient. However, they do not evaluate the effect in
energy efficiency and, more importantly, their reference design
includes overheads not present in static designs. Instead, we
quantize the energy savings with respect to an optimized static
VLSI implementation.

Other existing types of approximated design, such as prob-
abilistic switching [12] or significance driven computation [9],
can occasionally result in huge degradations, which can be
problematic in some application domains. Instead, our ap-
proach provides hard guarantees on the maximum degradation
by designing the monitor to ensure that the relaxed implemen-
tations are only triggered in harmless situations. Moreover, our
technique works at the algorithmic level and can be built on
top of any existing implementation flow, not requiring special
logic or any tweaking of the standard design tools.

IX. CONCLUSIONS

This paper presents a case study of opportunistic run-
time approximations. We propose an effective monitor that
can successfully switch execution context at negligible cost.
We also show that the worst-case conditions are rare in
practice. Thus, by relaxing the processing precision whenever
possible, we can save about 40% of the energy consumed by
an optimized static implementation. These energy savings are
achieved at the expense of a slight increase in overall chip
area. Finally, we demonstrate that our opportunistic run-time
approximations can meet the same functional specification—
BER in our case—as the reference static implementation.
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