
Making it Harder to Unlock an LSIB: Honeytraps and
Misdirection in a P1687 Network

Adam Zygmontowicz and Jennifer Dworak
Department of Computer Science & Engineering

Southern Methodist University
Dallas, Texas, USA

Al Crouch and John Potter
ASSET InterTech, Inc.

Richardson, Texas, USA

Abstract—Today’s chips often contain a wealth of embedded

instruments and data, including sensors, hardware monitors,
built-in self test (BIST) engines, and chip IDs, among others.
IEEE P1687 was specifically designed to provide access to such
instruments in an efficient manner, and some companies are
already implementing the proposed standard on their chips.
However, while instruments provide valuable information and
features to authorized users who need to harness them for test,
debug, diagnosis, and possibly counterfeit detection, it may be
desirable to restrict unauthorized access to certain instruments
through the P1687 network. Previous work proposed replacing
some of the segment insertion bits (SIBs), which add scan path
segments in a P1687 network, with locking SIBs (LSIBs). LSIBs
use the data that is naturally scanned through the network as
keys to hide instruments from attackers. However, that previous
work did not investigate many of the techniques and structures
that can be used to significantly increase the time an attacker is
likely to need to unlock LSIBs and gain access to hidden
instruments. In this work, we explore some of these techniques
and show how simple modifications to a P1687 network protected
with LSIBs can significantly increase the difficulty an attacker
faces in attempting to access protected instruments.

Keywords—DFT; P1687; IJTAG; security; scan; lock; trap; LSIB

I. INTRODUCTION
Over the last decade there has been a proliferation in the

number and type of on-chip embedded instruments. Some
examples include memory and logic built-in self-test
controllers (MBIST and LBIST), trace buffers, temperature and
delay sensors, voltage and frequency domain controllers, and
I/O configuration hardware. They are valuable tools during
test, debug, and diagnosis, as well as when portions of the chip
(such as the SERDES I/O) need to be configured.

The proposed IEEE standard P1687 was started to enable
efficient access to these instruments. It allows the scan chain
that accesses instruments to be dynamically reconfigured by
opening new chain segments. Unlike IEEE 1149.1, which is
instruction-based, this dynamic reconfiguration is controlled by
the data shifted through the scan network. Although P1687
supports multiple hardware architectures through its
description language, generally the network reconfiguration is
controlled by segment insertion bits (SIBs) that allow
additional areas of the scan network to be accessed when the
correct value is clocked into the SIB’s Update cell.

Although companies may not object to end users accessing
some types of instruments, access to others, such as sensors,

trace buffers, scan-dump, and configuration hardware, may be
a threat to on-chip IP or safety. Information such as chip IDs
and encryption keys should also be made inaccessible to
attackers. An efficient method of protecting instruments in a
P1687 network from unauthorized access is needed.

Often, an attacker with no specific knowledge of the
network will scan random data or specific patterns (e.g.
walking a one) through it and will observe the effect on circuit
behavior and data captured in the scan cells. In a standard
P1687 network, this strategy will allow the attacker to quickly
open all SIBs and map the network architecture, obtaining
access to all embedded instruments attached to the network.

To prevent this, Locking SIBs (LSIBs) were introduced in
[1]. LSIBs use data that is naturally scanned through the
network as key bits that must be set to the correct value for the
corresponding LSIB to open. As the scan chain length and the
number of key bits increases, the expected time required for an
attacker to unlock an LSIB increases dramatically. For
example, with a scan length of 5120 scan cells and a key size
of 48, unlocking an LSIB with pure random guesses is
expected to take more than 9000 years on average.

That paper also introduced the concept of Trap bits that, if
tripped by an attacker, can prevent him from opening an LSIB
even if the correct key is found, and it briefly considered the
effect of hierarchical network architectures on LSIB security.
(Keys are enablers; Traps are disablers.) However, there are
many optimizations to a secure P1687 network protected by
LSIBs that were not explored in that paper. For example,
responses that an attacker receives from his manipulation of the
network can provide misleading information that encourages
the attacker to pursue fruitless exploration paths. Other
optimizations may reduce or eliminate the transfer of
information to the attacker. In this paper, we describe some of
these methods and explore their ability to increase the expected
time for an attacker to access hidden instruments.

II. RELATED WORK
Design for Testability (DFT) hardware, especially scan

chains, are well-known avenues for attackers to gain
unauthorized access to internal chip infrastructure. In the case
of JTAG ports, this often involves an attacker shifting
undocumented instruction encodings into the chain and looking
at the chip response. Scan chains may also be harnessed by
unauthorized users to capture and read out internal circuit
states and break encryption hardware (e.g. [2]–[4]). Thus,

This work was supported in part by NSF grants CCF-1110290 and CCF-
1061164.

978-3-9815370-2-4/DATE14/©2014 EDAA.

some chip providers fuse off the JTAG port after test and
before the chip is shipped. Unfortunately, the port can then no
longer be used for debug, configuration, or diagnosis.

Many researchers have proposed other methods of protecting
the JTAG port and scan chains from attack. Some methods
use challenge-response pairs along with hashes or encryption
algorithms (e.g. [5]–[8]). Others reorder the scan chain if the
first k-bits shifted in don’t correspond to a pre-chosen key
(e.g. [9], [10]). Other methods disguise chain data by
changing it with inversions or XORs [11]–[13]. [14] aims to
protect a scan chain by requiring several keys to be scanned
into the chain over several cycles during a test initialization
phase. The authors of [15] investigated the effect that on-chip
DFT hardware, such as response compaction, X-masking etc.,
could have on the information made available to an attacker
and the need for countermeasures. Finally, [16] proposes an
open circuit deadlock (OCD) cell which inserts an open into
the scan chain if a SecureRST signal has not been asserted by
key checker function hardware.

Our paper builds on the LSIBs introduced in [1], and shows
how relatively inexpensive modifications to the P1687 scan
network can make the feedback obtained by an attacker less
useful. We investigate the impact that honeytraps, naturally-
open LSIBs, and switching LSIBs can have on the expected
time required for an attacker to find a hidden instrument
behind a particular LSIB. We will show that these techniques
can have a dramatic impact on the time required.

III. LOCKS, KEYS, AND TRAPS IN P1687
Figure 1 shows a hierarchical P1687 scan network that

allows access to embedded instruments by opening and closing
SIBs. When a SIB is open, it allows access to a new segment
of the scan network. When the SIB is closed, it bypasses that
segment, making the overall scan path shorter.

Fig. 1. Hierarchical P1687 network accessed with IEEE 1149.1 TAP
controller. Accessing each instrument shown requires opening 3 SIBs. [1]

Figure 2 shows a schematic of a Pre-LSIB [1] (that inserts the
new scan path before the shift bit). When a logic 1 is placed in
the Update Register, the Select* line is asserted. This enables
the scan chain elements in the new segment and allows the first
mux to select the signal FROM_TDO2 as the data clocked into
the Shift cell, effectively adding the new segment to the scan
chain. An LSIB can be created from a normal SIB by gating
the Update signal, UpDR, with a set of key bits (shown in
purple). The key bits correspond to values in other predefined
scan cells in the P1687 network. Opening an LSIB requires
not only clocking the correct value into the Update cell, but

also scanning the correct data into the key bits in the chain.
(Note that although Figure 2 shows a set of key bits AND’ed
together that would appear on every chip instance, it is possible
to use E-fuses or programmable logic to make the conditions
required for an LSIB to open vary from one chip to another.
This is similar to a method of storing a key suggested in [16].
In that work, an open circuit was inserted in the scan chain
when an appropriate key was not entered.)

Shift
TDI1

ShDR

TCK
UpDR

Key [n]

Select*

TDO1

Update

*Select

From_TDO2

To_TDI2

Key [1]

Reset_n

1

0

1

0

1

0

Some key bits may need
to be set to 0 while others
need to be set to 1 to
open the lock.

Fig. 2. Example schematic for a Locking SIB (LSIB) [1].

Although P1687 does not mandate that an IEEE 1149.1
TAP controller drive the scan control signals, in many cases an
11491.1 TAP is likely to be used, and an attacker will need to
utilize the 1149.1 state machine to execute capture, shift, and
update functions. The rest of this paper will assume control of
the P1687 network through the 1149.1 TAP. This means that
multiple clock cycles are required to execute guesses that
involve filling the chain with random data, assert UpdateDR
(Update Data Register), and then check the length of the chain.

Finally, [1] also introduced Trap bits. A Trap bit asserts a
Trap-Enable signal when the trigger value is written to the bit’s
Update cell. For example, a positive logic TrapEn signal may
be inverted and fed into the AND gate shown in Figure 2 to
keep the target LSIB that hides an instrument from ever
opening. The Trap Bit logic contains internal feedback so that
once the Trap is asserted, it can only be de-asserted by
asserting reset. If the trap bit is reset using the 1149.1 Test
Logic Reset (TLR) state, this effectively doubles the expected
time for an attacker to open an LSIB by requiring a pass
through the TLR state at the start of every guess to clear all
possible previously tripped Traps.

IV. OBFUSCATION STRATEGIES
In [1], it was assumed that an attacker would enter a

random vector into the scan chain as a “guess” to try to open an
unknown LSIB. Without knowledge of the network, a random
guess is likely to be among the best choices, as it reduces bias.
The network interrogation process would check the chain
length after each guess, and an increase in length would
indicate that a new chain segment had opened—potentially
providing new access to additional instrument TDRs (test data
registers), LSIBs, or keys. Leaving aside the possibility of
power analysis, imaging, or physical delamination of the part
(which are beyond the scope of this paper), the attacker is faced
with a black box problem and limited to observing data exiting
the chip pins. The most visible feedback is to note a change in
the length of the scan path. Here, we propose reducing the
information present in such feedback by making it complicate
the attacker’s strategy or by removing that feedback entirely.

A. Providing Unclear Positive Feedback: Honeytraps
Opening an LSIB and observing an increase in chain length

is likely to be seen as a positive result by an attacker because
more of the network is available. We can take advantage of
this by including honeytrap LSIBs (HTLSIBs) in the network,
where a HTLSIB is a network element that encourages the
attacker to repeatedly make poor decisions that prevent him
from accessing hidden instruments. (The “honeytrap” term
arises from the fact that the approach is similar to the
honeypots used in internet security to counteract attacks [17]).

HTLSIBs could consist of an LSIB that does not provide
access to any hidden instruments or keys, but disables a second
LSIB whenever the HTLSIB is open. For example, the Select*
line that enables a new scan segment accessible through the
HTLSIB may be inverted and fed into an AND gating the
UpdateEn signal of a different LSIB (such as the AND gate in
Figure 2), preventing the second LSIB from opening whenever
the HTLSIB is open. Once the attacker opens the honeytrap, he
is likely to want to continue opening it on each guessing
attempt because it provides access to a portion of the network
that may contain key bits, LSIBs, etc. Instead, only using such
guesses ensures that he will never open the target LSIB.

For the HTLSIB to help prevent or delay the opening of a
target LSIB, it should be found by the attacker first. If the
target LSIB is opened first, disabling features of the HTLSIB
become inconsequential. The primary driver for increasing the
expected time required to open an LSIB is key size, so the
number of key bits for the HTLSIB should be low to increase
the chances of it being opened early. One could argue that a
clever attacker will be able to guess that a HTLSIB is a trap by
using the approach specified in [1] to find the exact key and
trap bits that relate to the newly opened HTLSIB. An
unusually small number of key bits or a small scan network
behind the HTLSIB could indicate that this LSIB is indeed a
trap and opening it should be avoided. However, we can make
this seemingly clever attack strategy less effective if we make
some apparent HTLSIBs necessary to open target LSIBs by,
for example, placing key bits behind them. Then an attacker
who avoids opening all possible/likely HTLSIBs will not be
able to successfully access hidden instruments either.

The potential use of HTLSIBs increases the search space
that an attacker must explore. As each LSIB is opened, he
must consider that it could be required to be open for any
future progress to be made. However, opening it could also
make it impossible to make future progress. The number of
scenarios grows exponentially as more LSIBs are discovered.

Consider the case of a single potential HTLSIB where the
initial chain length is n, and the chain length behind the
potential HTLSIB is m. Assume the attacker checks the chain
length by shifting in a distinctive d-bit pattern and observing
when it exits the chain. Also assume the attacker has already
determined which bits are the key bits to open the HTLSIB and
where the new chain is inserted when it’s open. Then, the cost
of a guess to open a target LSIB (i.e. an LSIB that hides an
embedded instrument and has not yet been found by the
attacker) when the attacker lets the HTLSIB remain closed is:

 Cost of guessHTLSIB_closed = 10 + 2n + d (1)

This is the same as the equation from [1] for the cost of a guess
when opening an LSIB in which Trap bits may be present in
the network. It includes resetting the circuit (to untrip any Trap
bits sprung on the previous guess) and going through the
RunTestIdle, SelectDR, CaptureDR, and ShiftDR cycles of the
1149.1 state machine (5 cycles). Note that this assumes that
the P1687 instruction remains in the instruction register after
Reset. If it does not, a sequence of instruction load cycles will
need to be added. This is followed by shift cycles to shift in
the new pattern and UpdateDR to try to open the target LSIB
with the current random guess (n+1 cycles). This is followed
by traversing the state machine from RunTestIdle through
ShiftDR (4 cycles) and then shifting n+d bits through the chain
to check the chain length.
If the attacker assumes the newly-opened LSIB is not a
HTLSIB and should be opened first, the cost of a guess is:

 Cost of guessHTLSIB_open = 15 + 3n + 2m + d (2)
This includes (6+n) cycles to open the HTLSIB, ending in
UpdateDR, followed by (4+n+m) cycles to go from
RunTestIdle through ShiftDR and then shift n+m bits through
the chain. An UpdateDR cycle is then used to try to open the
second LSIB, and the attacker must go from RunTestIdle to
ShiftDR to allow him to check the chain length by shifting
(probably) n+m+d bits through the chain. Note that, to be safe,
for the same random guess of n bits in the original chain, the
attacker must try opening the target LSIB twice, once with the
potential HTLSIB open and once with it closed. The cost of a
guess becomes the sum of the two:

 Cost of guessone_HTLSIB = 25 + 5n + 2m + 2d (3)
Similarly, if two possible HTLSIBs have been opened before
the target LSIB is found, the number of cases the attacker must
consider is at least 4 per guess: 1) both HTLSIBs closed; 2)
HTLISB1 closed; HTLSIB2 open; 3) HTLISB1 open; HTLSIB2
closed; 4) both HTLISBs open. (If the attacker believes that a
honeytrap may need to be opened, key bits behind it set, and
then the honeytrap closed again, then the number of cases he
needs to consider increases by three.) Assuming he only
considers the first four cases, and the number of bits behind the
second honeytrap is j, the cost of a guess becomes:
Cost of guesstwo_honeytraps = (10 + 2n + d) + (15 + 3n + 2m + d) +

(15 + 3n + 2j + d) + (20 + 4n + 3m + 2j + d)

 = 60 + 12n + 5m + 4j +4d (4)
(This assumes the second LISB is opened after the first on
another pass when both LSIBs are opened because their key
bits are mutually exclusive. If they can be opened on the same
pass, the cost is less.) If the attacker uses the same random
values for the n, m, and j bits for each set of 4 tries, and if there
are k key bits and t trap bits in the main chain associated with
opening the target LSIB, then the expected cycles to open the
LSIB with two potential honeytraps, of which only one
combination of open honeytraps will work is:

Expected Time(unlock LSIB w/2 honeytraps) =

 (60 + 12n + 5m + 4j +4d)(2k+2t+1) (5)
This assumes the attacker must open both honeytraps before he

can open the target LSIB, but it does not include the cost of
finding the two honeytraps and the key bits that control each.
The effect of the trap bits was doubled because the trap had to
remain unset for two passes before a guess to open the target
LSIB was made. (We assume that traps disable LSIBs from
opening on subsequent cycles, not the current one.) If some
other combination of honeytraps must be open to open the
target LSIB, the time to open the target LSIB could be less
because it could potentially be opened on earlier tries when
both honeytraps have not yet been found and because there will
be fewer opportunities to trip the trap. Also note that this
equation assumes pure random guessing (i.e. guesses may be
repeated). If the number of key bits to open an LSIB were
equal to the length of the chain minus 1 (for the LSIB itself),
then an attacker who applied random guesses without
repetition could cut the expected time by approximately half.
(which could be counteracted by adding another key bit to the
chain.) However, when additional bits that are not key bits for
an LSIB are present in the chain, the advantage of not
repeating guesses is less because the different guesses may
vary only in non-key bits until the expected time approaches
the initial pure-random case. In this paper, we assume that the
key bits only correspond to a fraction of the total chain length
and thus use the simplified analysis of pure random guesses.

B. Providing Negative Feedback: Closing a Chain
In the previous section, honeytraps provided positive feedback
by opening new areas of the chain. The reverse of that would
be to insert LSIBs that are initially open on resetting the circuit,
but close when correct key values are scanned into the chain.
This could be disturbing to an attacker because it would reduce
his access to potential key bits, instrument TDRs, etc.
However, we can make this naturally open LSIB (NO LSIB)
disable the target LSIB in its open state. An attacker would
need to overcome his natural inclination to not reduce the size
of the scan network to open the target LSIB. Furthermore, all
NO LSIBs would not need to disable other SIBs in their open
state. To make the attacker’s job harder, some NO LSIBs
could disable other LSIBs in their closed states instead.
Because an attacker would not know which condition may be
needed to open a target LSIB, he needs to try both.
Assume that the base chain length is n and the chain length
behind the NO LSIB is m. The cost of an attempt when the
LSIB is left open is:

 Cost of guessNO LSIB_stays_open = 10 + 2(n +m) + d (6).
This is similar to Equation 1. The difference arises from the
fact that the length of the chain we are scanning through is
longer when the LSIB is open, and the attacker needs to scan
through the expanded segment. In contrast, the cost of a guess
if the attacker first chooses to close the LSIB is equal to:
 Cost of guessNO LSIB_closed = 15+3n + m + d (7)
This is similar to Equation 2. The difference arises from the
fact that the attacker must only make one pass through the
longer chain containing the extra m bits instead of two. Thus,
the cost of making a guess when both options are tried is:

 Cost of guessone_naturally_open_LSIB = 25+5n + 3m + 2d (8)
Note that this is larger than Equation (3) by m. Thus, the cost

to an attacker is larger with NO LSIBs, than with honeytraps.
Furthermore, an increase in cost is present on the very first
pattern he tries, and all subsequent tries before finding the first
NO LSIB, because the scan path through the network is longer.
As expected, increasing the number of NO LSIBs to two
significantly increases the cost if all four combinations are
tried. Assume the second NO LSIB has j scan cells in its
expanded segment. Then, the cost of a guess if the attacker
tries all combinations of open/closed LSIBs (and if he closes
the first LSIB before the second if both are to be closed) is:
Cost of guess two NO LSIBs = [10+2(n+m+j)+d] +

[15+3(n+m)+j+d] +[15+3(n+j)+m+d] +[20+4n+m+2j+d]

= 60 + 12n + 7m + 8j + 4d (9)
Comparing Equation (9) to Equation (4), it is more expensive
for an attacker to make guesses with NO LSIBs than with
honeytraps for the same number of bits in each chain segment.
The difference arises from the fact that the chain is longer for a
greater percentage of the time with NO LSIBs. If the attacker
uses the same random choice of values for the n, m, and j bits
for each set of 4 tries, and if there are k key bits and t trap bits
associated with opening the target LSIB, the expected time in
cycles required to open the target LSIB with two NO LSIBs is:

Expected Time(unlock LSIB w/2 NO LSIBs) =

 (60 + 12n + 7m + 8j +4d)(2k+2t+1) (10)
This assumes the attacker must close both NO LSIBs before he
can open the target LSIB, but it does not include the initial cost
of finding the two NO LSIBs and the key bits that control each.
As before, if some other combination is required, then the
expected time to open the target LSIB may be less because it
could potentially be opened on earlier tries when both NO
LSIBs have not yet been found and because there will be fewer
passes through the chain on which a trap may be set.

C. Providing No Feedback: Hiding an Increase or Decrease
in Chain Length

So far, we have assumed an attacker will use the chain length
as an indicator of whether a new area of the chain has been
opened (or closed). A slight modification to the design of an
LSIB can very inexpensively remove even this amount of
information. Consider Figure 3, which contains an example
schematic for a “Switching LSIB” (SLSIB). Instead of opening
or closing a single segment of the chain, it switches between
two segments. When a logic 0 is clocked into the Update cell
of the SIB, the first segment (circled in red) is accessible.
When a logic one is clocked into the LSIB, the 2nd segment is
available instead. Obviously, the two segments could be of
any length. However, in this application, we will use a length
of 1 to reduce the overall overhead, as shown in Figure 4.
Figure 4 shows a network where one of the two paths
accessible by the SLSIB leads to a dead-end, while the other
path leads to an LSIB that allows access to a broader area of
the network, including a hidden instrument. Initially, the
SLSIB should be set to access the dead-end portion of the
network. Even if the attacker manages to find the correct key
bits for the SLSIB and cause it to switch, he will not see any
difference because the new path (consisting of a single LSIB)

is exactly the same length. Note that the capture cell for the
scan cells in both paths should be fed by the same signal so
they look the same during Capture and Shift.

Fig. 3. Example schematic for a SLSIB

Fig. 4. Scan Network with SLSIB (blue). To access Hidden Instrument,
SLSIB must be switched and Target LSIB must open.

From the attacker’s viewpoint, this means that he must start
applying two-pattern tests. Each initial guess could have
opened a SLSIB, but as long as both the dead-end cell and the
target LSIB are set to receive the same data on CaptureDR, the
attacker doesn’t know if he made a switch. The attacker must
scan in an initial guess and perform an UpdateDR. He must
then scan in a second pattern, which may possibly open an
LSIB if the SLSIB was switched for the first pattern, and check
the chain length. If unsuccessful, he must execute a network
reset (to clear any Trap bits) and try again. In some ways, this
is similar to the cost of a hierarchical scan structure where two
LSIBs must be opened in sequence for hidden instrument
access. For a scan chain of length n (including the one-bit dead
end), the cost of a guess with this SLSIB architecture is:

 Cost of guessLSIB_behind_SLSIB = 15+3n+d (11)
However, deterministically opening the SLSIB repeatedly on
each try is not possible because opening the SLSIB provides no
information to the attacker. A random guess must be used for
both patterns every time. The expected cycles to unlock the
target LSIB is:

Expected Time(unlock LSIB behind SLSIB) =

 (15+3n+d)(2k1+k2+t+2) (12)

Here, k1 refers to the number of key bits required to switch the

SLSIB, k2 refers to the number of key bits required to unlock
the target LSIB behind it, and t refers to the number of Trap
bits that may be set with the first UpdateDR that would prevent
the target LSIB from opening. Note that both key sizes are in
the same exponent. The time required as a function of key size
and the number of traps grows as:

TimeRequiredGrowthRateSLSIB = O(k1+k2+t)=2k1+k2+t+2 (13)

In the alternative hierarchical case described in [1], where
either key bits or a second LSIB lie behind the first LSIB,
because the attacker can see the effect of the first LSIB
opening, once he finds the LSIB, he can find the key bits for it
with the method described in [1]. He can then deterministically
open it on each new guessing attempt. (Of course, it could also
be a honeytrap, and he could try both approaches.) Thus, the
opening of each LSIB can be considered separately. For
example, assume that 3 key bits are associated with the first
LSIB and 10 key bits (and no traps) are associated with the
second. On average, it will take 24 guesses to successfully
open the first LSIB. (It is 24 instead of 23 because the LSIB
itself must be set to the correct value.) Once the first LSIB is
opened, it can be deterministically opened on additional
guesses. Opening the second LSIB is expected to take an
additional 211 guesses on average. Growth rate in expected
time as a function of key size and number of traps is:

TimeRequiredGrowthRatehier=O(k1+k2+t) =2k1+1+2k2+t+1 (14)
The distribution of keys between the two LSIBs in the SLSIB
case is irrelevant with respect to the expected total time as long
as the overall chain contains enough non-key bits; only the
total number of keys and traps matters. Thus, the key bits can
be easily distributed between both LSIBs. In contrast, if the
keys are distributed equally between the two LSIBs in the
hierarchical case, the total expected time to access the hidden
instrument will be much less than in the SLSIB case because
the two exponentials are added together in Equation (14)
instead of multiplied, as in Equation (13). This can be
alleviated somewhat by having a more lopsided distribution of
the key bits between the 2 LSIBs. The SLSIB is also better
than a single LSIB with the same number of key bits. Each
SLSIB requires at least one additional pass through the chain
and state machine on each guess, and the same physical key-
bits can be reused on multiple passes (with different key
values). Furthermore, if the attacker is not aware that SLSIBs
are a possibility and only applies one-pattern tests interspersed
with resets, he will never open the LSIB behind the SLSIB.
His attack can be made even more difficult by cascading an
arbitrary number of multiple SLSIBs behind each other such
that he does not know how many patterns are needed. Finally,
if Trap Bits associated with the target LSIB are present in the
original chain, then scanning through that chain multiple times
with different patterns will provide multiple opportunities to
trip each of the traps when SLSIBs are cascaded.

V. RESULTS
We investigated multiple variations of the proposed
optimizations. First, we compared HT and NO LSIBs in the
case where either two HT or two NO LSIBs were present. In
both cases, it was assumed that the number of key bits for the
HT and NO LSIBs was very small, and the attacker will find
them quickly. Thus, the primary cost of guessing and the

expected time to find the target LSIB is dominated by the time
spent after the discovery of the HT and NO LSIBs. This data
is shown in Table 1. The k and t values refer to the number of
key and trap bits related to opening the target LSIB. The
value of d is 25. It is assumed that both HTLSIBs must be
open or both NO LSIBs must be closed to open the target.
The time to open the target LSIB is longer when NO LSIBs
are present because the chain length on reset is longer.
TABLE I. COST OF EACH GUESS AND EXPECTED TIME TO OPEN TARGET

LSIB AFTER BOTH HT / NO LSIBS ARE FOUND; 10 MHZ SCAN RATE

k t N m j

Guess cost
after both
HT found
(cycles)

Guess cost
after both
NO found
(cycles)

E[time]
HT

(years)

E[time]
NO

(years)

16 1 1280 128 128 16672 17440 2.77E-5 2.90E-5

16 1 1280 10 10 15610 15670 2.59E-5 2.60E-5

32 1 2560 128 128 32032 32800 3.49 3.57

32 1 2560 10 10 30970 31030 3.37 3.38

64 1 5120 128 128 62752 63520 2.93E10 2.97E10

64 1 5120 10 10 61690 61750 2.88E10 2.89E10

TABLE II. TOTAL TIME TO FIND HIDDEN INSTRUMENT USING EITHER
ONE HIERARCHICAL LSIB OR ONE SLSIB; 10 MHZ SCAN RATE

k1 k2 t N m Total E[time]
hierarchical (years)

Total E[time]
SLSIB (years)

%incr
SLSIB

over hier

1 15 1 1280 1 2.70E-6 6.45E-6 139%

8 8 1 1280 1 3.58E-8 6.45E-6 1.79E4%

15 1 1 1280 1 5.50E-7 6.45E-6 1.07E3%

1 31 1 2560 1 3.51E-1 8.41E-1 140%

16 16 1 2560 1 1.29E-5 8.41E-1 6.53E6%

31 1 1 2560 1 7.02E-2 8.41E-1 1.10E3%

1 63 1 5120 1 3.00E9 7.20E9 140%

32 32 1 5120 1 1.68E0 7.20E9 4.29E11%

63 1 1 5120 1 6.01E8 7.20E9 1.10E3%

Next, we performed a comparison of the SLSIB and the case
where a single hierarchical LSIB must be opened for a target
LSIB to be found. Only a single scan cell is present behind the
hierarchical LSIB. Thus, the hardware cost of the two
approaches is similar, and the difference arises from the
feedback the attacker receives. In this experiment, we assume
the attacker will treat the first LSIB in the hierarchical case as a
single HTLSIB. In Table 2, k1 refers to the number of key bits
for the hierarchical LSIB/SLSIB, and k2 and t refer to the
number of key and trap bits associated with the target LSIB.
The distribution of key bits has no effect in the switching LSIB
case, but it has a dramatic effect on the hierarchical case. An
even distribution of key bits yields the worst possible time in
the hierarchical case because two smaller exponentials are
added. Furthermore, the existence of a trap bit in the chain
affecting the target LSIB means that when the key bits are
distributed in a skewed fashion that it is advantageous to have
more key bits in k2 because the effect of the trap bit is
magnified with the larger exponential. In all cases, the
switching LSIB was better—sometimes by a huge amount.

VI. CONCLUSIONS
In this paper we have presented several techniques that can

significantly increase the cost an attacker faces when trying to
investigate an IEEE P1687 network containing LSIBs.
Although they will not prevent all possible attackers, they can
make it less likely that all but the most dedicated attackers will
find the hidden instruments by scanning data through the
network while using the studied attack modes.
In a real scan network, parts of the network not intended to be
secure will be documented in P1687 PDL and ICL. If an
attacker has access to this documentation, he may be able to
use it to find the initial chain length as well as the location of
non-locking SIBs. Hidden features should not be included.
Thus, we are also investigating how to document the security
features of the design in an encrypted format that can’t easily
be read by an attacker as as well additional protection schemes
to protect data transferred from the tester to the chip inputs.
Finally, note that in this paper’s analysis, attack success merely
corresponds to finding a target LSIB. An attacker will still
need to do additional work to determine what lies behind each
LSIB and how it works. The total amount of time that needs to
be spent by an attacker is even greater than that shown here.

VII. REFERENCES
[1] Jennifer Dworak, Al Crouch, John Potter, Adam Zygmontowicz, and Micah

Thornton, “Don’t Forget to Lock your SIB: Hiding Instruments using P1687,” in
Proceedings of the IEEE International Test Conference, 2013.

[2] D. Mukhopadhyay, S. Banerjee, D. Roychowdhury, and B. B. Bhattacharya,
“CryptoScan: A Secured Scan Chain Architecture,” Test Symp. 2005 Proc. 14th
Asian, pp. 348–353, 18.

[3] A. A. Kamal and A. M. Youssef, “A Scan-Based Side Channel Attack on the
NTRUEncrypt Cryptosystem,” Availab. Reliab. Secur. ARES 2012 Seventh Int.
Conf. On, pp. 402–409, 20.

[4] Bo Yang, Kaijie Wu, and R. Karri, “Scan based side channel attack on dedicated
hardware implementations of Data Encryption Standard,” Test Conf. 2004 Proc.
ITC 2004 Int., pp. 339–344, 26.

[5] R. F. Buskey and B. B. Frosik, “Protected JTAG,” Parallel Process. Workshop
2006 ICPP 2006 Workshop 2006 Int. Conf. On, p. 8 pp.–414, 2006.

[6] C. J. Clark, “Anti-tamper JTAG TAP design enables DRM to JTAG registers and
P1687 on-chip instruments,” Hardw.-Oriented Secur. Trust HOST 2010 IEEE Int.
Symp. On, pp. 19–24, 2010.

[7] K. Rosenfeld and R. Karri, “Attacks and Defenses for JTAG,” Des. Test Comput.
IEEE, vol. 27, no. 1, pp. 36–47, Feb. 2010.

[8] L. Pierce and S. Tragoudas, “Enhanced Secure Architecture for Joint Action Test
Group Systems,” Very Large Scale Integr. VLSI Syst. IEEE Trans. On, vol. PP, no.
99, pp. 1–1, 2012.

[9] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing Designs against
Scan-Based Side-Channel Attacks,” Dependable Secure Comput. IEEE Trans. On,
vol. 4, no. 4, pp. 325–336, Dec. 2007.

[10] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing Scan Design Using
Lock and Key Technique,” in Defect and Fault Tolerance in VLSI Systems, 2005.
DFT 2005. 20th IEEE International Symposium on, 2005, pp. 51–62.

[11] R. Nara, H. Atobe, Youhua Shi, N. Togawa, M. Yanagisawa, and T. Ohtsuki,
“State-dependent changeable scan architecture against scan-based side channel
attacks,” Circuits Syst. ISCAS Proc. 2010 IEEE Int. Symp. On, pp. 1867–1870,
May 2010.

[12] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, “Secured Flipped Scan-
Chain Model for Crypto-Architecture,” Comput.-Aided Des. Integr. Circuits Syst.
IEEE Trans. On, vol. 26, no. 11, pp. 2080–2084, Nov. 2007.

[13] Y. Atobe, Youhua Shi, M. Yanagisawa, and N. Togawa, “Dynamically changeable
secure scan architecture against scan-based side channel attack,” SoC Des. Conf.
ISOCC 2012 Int., pp. 155–158, 4.

[14] S. Paul, R. S. Chakraborty, and S. Bhunia, “VIm-Scan: A Low Overhead Scan
Design Approach for Protection of Secret Key in Scan-Based Secure Chips,” VLSI
Test Symp. 2007 25th IEEE, pp. 455–460, 6.

[15] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “Are advanced DfT
structures sufficient for preventing scan-attacks?,” VLSI Test Symp. VTS 2012
IEEE 30th, pp. 246–251, Apr. 2012.

[16] Suresh Goyal, Michele Portolan, and Bradford Van Treuren, “Patent Application:
Method and apparatus for providing scan chain security,” US 20110314514A1.

[17] I. S. Kim and M. H. Kim, “Agent-based honeynet framework for protecting
servers in campus networks,” Inf. Secur. IET, vol. 6, no. 3, pp. 202–211, Sep.
2012.

