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Abstract—Today’s chips often contain a wealth of embedded 

instruments and data, including sensors, hardware monitors, 
built-in self test (BIST) engines, and chip IDs, among others.  
IEEE P1687 was specifically designed to provide access to such 
instruments in an efficient manner, and some companies are 
already implementing the proposed standard on their chips.  
However, while instruments provide valuable information and 
features to authorized users who need to harness them for test, 
debug, diagnosis, and possibly counterfeit detection, it may be 
desirable to restrict unauthorized access to certain instruments 
through the P1687 network.  Previous work proposed replacing 
some of the segment insertion bits (SIBs), which add scan path 
segments in a P1687 network, with locking SIBs (LSIBs).  LSIBs 
use the data that is naturally scanned through the network as 
keys to hide instruments from attackers.  However, that previous 
work did not investigate many of the techniques and structures 
that can be used to significantly increase the time an attacker is 
likely to need to unlock LSIBs and gain access to hidden 
instruments.  In this work, we explore some of these techniques 
and show how simple modifications to a P1687 network protected 
with LSIBs can significantly increase the difficulty an attacker 
faces in attempting to access protected instruments.   
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I. INTRODUCTION  
Over the last decade there has been a proliferation in the 

number and type of on-chip embedded instruments.  Some 
examples include memory and logic built-in self-test 
controllers (MBIST and LBIST), trace buffers, temperature and 
delay sensors, voltage and frequency domain controllers, and 
I/O configuration hardware.  They are valuable tools during 
test, debug, and diagnosis, as well as when portions of the chip 
(such as the SERDES I/O) need to be configured. 

The proposed IEEE standard P1687 was started to enable 
efficient access to these instruments.  It allows the scan chain 
that accesses instruments to be dynamically reconfigured by 
opening new chain segments.  Unlike IEEE 1149.1, which is 
instruction-based, this dynamic reconfiguration is controlled by 
the data shifted through the scan network.  Although P1687 
supports multiple hardware architectures through its 
description language, generally the network reconfiguration is 
controlled by segment insertion bits (SIBs) that allow 
additional areas of the scan network to be accessed when the 
correct value is clocked into the SIB’s Update cell. 

Although companies may not object to end users accessing 
some types of instruments, access to others, such as sensors, 

trace buffers, scan-dump, and configuration hardware, may be 
a threat to on-chip IP or safety.  Information such as chip IDs 
and encryption keys should also be made inaccessible to 
attackers.  An efficient method of protecting instruments in a 
P1687 network from unauthorized access is needed. 

Often, an attacker with no specific knowledge of the 
network will scan random data or specific patterns (e.g. 
walking a one) through it and will observe the effect on circuit 
behavior and data captured in the scan cells.  In a standard 
P1687 network, this strategy will allow the attacker to quickly 
open all SIBs and map the network architecture, obtaining 
access to all embedded instruments attached to the network.   

To prevent this, Locking SIBs (LSIBs) were introduced in 
[1].  LSIBs use data that is naturally scanned through the 
network as key bits that must be set to the correct value for the 
corresponding LSIB to open.  As the scan chain length and the 
number of key bits increases, the expected time required for an 
attacker to unlock an LSIB increases dramatically.  For 
example, with a scan length of 5120 scan cells and a key size 
of 48, unlocking an LSIB with pure random guesses is 
expected to take more than 9000 years on average.  

That paper also introduced the concept of Trap bits that, if 
tripped by an attacker, can prevent him from opening an LSIB 
even if the correct key is found, and it briefly considered the 
effect of hierarchical network architectures on LSIB security.  
(Keys are enablers; Traps are disablers.) However, there are 
many optimizations to a secure P1687 network protected by 
LSIBs that were not explored in that paper.  For example, 
responses that an attacker receives from his manipulation of the 
network can provide misleading information that encourages 
the attacker to pursue fruitless exploration paths.  Other 
optimizations may reduce or eliminate the transfer of 
information to the attacker. In this paper, we describe some of 
these methods and explore their ability to increase the expected 
time for an attacker to access hidden instruments. 

II. RELATED WORK 
Design for Testability (DFT) hardware, especially scan 

chains, are well-known avenues for attackers to gain 
unauthorized access to internal chip infrastructure.  In the case 
of JTAG ports, this often involves an attacker shifting 
undocumented instruction encodings into the chain and looking 
at the chip response.  Scan chains may also be harnessed by 
unauthorized users to capture and read out internal circuit 
states and break encryption hardware (e.g. [2]–[4]).  Thus, 
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some chip providers fuse off the JTAG port after test and 
before the chip is shipped.  Unfortunately, the port can then no 
longer be used for debug, configuration, or diagnosis. 

Many researchers have proposed other methods of protecting 
the JTAG port and scan chains from attack.  Some methods 
use challenge-response pairs along with hashes or encryption 
algorithms (e.g. [5]–[8]).  Others reorder the scan chain if the 
first k-bits shifted in don’t correspond to a pre-chosen key 
(e.g. [9], [10]).  Other methods disguise chain data by 
changing it with inversions or XORs [11]–[13]. [14] aims to 
protect a scan chain by requiring several keys to be scanned 
into the chain over several cycles during a test initialization 
phase.  The authors of [15] investigated the effect that on-chip 
DFT hardware, such as response compaction, X-masking etc., 
could have on the information made available to an attacker 
and the need for countermeasures.  Finally, [16] proposes an 
open circuit deadlock (OCD) cell which inserts an open into 
the scan chain if a SecureRST signal has not been asserted by 
key checker function hardware. 

Our paper builds on the LSIBs introduced in [1], and shows 
how relatively inexpensive modifications to the P1687 scan 
network can make the feedback obtained by an attacker less 
useful.  We investigate the impact that honeytraps, naturally-
open LSIBs, and switching LSIBs can have on the expected 
time required for an attacker to find a hidden instrument 
behind a particular LSIB.  We will show that these techniques 
can have a dramatic impact on the time required.  

III. LOCKS, KEYS, AND TRAPS IN P1687 
Figure 1 shows a hierarchical P1687 scan network that 

allows access to embedded instruments by opening and closing 
SIBs.  When a SIB is open, it allows access to a new segment 
of the scan network.  When the SIB is closed, it bypasses that 
segment, making the overall scan path shorter.   

 

Fig. 1. Hierarchical P1687 network accessed with IEEE 1149.1 TAP 
controller.  Accessing each instrument shown requires opening 3 SIBs. [1] 

Figure 2 shows a schematic of a Pre-LSIB [1] (that inserts the 
new scan path before the shift bit).  When a logic 1 is placed in 
the Update Register, the Select* line is asserted.  This enables 
the scan chain elements in the new segment and allows the first 
mux to select the signal FROM_TDO2 as the data clocked into 
the Shift cell, effectively adding the new segment to the scan 
chain. An LSIB can be created from a normal SIB by gating 
the Update signal, UpDR, with a set of key bits (shown in 
purple).  The key bits correspond to values in other predefined 
scan cells in the P1687 network.  Opening an LSIB requires 
not only clocking the correct value into the Update cell, but 

also scanning the correct data into the key bits in the chain.  
(Note that although Figure 2 shows a set of key bits AND’ed 
together that would appear on every chip instance, it is possible 
to use E-fuses or programmable logic to make the conditions 
required for an LSIB to open vary from one chip to another.  
This is similar to a method of storing a key suggested in [16].  
In that work, an open circuit was inserted in the scan chain 
when an appropriate key was not entered.)   
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Fig. 2. Example schematic for a Locking SIB (LSIB) [1]. 

Although P1687 does not mandate that an IEEE 1149.1 
TAP controller drive the scan control signals, in many cases an 
11491.1 TAP is likely to be used, and an attacker will need to 
utilize the 1149.1 state machine to execute capture, shift, and 
update functions.  The rest of this paper will assume control of 
the P1687 network through the 1149.1 TAP.  This means that 
multiple clock cycles are required to execute guesses that 
involve filling the chain with random data, assert UpdateDR 
(Update Data Register), and then check the length of the chain.   

Finally, [1] also introduced Trap bits.  A Trap bit asserts a 
Trap-Enable signal when the trigger value is written to the bit’s 
Update cell. For example, a positive logic TrapEn signal may 
be inverted and fed into the AND gate shown in Figure 2 to 
keep the target LSIB that hides an instrument from ever 
opening.  The Trap Bit logic contains internal feedback so that 
once the Trap is asserted, it can only be de-asserted by 
asserting reset.  If the trap bit is reset using the 1149.1 Test 
Logic Reset (TLR) state, this effectively doubles the expected 
time for an attacker to open an LSIB by requiring a pass 
through the TLR state at the start of every guess to clear all 
possible previously tripped Traps. 

IV. OBFUSCATION STRATEGIES 
In [1], it was assumed that an attacker would enter a 

random vector into the scan chain as a “guess” to try to open an 
unknown LSIB.  Without knowledge of the network, a random 
guess is likely to be among the best choices, as it reduces bias.  
The network interrogation process would check the chain 
length after each guess, and an increase in length would 
indicate that a new chain segment had opened—potentially 
providing new access to additional instrument TDRs (test data 
registers), LSIBs, or keys.  Leaving aside the possibility of 
power analysis, imaging, or physical delamination of the part 
(which are beyond the scope of this paper), the attacker is faced 
with a black box problem and limited to observing data exiting 
the chip pins. The most visible feedback is to note a change in 
the length of the scan path.  Here, we propose reducing the 
information present in such feedback by making it complicate 
the attacker’s strategy or by removing that feedback entirely.  



A. Providing Unclear Positive Feedback: Honeytraps 
Opening an LSIB and observing an increase in chain length 

is likely to be seen as a positive result by an attacker because 
more of the network is available.  We can take advantage of 
this by including honeytrap LSIBs (HTLSIBs) in the network, 
where a HTLSIB is a network element that encourages the 
attacker to repeatedly make poor decisions that prevent him 
from accessing hidden instruments. (The “honeytrap” term 
arises from the fact that the approach is similar to the 
honeypots used in internet security to counteract attacks [17]). 

HTLSIBs could consist of an LSIB that does not provide 
access to any hidden instruments or keys, but disables a second 
LSIB whenever the HTLSIB is open.  For example, the Select* 
line that enables a new scan segment accessible through the 
HTLSIB may be inverted and fed into an AND gating the 
UpdateEn signal of a different LSIB (such as the AND gate in 
Figure 2), preventing the second LSIB from opening whenever 
the HTLSIB is open. Once the attacker opens the honeytrap, he 
is likely to want to continue opening it on each guessing 
attempt because it provides access to a portion of the network 
that may contain key bits, LSIBs, etc.  Instead, only using such 
guesses ensures that he will never open the target LSIB. 

For the HTLSIB to help prevent or delay the opening of a 
target LSIB, it should be found by the attacker first.  If the 
target LSIB is opened first, disabling features of the HTLSIB 
become inconsequential.  The primary driver for increasing the 
expected time required to open an LSIB is key size, so the 
number of key bits for the HTLSIB should be low to increase 
the chances of it being opened early.  One could argue that a 
clever attacker will be able to guess that a HTLSIB is a trap by 
using the approach specified in [1] to find the exact key and 
trap bits that relate to the newly opened HTLSIB.  An 
unusually small number of key bits or a small scan network 
behind the HTLSIB could indicate that this LSIB is indeed a 
trap and opening it should be avoided.  However, we can make 
this seemingly clever attack strategy less effective if we make 
some apparent HTLSIBs necessary to open target LSIBs by, 
for example, placing key bits behind them.  Then an attacker 
who avoids opening all possible/likely HTLSIBs will not be 
able to successfully access hidden instruments either.   

The potential use of HTLSIBs increases the search space 
that an attacker must explore.  As each LSIB is opened, he 
must consider that it could be required to be open for any 
future progress to be made.  However, opening it could also 
make it impossible to make future progress.  The number of 
scenarios grows exponentially as more LSIBs are discovered. 

Consider the case of a single potential HTLSIB where the 
initial chain length is n, and the chain length behind the 
potential HTLSIB is m.  Assume the attacker checks the chain 
length by shifting in a distinctive d-bit pattern and observing 
when it exits the chain. Also assume the attacker has already 
determined which bits are the key bits to open the HTLSIB and 
where the new chain is inserted when it’s open.  Then, the cost 
of a guess to open a target LSIB (i.e. an LSIB that hides an 
embedded instrument and has not yet been found by the 
attacker) when the attacker lets the HTLSIB remain closed is:  

  Cost of guessHTLSIB_closed = 10 + 2n + d (1) 

This is the same as the equation from [1] for the cost of a guess 
when opening an LSIB in which Trap bits may be present in 
the network.  It includes resetting the circuit (to untrip any Trap 
bits sprung on the previous guess) and going through the 
RunTestIdle, SelectDR, CaptureDR, and ShiftDR cycles of the 
1149.1 state machine (5 cycles).  Note that this assumes that 
the P1687 instruction remains in the instruction register after 
Reset.  If it does not, a sequence of instruction load cycles will 
need to be added.  This is followed by shift cycles to shift in 
the new pattern and UpdateDR to try to open the target LSIB 
with the current random guess (n+1 cycles).  This is followed 
by traversing the state machine from RunTestIdle through 
ShiftDR (4 cycles) and then shifting n+d bits through the chain 
to check the chain length.   
If the attacker assumes the newly-opened LSIB is not a 
HTLSIB and should be opened first, the cost of a guess is: 

    Cost of guessHTLSIB_open = 15 + 3n + 2m + d (2) 
This includes (6+n) cycles to open the HTLSIB, ending in 
UpdateDR, followed by (4+n+m) cycles to go from 
RunTestIdle through ShiftDR and then shift n+m bits through 
the chain.  An UpdateDR cycle is then used to try to open the 
second LSIB, and the attacker must go from RunTestIdle to 
ShiftDR to allow him to check the chain length by shifting 
(probably) n+m+d bits through the chain.  Note that, to be safe, 
for the same random guess of n bits in the original chain, the 
attacker must try opening the target LSIB twice, once with the 
potential HTLSIB open and once with it closed. The cost of a 
guess becomes the sum of the two: 

  Cost of guessone_HTLSIB = 25 + 5n + 2m + 2d         (3) 
Similarly, if two possible HTLSIBs have been opened before 
the target LSIB is found, the number of cases the attacker must 
consider is at least 4 per guess:  1) both HTLSIBs closed; 2) 
HTLISB1 closed; HTLSIB2 open; 3) HTLISB1 open; HTLSIB2 
closed; 4) both HTLISBs open.  (If the attacker believes that a 
honeytrap may need to be opened, key bits behind it set, and 
then the honeytrap closed again, then the number of cases he 
needs to consider increases by three.)  Assuming he only 
considers the first four cases, and the number of bits behind the 
second honeytrap is j, the cost of a guess becomes: 
Cost of guesstwo_honeytraps = (10 + 2n + d) + (15 + 3n + 2m + d) + 

(15 + 3n + 2j + d) + (20 + 4n + 3m + 2j + d)  

 = 60 + 12n + 5m + 4j +4d      (4) 
(This assumes the second LISB is opened after the first on 
another pass when both LSIBs are opened because their key 
bits are mutually exclusive.  If they can be opened on the same 
pass, the cost is less.)  If the attacker uses the same random 
values for the n, m, and j bits for each set of 4 tries, and if there 
are k key bits and t trap bits in the main chain associated with 
opening the target LSIB, then the expected cycles to open the 
LSIB with two potential honeytraps, of which only one 
combination of open honeytraps will work is: 

Expected Time(unlock LSIB w/2 honeytraps) =  

   (60 + 12n + 5m + 4j +4d)(2k+2t+1)             (5) 
This assumes the attacker must open both honeytraps before he 



can open the target LSIB, but it does not include the cost of 
finding the two honeytraps and the key bits that control each.  
The effect of the trap bits was doubled because the trap had to 
remain unset for two passes before a guess to open the target 
LSIB was made.  (We assume that traps disable LSIBs from 
opening on subsequent cycles, not the current one.)  If some 
other combination of honeytraps must be open to open the 
target LSIB, the time to open the target LSIB could be less 
because it could potentially be opened on earlier tries when 
both honeytraps have not yet been found and because there will 
be fewer opportunities to trip the trap.  Also note that this 
equation assumes pure random guessing (i.e. guesses may be 
repeated).  If the number of key bits to open an LSIB were 
equal to the length of the chain minus 1 (for the LSIB itself), 
then an attacker who applied random guesses without 
repetition could cut the expected time by approximately half.  
(which could be counteracted by adding another key bit to the 
chain.)  However, when additional bits that are not key bits for 
an LSIB are present in the chain, the advantage of not 
repeating guesses is less because the different guesses may 
vary only in non-key bits until the expected time approaches 
the initial pure-random case.  In this paper, we assume that the 
key bits only correspond to a fraction of the total chain length 
and thus use the simplified analysis of pure random guesses. 

B. Providing Negative Feedback: Closing a Chain 
In the previous section, honeytraps provided positive feedback 
by opening new areas of the chain.  The reverse of that would 
be to insert LSIBs that are initially open on resetting the circuit, 
but close when correct key values are scanned into the chain.  
This could be disturbing to an attacker because it would reduce 
his access to potential key bits, instrument TDRs, etc.  
However, we can make this naturally open LSIB (NO LSIB) 
disable the target LSIB in its open state.  An attacker would 
need to overcome his natural inclination to not reduce the size 
of the scan network to open the target LSIB.  Furthermore, all 
NO LSIBs would not need to disable other SIBs in their open 
state.  To make the attacker’s job harder, some NO LSIBs 
could disable other LSIBs in their closed states instead.  
Because an attacker would not know which condition may be 
needed to open a target LSIB, he needs to try both. 
Assume that the base chain length is n and the chain length 
behind the NO LSIB is m.  The cost of an attempt when the 
LSIB is left open is: 

    Cost of guessNO LSIB_stays_open = 10 + 2(n +m) + d   (6). 
This is similar to Equation 1.  The difference arises from the 
fact that the length of the chain we are scanning through is 
longer when the LSIB is open, and the attacker needs to scan 
through the expanded segment.  In contrast, the cost of a guess 
if the attacker first chooses to close the LSIB is equal to: 
 Cost of guessNO LSIB_closed = 15+3n + m + d       (7) 
This is similar to Equation 2.  The difference arises from the 
fact that the attacker must only make one pass through the 
longer chain containing the extra m bits instead of two.  Thus, 
the cost of making a guess when both options are tried is: 

 Cost of guessone_naturally_open_LSIB = 25+5n + 3m + 2d         (8) 
Note that this is larger than Equation (3) by m.  Thus, the cost 

to an attacker is larger with NO LSIBs, than with honeytraps.  
Furthermore, an increase in cost is present on the very first 
pattern he tries, and all subsequent tries before finding the first 
NO LSIB, because the scan path through the network is longer. 
As expected, increasing the number of NO LSIBs to two 
significantly increases the cost if all four combinations are 
tried.  Assume the second NO LSIB has j scan cells in its 
expanded segment.  Then, the cost of a guess if the attacker 
tries all combinations of open/closed LSIBs (and if he closes 
the first LSIB before the second if both are to be closed) is: 
Cost of guess two NO LSIBs = [10+2(n+m+j)+d] + 

[15+3(n+m)+j+d] +[15+3(n+j)+m+d] +[20+4n+m+2j+d]  

= 60 + 12n + 7m + 8j + 4d   (9) 
Comparing Equation (9) to Equation (4), it is more expensive 
for an attacker to make guesses with NO LSIBs than with 
honeytraps for the same number of bits in each chain segment.  
The difference arises from the fact that the chain is longer for a 
greater percentage of the time with NO LSIBs.  If the attacker 
uses the same random choice of values for the n, m, and j bits 
for each set of 4 tries, and if there are k key bits and t trap bits 
associated with opening the target LSIB, the expected time in 
cycles required to open the target LSIB with two NO LSIBs is: 

Expected Time(unlock LSIB w/2 NO LSIBs) =  

  (60 + 12n + 7m + 8j +4d)(2k+2t+1)        (10) 
This assumes the attacker must close both NO LSIBs before he 
can open the target LSIB, but it does not include the initial cost 
of finding the two NO LSIBs and the key bits that control each.  
As before, if some other combination is required, then the 
expected time to open the target LSIB may be less because it 
could potentially be opened on earlier tries when both NO 
LSIBs have not yet been found and because there will be fewer 
passes through the chain on which a trap may be set. 

C. Providing No Feedback: Hiding an Increase or Decrease 
in Chain Length 

So far, we have assumed an attacker will use the chain length 
as an indicator of whether a new area of the chain has been 
opened (or closed).  A slight modification to the design of an 
LSIB can very inexpensively remove even this amount of 
information.  Consider Figure 3, which contains an example 
schematic for a “Switching LSIB” (SLSIB).  Instead of opening 
or closing a single segment of the chain, it switches between 
two segments.  When a logic 0 is clocked into the Update cell 
of the SIB, the first segment (circled in red) is accessible.  
When a logic one is clocked into the LSIB, the 2nd segment is 
available instead.  Obviously, the two segments could be of 
any length.  However, in this application, we will use a length 
of 1 to reduce the overall overhead, as shown in Figure 4. 
Figure 4 shows a network where one of the two paths 
accessible by the SLSIB leads to a dead-end, while the other 
path leads to an LSIB that allows access to a broader area of 
the network, including a hidden instrument. Initially, the 
SLSIB should be set to access the dead-end portion of the 
network.  Even if the attacker manages to find the correct key 
bits for the SLSIB and cause it to switch, he will not see any 
difference because the new path (consisting of a single LSIB) 



is exactly the same length. Note that the capture cell for the 
scan cells in both paths should be fed by the same signal so 
they look the same during Capture and Shift. 

 
Fig. 3. Example schematic for a SLSIB 

 
Fig. 4. Scan Network with SLSIB (blue).  To access Hidden Instrument, 
SLSIB must be switched and Target LSIB must open. 

From the attacker’s viewpoint, this means that he must start 
applying two-pattern tests.  Each initial guess could have 
opened a SLSIB, but as long as both the dead-end cell and the 
target LSIB are set to receive the same data on CaptureDR, the 
attacker doesn’t know if he made a switch.  The attacker must 
scan in an initial guess and perform an UpdateDR. He must 
then scan in a second pattern, which may possibly open an 
LSIB if the SLSIB was switched for the first pattern, and check 
the chain length.  If unsuccessful, he must execute a network 
reset (to clear any Trap bits) and try again.  In some ways, this 
is similar to the cost of a hierarchical scan structure where two 
LSIBs must be opened in sequence for hidden instrument 
access.  For a scan chain of length n (including the one-bit dead 
end), the cost of a guess with this SLSIB architecture is: 

    Cost of guessLSIB_behind_SLSIB = 15+3n+d  (11) 
However, deterministically opening the SLSIB repeatedly on 
each try is not possible because opening the SLSIB provides no 
information to the attacker.  A random guess must be used for 
both patterns every time. The expected cycles to unlock the 
target LSIB is: 

Expected Time(unlock LSIB behind SLSIB) =  

   (15+3n+d)(2k1+k2+t+2)  (12) 

Here, k1 refers to the number of key bits required to switch the 

SLSIB, k2 refers to the number of key bits required to unlock 
the target LSIB behind it, and t refers to the number of Trap 
bits that may be set with the first UpdateDR that would prevent 
the target LSIB from opening.  Note that both key sizes are in 
the same exponent.  The time required as a function of key size 
and the number of traps grows as: 

TimeRequiredGrowthRateSLSIB = O(k1+k2+t)=2k1+k2+t+2     (13) 

In the alternative hierarchical case described in [1], where 
either key bits or a second LSIB lie behind the first LSIB, 
because the attacker can see the effect of the first LSIB 
opening, once he finds the LSIB, he can find the key bits for it 
with the method described in [1]. He can then deterministically 
open it on each new guessing attempt.  (Of course, it could also 
be a honeytrap, and he could try both approaches.)  Thus, the 
opening of each LSIB can be considered separately.  For 
example, assume that 3 key bits are associated with the first 
LSIB and 10 key bits (and no traps) are associated with the 
second.  On average, it will take 24 guesses to successfully 
open the first LSIB.  (It is 24 instead of 23 because the LSIB 
itself must be set to the correct value.) Once the first LSIB is 
opened, it can be deterministically opened on additional 
guesses.  Opening the second LSIB is expected to take an 
additional 211 guesses on average.  Growth rate in expected 
time as a function of key size and number of traps is: 

TimeRequiredGrowthRatehier=O(k1+k2+t) =2k1+1+2k2+t+1    (14) 
The distribution of keys between the two LSIBs in the SLSIB 
case is irrelevant with respect to the expected total time as long 
as the overall chain contains enough non-key bits; only the 
total number of keys and traps matters.  Thus, the key bits can 
be easily distributed between both LSIBs.  In contrast, if the 
keys are distributed equally between the two LSIBs in the 
hierarchical case, the total expected time to access the hidden 
instrument will be much less than in the SLSIB case because 
the two exponentials are added together in Equation (14) 
instead of multiplied, as in Equation (13).  This can be 
alleviated somewhat by having a more lopsided distribution of 
the key bits between the 2 LSIBs.  The SLSIB is also better 
than a single LSIB with the same number of key bits. Each 
SLSIB requires at least one additional pass through the chain 
and state machine on each guess, and the same physical key-
bits can be reused on multiple passes (with different key 
values).  Furthermore, if the attacker is not aware that SLSIBs 
are a possibility and only applies one-pattern tests interspersed 
with resets, he will never open the LSIB behind the SLSIB.  
His attack can be made even more difficult by cascading an 
arbitrary number of multiple SLSIBs behind each other such 
that he does not know how many patterns are needed.  Finally, 
if Trap Bits associated with the target LSIB are present in the 
original chain, then scanning through that chain multiple times 
with different patterns will provide multiple opportunities to 
trip each of the traps when SLSIBs are cascaded.  

V. RESULTS 
We investigated multiple variations of the proposed 
optimizations.  First, we  compared HT and NO LSIBs in the 
case where either two HT or two NO LSIBs were present.  In 
both cases, it was assumed that the number of key bits for the 
HT and NO LSIBs was very small, and the attacker will find 
them quickly.  Thus, the primary cost of guessing and the 



expected time to find the target LSIB is dominated by the time 
spent after the discovery of the HT and NO LSIBs.  This data 
is shown in Table 1.  The k and t values refer to the number of 
key and trap bits related to opening the target LSIB.  The 
value of d is 25.  It is assumed that both HTLSIBs must be 
open or both NO LSIBs must be closed to open the target.  
The time to open the target LSIB is longer when NO LSIBs 
are present because the chain length on reset is longer. 
TABLE I.  COST OF EACH GUESS AND EXPECTED TIME TO OPEN TARGET 

LSIB AFTER BOTH HT / NO LSIBS ARE FOUND; 10 MHZ SCAN RATE 

k t N m j 

Guess cost 
after both 
HT found 
(cycles)  

Guess cost 
after both 
NO found 
(cycles) 

E[time] 
HT 

(years) 

E[time] 
NO 

(years) 

16 1 1280 128 128 16672 17440 2.77E-5 2.90E-5 

16 1 1280 10 10 15610 15670 2.59E-5 2.60E-5 

32 1 2560 128 128 32032 32800 3.49 3.57 

32 1 2560 10 10 30970 31030 3.37 3.38 

64 1 5120 128 128 62752 63520 2.93E10 2.97E10 

64 1 5120 10 10 61690 61750 2.88E10 2.89E10 

 

TABLE II.  TOTAL TIME TO FIND HIDDEN INSTRUMENT USING EITHER 
ONE HIERARCHICAL LSIB OR ONE SLSIB; 10 MHZ SCAN RATE 

k1 k2 t N m Total E[time] 
hierarchical (years) 

Total E[time] 
SLSIB (years) 

%incr 
SLSIB 

over hier 

1 15 1 1280 1 2.70E-6 6.45E-6 139% 

8 8 1 1280 1 3.58E-8 6.45E-6 1.79E4% 

15 1 1 1280 1 5.50E-7 6.45E-6 1.07E3% 

1 31 1 2560 1 3.51E-1 8.41E-1 140% 

16 16 1 2560 1 1.29E-5 8.41E-1 6.53E6% 

31 1 1 2560 1 7.02E-2 8.41E-1 1.10E3% 

1 63 1 5120 1 3.00E9 7.20E9 140% 

32 32 1 5120 1 1.68E0 7.20E9 4.29E11% 

63 1 1 5120 1 6.01E8 7.20E9 1.10E3% 

Next, we performed a comparison of the SLSIB and the case 
where a single hierarchical LSIB must be opened for a target 
LSIB to be found. Only a single scan cell is present behind the 
hierarchical LSIB.  Thus, the hardware cost of the two 
approaches is similar, and the difference arises from the 
feedback the attacker receives.  In this experiment, we assume 
the attacker will treat the first LSIB in the hierarchical case as a 
single HTLSIB.  In Table 2, k1 refers to the number of key bits 
for the hierarchical LSIB/SLSIB, and k2 and t refer to the 
number of key and trap bits associated with the target LSIB. 
The distribution of key bits has no effect in the switching LSIB 
case, but it has a dramatic effect on the hierarchical case.  An 
even distribution of key bits yields the worst possible time in 
the hierarchical case because two smaller exponentials are 
added.  Furthermore, the existence of a trap bit in the chain 
affecting the target LSIB means that when the key bits are 
distributed in a skewed fashion that it is advantageous to have 
more key bits in k2 because the effect of the trap bit is 
magnified with the larger exponential.  In all cases, the 
switching LSIB was better—sometimes by a huge amount. 

VI. CONCLUSIONS 
In this paper we have presented several techniques that can 

significantly increase the cost an attacker faces when trying to 
investigate an IEEE P1687 network containing LSIBs.  
Although they will not prevent all possible attackers, they can 
make it less likely that all but the most dedicated attackers will 
find the hidden instruments by scanning data through the 
network while using the studied attack modes. 
In a real scan network, parts of the network not intended to be 
secure will be documented in P1687 PDL and ICL.  If an 
attacker has access to this documentation, he may be able to 
use it to find the initial chain length as well as the location of 
non-locking SIBs.  Hidden features should not be included.  
Thus, we are also investigating how to document the security 
features of the design in an encrypted format that can’t easily 
be read by an attacker as as well additional protection schemes 
to protect data transferred from the tester to the chip inputs.  
Finally, note that in this paper’s analysis, attack success merely 
corresponds to finding a target LSIB.  An attacker will still 
need to do additional work to determine what lies behind each 
LSIB and how it works.  The total amount of time that needs to 
be spent by an attacker is even greater than that shown here. 
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