A unified methodology for a fast benchmarking of
parallel architecture

Alexandre Guerre, Jean-Thomas Acquaviva, Yves Lhuillier
CEA, LIST, Embedded Computing Laboratory, F-91191 Gif-sur-Yvette, France.
Email: name.surname @cea.fr

Abstract—Benchmarking of architectures is today jeopardized
by the explosion of parallel architectures and the dispersion of
parallel programming models. Parallel programming requires
architecture dependent compilers and languages as well as
high programming expertise. Thus, an objective comparison has
become a harder task. This paper presents a novel methodology
to evaluate and to compare parallel architectures in order to
ease the programmer work. It is based on the usage of micro-
benchmarks, code profiling and characterization tools. The main
contribution of this methodology is a semi-automatic prediction
of the performance for sequential applications on a set of
parallel architectures. In addition the performance estimation
is correlated with the cost of other criteria such as power or
portability. Our methodology prediction was validated on an
industrial application. Results are within a range of 20%.

I. INTRODUCTION

The explosion of parallel architectures and the dispersion
of the parallel programming models are questioning the tradi-
tional benchmarking techniques. Indeed parallel programming
is more and more complex and requires larger and new
expertise. Furthermore, the performance equation is multi-
criteria: FLOPS, power, software cost. A consistent approach
is to provide quantitative information on all these aspects. This
allow end-users to select the best execution platform, ie. the
couple architecture/programming model, in function of their
set of constraints.

This paper describes a methodology which aims to quantify
the relevance of an execution platform for a given application.
This methodology makes two assumptions: first, it assumes
that the application to analyze is in the field of image pro-
cessing. Second, it assumes that a sequential version of the
application is available on an x86 platform.

Signature
cgmparaisqh

Application

1
1 Match Kernel A
i Extraction

experimental
Kernel
Database

Read inside database Performance

Execution time

g

Kernel A Kernel A Kernel A
D0 A0 DO A1 D1A1

PPMand
| architecture choice

Consumption Difficulties

*Parallel Programming Model

Estimation

Fig. 1. Our methodology workflow to predict performance of an application.

978-3-9815370-2-4/DATE14/(©2014 EDAA

Figure 1 describes the our methodology prediction chain. A
preliminary and crucial point in characterization is to harness
the complexity of modern architectures. Nowadays, analytical
models are challenged by this complexity and simulation is not
always possible due to the lack of proprietary information. To
circumvent these difficulties and to allow comparison between
platforms our methodology relies on micro-benchmarking. The
corollary problem is the ability to establish a link between
the targeted application and these micro-benchmarks. A rapid
observation shows that the performance of a given algorithm
differs considerably according to the architecture and the
parallel programming model. To maximize the quality of
the correlation between micro-benchmarks our methodology
proposes to build up a knowledge database of measurements
(experimental kernel database). Therefore, a set of relevant
micro-benchmarks are manually ported to all the considered
architectures with the different supported programming mod-
els. The relevance of these kernels is subject to discussion,
they were selected as being representative of the workload in
the image processing domain. Clearly this is not an automatic
process and the selection was done based on human expertise.
The second stage (extraction) is more automated: the appli-
cation is executed within a dynamic binary instrumentation
tool [1] to identify the hot spots to accelerate. A signature is
calculated for each of these hot spots. With a correlation cal-
culus, the best candidate in the micro-benchmarks database is
identified and the potential on each architecture/ programming
model is estimated (signature comparison). Using the heuristic
presented in section II, the application performance is rebuilt
depending on the architecture and programming model choice.

The remainder of the paper is organized as follows: the
general concepts of the methodology and their implementation
are detailed in section II. The result of this methodology on a
real industrial application is presented in section III. Related
works are addressed in section IV. At last section V concludes
and presents future orientations.

II. METHODOLOGY DETAILS
A. PFarallelization and tuning of a micro-benchmarks set

As explained in the former section, our methodology is
based on a database composed of micro-benchmarks. Theses
micro-benchmarks have to be chosen depending on their
characteristics (memory access pattern, regularity, complexity).
In order to limit the number of micro-benchmarks, 6 kernels
are used: max 3x3, Deriche filter, FGL [2], quad-tree, summed
area table and matrix multiply.

Max 3x3 is a typical filter with its 2D memory access.
It realizes more memory accesses than operations. Deriche

and FGL filters are respectively an 8 times and a 4 times 1D
filter. These filters have horizontal and vertical access patterns
and are causal and anti-causal. The quad-tree is a recursive
algorithm that calculates the variance, compares the result to
a threshold and if it is greater, splits the input in 4 parts. This
kernel catches the recursive pattern. The summed area table
algorithm calculates for each pixel of an image the sum of all
values within a rectangle between the origin and the current
point. This kernel has a high dependency between each result
point. The last one, matrix multiply, is well known as a simple
representation of a 3D pattern.

Depending on the target architecture, all programming
models are not available. Four programming models have been
used: OpenMP, Farming, OpenCL and CUDA. The farming
model has been developed in C using pthread library. This
model creates a fix number of workers depending on the
requested parallelism and creates a number of jobs greater
than the number of workers. The OpenMP parallelization
scheme emphazize a straightforward parallelism based on
OpenMP parallel for constructs. Theses constructs are simple
to implement but yet effective in the case of image processing.
OpenCL and CUDA languages are used for GPU programming
models. OpenCL is also used in the case of Intel processors.
The last parameter to take into account in the kernel database
is the size of the data being processed. Putting it all together,
the database is composed of the following entries: the set of
benchmarked architectures, the set of benchmarked kernels, the
range of input dataset sizes, images size ranges from 256x256
to 2048x2048 pixels and the set of programming models
depending on their availability on the target architecture. It
is also possible for multicore architectures, to control the
parallelism degree by limiting the amount of available cores
used for parallel sections.

B. Application kernel extraction

To compare full applications to the kernel database, it is
necessary to extract application kernels. Performing a whole
application analysis would result in an averaged analysis
that does not take into account the specificity of the small
algorithmic sequences the application is composed of.

Defining application kernel is a hard task [3], [4], and yet
a significant point in order to enable relevant analysis of the
code. First in our methodology, the focus is on dynamic exe-
cution trace of the application. The contiguous aspect of kernel
execution trace is especially important so that the considered
kernel represents a standalone part of the initial application
(not interleaved with other code). Thus, the goal is to detect
dynamic instructions traces composed of a maximally limited
set of static instructions. Static instructions refer to instructions
of the application binary whereas dynamic instructions refer
to occurrence of static instructions in an execution trace. The
definition of a kernel is the minimal set of static instructions
covering dynamic instructions traces of maximum length.

Our methodology includes a tool to process dynamic
instructions traces in order to locate kernels. The output
of this tool is a set of points representing the best appli-
cation kernel candidates. For example, in the dynamic in-
structions sequence a.x.y.x.y.b.x.y.x.y of length 10,
choosing 2 static instruction (x,y) provides a contiguous

sequence x.y.x.y of length 4, whereas properly choosing
3 static instructions (b, x,y) gives a contiguous sequence
X.y.x.yv.b.x.y.x.y of length 9. Using this method, the
tool provides the candidate containing a minimal set of static
instructions providing a maximally long contiguous sequence.

Once the best kernel point is identified, its static instruc-
tions are extracted to find the corresponding portion of the
original source code (C, C++, Fortran...). In the case, where
the best kernel is not covering a major part of the whole
application the method can be repeated iteratively to extract
secondary kernels on the remaining part of the trace. Note that
because the application kernel extraction is done on dynamic
execution traces, the application should be considered along
with its input dataset.

C. Kernel characterization: building a signature

Once an application kernel is identified, a second tool
is used to compute its signature. The signature allows com-
parisons with the known kernels database. This analysis is
performed on dynamic execution. The signature tool is built on
an instrumented instruction set simulator that gathers dynamic
information on executed instructions. The instrumentation con-
sists in performing full data renaming (registers and memory)
to locate producers and consumers of all runtime data. Because
this ideal dataflow graph represents huge amount of data, on-
line compression is performed by folding the graph relatively
to application static instructions.

The signature metrics have been chosen in order to capture
significant (control and dataflow) information on the kernel
behavior. The metrics are the following:

Dataflow stability. Gives the average number of producer
locations for each instructions. It allows to capture whether
computations follow a fixed dataflow or if data are accessed us-
ing complex address computations; in the later case, streaming
architectures (ex. GPUs) would not be efficient targets. More-
over, a poor dataflow stability often means poor parallelization
opportunities (dependencies revealed at runtime).

Parallel aspect ratio. Computes, on the ideal dataflow
graph, the ratio between ideal parallelism width and the
number of executed instructions. A high value for this metric
means high parallelization opportunities.

Dataflow reuse distance. Gives the average amount of
time a byte of data should be stored before reuse. This metric
is evaluated on the ideal dataflow graph. This allows to capture
the data locality and to determine whether the kernel would
privilege a high-bandwidth or a low-latency architecture.

Data volume. Evaluates the total amount of data that the
code processes. This information is important since previous
signature metrics are independent of data volume (computed
relatively to the number of executed instructions).

These metrics are as hardware-independent as possible [5],
in order to capture application information rather than ar-
chitecture adequacy. The “distance” between two kernels is
characterized by a correlation computation.

D. Putting it all together: performance prediction

Once the extracted application kernel is matched with
a database kernel, the performance prediction can be per-
formed. This performance prediction provides insights on
the best architecture and the best programming model to
use. Once a parallel programming model/architecture couple
is chosen, the database is looked-up to extract a measured
speedups (m_speedup). Finally, to compute the final execution
time on the target platform, a sequential performance ratio
(arch_factor) between the tested and the reference architec-
ture is also needed. Using the extraction tools, all extracted
application kernels can not overlap. Thus, it is possible to
assume that these kernels will be parallelized independently.
Thus, the formula (1) derived from the Amdahl Law, can be
used to compute the potential execution time of the parallelized
application.

predictedT'ime = seqRefTime X archFactor
seqKernelTime X archFactor
mSpeedU P

@)

Additionally, the correlation between the extracted kernels
provides a confidence coefficient that can be used to determine
whether the selected database kernel is really close to the appli-
cation kernel. Our methodology performs an auto-correlation
of database kernels and evaluates maximum and average values
for the confidence factor; minimum values are always zero and
correspond to comparisons of kernel with themselves. Selected
database kernels are considered good candidates when their
confidence coefficient (comparing with application kernels) are
below non-zero minimal confidence factors (of two distinct
kernels of the database).

III. EXPERIMENTAL RESULTS
A. Test platforms and measurement protocol

Currently four architectures have been characterized and
fully supported in the database: Intel Xeon i17-2600, ARM
Cortex A9 quadcore, Tilera TilePro64 and Nvidia Geforce
GTX 580. The Intel i7-2600 is a high performance general
purpose processor. It has 4 cores with hyperthreading working
at 3.4 GHz for a peak power consumption of 95W. At the
opposite side, the Cortex A9 of ARM is a simple quad core
working at 400 MHz for a peak power consumption around
1W. It targets embedded systems and low power solutions. The
TilePro64 of Tilera is a 64 cores working at 700 MHz for a
22W power envelop.

To ease measurements comparisons and to limit the ex-
perimental noise a generic API is available across the whole
set of architectures/programming models. This API drives
the random generation of input image and initialization of
OpenCL and CUDA environments. Before measurements, a
benchmarks starts by an initialization stage, which includes
platform configuration when needed and input data set gener-
ation. After a warm-up stage, the time measurement of kernels'
is realized with minimal intrusiveness using C-macros which
inline assembly code probes. Measurements are repeated 30
times on the target systems (following usually recommended

'Note that in the case of code/data offloading (GPU for example), the
transfer time is also measured.

good practices [6]). Between two measurements a clean-up
code (cache flush) is called to guarantee that kernels are always
measured in the same conditions.

B. Case study: real application projection

The case study is an industrial application for pedestrian
detection. The application core algorithm consists in searching
pedestrian presence within the image. The algorithm uses a
classifier [7], which decides whether a pedestrian is present at
a given location and at a given scale. In order to build this
classifier, an off-line statistical learning process for pedestrian
appearance is conducted on many images. A supervised learn-
ing is driven using both positive (when a pedestrian is really
there) and negative (extracted from the background) examples.
The on-line detector is based on a preprocessing and on a
classification process.

The kernel extraction automatically found 600 static binary
instructions which represents 90% of the overall execution
time. Using a instruction-address to source-line tool, it was
possible to identify the C equivalent of the hotspot which
roughly corresponds to the outermost loop of the classification.
This extracted kernel was then compared to the kernel database
resulting in a high correlation which identified a matrix
multiplication kernel as the best candidate for performance
prediction. Performance prediction was then performed using
the formula described in Section II-D. Results are displayed
in Figure 2. Performance prediction is performed for multiple
parallelism degrees and, in the worst case (32 parallel threads),
the median error is under 20%.

000000

Median error = 4,4%

8000000

7
000000 —+—arm-omp

-m-arm-pthread

arm-omp-p

Time inus
g
g

——am-pthread-p

5000000 ——

4000000

3000000

s 20
number of core

(a)

7000000

Median error = 19,8%

5000000

5000000
—+—tilera-omp

~=-tilera-pthread

tilera-omp-p

——tilera-pthread-p

2000000

1000000

o 5 10 15 20 s 0 3
number of core

(b)

Fig. 2. (a) Predicted time compare to measured time for Cortex a9, (b)
Predicted time compare to measured time for TilePro64.

IV. RELATED WORKS

Due to the inherent difficulties of performance prediction
of a given application on a platform, multiple benchmarks
propose to focus on a specific domain. Such domain could
be for instance image processing [8], scientific computing [9]
or emerging applications [10]. To abstract issues related to
programming language or execution model a drastic approach
is proposed by the Berkeley dwarf [11]. In the dwarf model
the implementation is variable but the important concern is the
problem class (fluid dynamic, unstructured grid). In the same
way, our methodology put the focus on core algorithms of an
application, this is more suitable to address heterogeneity as
illustrated by the Rodinia benchmarks [12]. Finer grain kernel
performance prediction has been addressed by Jalby et al. [13],
they use binary versioning to determine the performance bot-
tlenecks and measure potential improvements. The prediction
is accurate but their work is limited to x86 and mostly oriented
toward architectural prospective.

Exploiting benchmark to predict performance of an ap-
plication implies the ability to estimate similarity between
codes. Hoste et al [14] use 47 parameters such as load/store
ratio, arithmetic intensity, ILP or branch behavior. The distance
between application and reference code is then computed
using Principal Component Analysis and prediction is per-
formed by genetic algorithms. On the particular topic of GPU
performance prediction based on kernels, GROPHECY [15]
proposes a similar approach. Parallel code similarity is mostly
centered around communication analysis [16] or coupled with
simulation [17]. Static analysis can also be combined with
machine model, the paper of R. Saavedra and A.-J. Smith [18]
proposes a framework where static information are injected in
a machine model and cross-correlated with micro-benchmarks
measurements. Despite being focused on Fortran code, this
work is an important inspiration of our methodology.

V. CONCLUSION

This paper presents a methodology and its implementation
in a tool chain for performance prediction. The main con-
tribution of this work is the ability to produce performance
prediction for a range of parallel architectures based on the
characterization of a sequential version of an application.
The methodology is following a kernel approach using binary
instrumentation. We advocate that addressing the performance
problem at the granularity of kernels is adapted to the massive
trend of heterogeneous and hardware accelerated platforms.
In order to deal with the complexity of modern architectures
our methodology relies heavily on measurements through a
database of microbenchmarks. In our methodology, the fact
that performance is not limited to execution speed but also
includes power or more complex metrics is a clear contribution
of this work. Overall the error margin of the prediction for our
industrial application test case is below 20%. Performance pre-
diction is currently narrowed to the field of image processing
but nothing prevents an extension toward other domains.

REFERENCES

[11 D. L. August, J. Chang, S. Girbal, D. G. Pérez, G. Mouchard, D. A.
Penry, O. Temam, and N. Vachharajani, “Unisim: An open simulation
environment and library for complex architecture design and collabo-
rative development,” Computer Architecture Letters, vol. 6, no. 2, pp.
45-48, 2007.

(2]

(5]

(6]

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

F. G. Lorca, L. Kessal, and D. Demigny, “Efficient ASIC and FPGA
implementations of IIR filters for real time edge detection,” in Image
Processing, 1997. Proceedings., International Conference on, vol. 2.
IEEE, 1997, pp. 406-409.

C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical struc-
ture in sequences: A linear-time algorithm,” CoRR, vol. ¢s.A1/9709102,
1997.

H. Hayashizaki, P. Wu, H. Inoue, M. J. Serrano, and T. Nakatani,
“Improving the performance of trace-based systems by false loop
filtering,” in ASPLOS, 2011, pp. 405—418.

K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” Micro, IEEE, vol. 27, no. 3, pp. 63-72, 2007.

A. Mazouz, S. A. A. Touati, and D. Barthou, “Performance evaluation
and analysis of thread pinning strategies on multi-core platforms: Case
study of spec omp applications on intel architectures,” in HPCS, 2011,
pp. 273-279.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, vol. 1, 2001, pp. I-511 — I-518 vol.1.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: a
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, ser. MICRO 30. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 330-335.

J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,” in Proceedings
of the fourth annual ACM symposium on Parallel algorithms and
architectures, ser. SPAA ’92. New York, NY, USA: ACM, 1992, pp.
316-322.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and
compilation techniques, ser. PACT "08. New York, NY, USA: ACM,
2008, pp. 72-81.

K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,
D. Patterson, W. Plishker, J. Shalf, S. Williams et al., “The landscape
of parallel computing research: A view from berkeley,” UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, Tech.
Rep., 2006.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, oct. 2009, pp. 44 -54.

W. Jalby, D. Wong, D. Kuck, J. Acquaviva, and J. Beyler, “Measuring
computer performance,” High-Performance Scientific Computing, pp.
75-95, 2012.

K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th international conference on

Parallel architectures and compilation techniques. ~ACM, 2006, pp.
114-122.

J. Meng, V. Morozov, K. Kumaran, V. Vishwanath, and T. Uram,
“Grophecy: Gpu performance projection from cpu code skeletons,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2011 International Conference for. 1EEE, 2011, pp. 1-11.

N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of splash-2 and parsec,” in Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on. 1EEE, 2009,
pp. 86-97.

A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and predic-
tion,” in Supercomputing, ACM/IEEE 2002 Conference. IEEE, 2002,
pp. 21-21.

R. Saavedra and A. Smith, “Analysis of benchmark characteristics and

benchmark performance prediction,” ACM Transactions on Computer
Systems (TOCS), vol. 14, no. 4, pp. 344-384, 1996.

