
Model-based protocol log generation for testing a
telecommunication test harness using CLP

Kenneth Balck
Ericsson AB

Linköping, Sweden
kenneth.balck@ericsson.com

Olga Grinchtein
Ericsson AB

Stockholm, Sweden
olga.grinchtein@ericsson.com

Justin Pearson
Department of Information Technology

Uppsala University, Sweden
justin.pearson@it.uu.se

Abstract—Within telecommunications development it is vital
to have frameworks and systems to replay complicated scenarios
on equipment under test, often there are not enough available
scenarios. In this paper we study the problem of testing a test
harness, which replays scenarios and analyses protocol logs for
the Public Warning System service, which is a part of the Long
Term Evolution (LTE) 4G standard. Protocol logs are sequences
of messages with timestamps; and are generated by different
mobile network entities. In our case study we focus on user
equipment protocol logs. In order to test the test harness we
require that logs have both incorrect and correct behaviour. It is
easy to collect logs from real system runs, but these logs do not
show much variation in the behaviour of system under test. We
present an approach where we use constraint logic programming
(CLP) for both modelling and test generation, where each test
case is a protocol log. In this case study, we uncovered previously
unknown faults in the test harness.

I. INTRODUCTION

A major problem with software testing is how to derive
test cases. Model based testing [1] solves this, by deriving test
cases from a model of the system under test. In this paper
we study part of the protocol of the Long Term Evolution
(LTE) 4G standard [2], [3] responsible for the broadcast of
public warning messages [4]. The protocol includes a number
of messages with complex timing requirements between them.
The main novelty is that we use constraint programming [5]
to directly model the protocol and to derive protocol logs that
are used to test the test harness.

The system under test is a test harness for a base station, a
mobile phone simulator, and a simulated network entity. The
test harness is used to test system functionality automatically.
The test harness communicates with each component and
executes a script on each component that initialises parameters
and requires that certain protocol messages are sent. This
allows various communication scenarios to be tried between
the components. The test harness is designed to capture and
analyse certain log files in the simulated environment in order
to automate manual testing of the telecom system.

As yet the actual test harness has not been extensively
tested. Log files can be obtained by executing tests on real
systems, but it is not easy to obtain all possible behaviours,
and further obtaining log files of incorrect behaviours is nearly
impossible. Our goal was not to test the whole of the test
harness, but was to test if it was able to analyse log files
correctly. Therefore, we needed log files that exhibit incorrect

behaviour. With constraint programming [5] it was easy [6] to
specify both correct and incorrect behaviours, and to generate
logs, as well as to have control over what incorrect behaviours
were allowed. Incorrect behaviours are generated by modifying
(or mutating) the original model of the system.

The contributions of this paper include: A constraint pro-
gramming model of part of a complex real-life telecom pro-
tocol; by using constraint programming, we are able produce
logs that have correct behaviour and logs that have incorrect
behaviour, where the use of constraint programming allowed
fine grained control over the type of incorrect behaviour that
we allowed; finally we uncovered faults in test harness by
finding test cases when the test harness does not find an error
when there is an error in log, or wrongly indicating an error
when there is none.

II. MODEL BASED TESTING

The approach of model based testing [1] is to model the
system under test, and to use the model to derive test cases.
This has the advantage that often test cases can be derived
automatically from the model. There are two aspects of model
based testing: how to specify the model, and how to derive tests
cases from models. Approaches to modelling include: automata
or state based approaches [7]; mathematical based descriptions
using Z [8] or the B-Method [9]; or models provided in
an extended high-level programming language, such as the
approach used in Spec Explorer [10].

The use of constraints in automatic test case generation has
a long history. In [11] constraint solving is used to derive test
cases that distinguish between a piece of code and a mutation
of that piece of code. More recently there has been a lot
of work on using recent advances in constraint programming
applied to white box testing of Java or C [12], [13].

III. CONSTRAINT PROGRAMMING

Constraint Programming [5] is a framework for modelling
and solving combinatorial problems. A constraint problem is
given as a set of variables that have to be labelled with
values and a set of constraints on these variables that are
to be satisfied. There are many techniques used to solve
constraint problems, but most techniques use some form of
intelligent backtrack search that enumerate partial solutions,
together with pruning algorithms that allow early detection
that the current partial solution can not be extended to a total
solution satisfying all the constraint of the problem. In this978-3-9815370-2-4/DATE14/ c©2014 EDAA



paper we use a constraint solver (CLP(FD)) implemented in
Sicstus Prolog [14]. The combination of Prolog and constraint
programing allows us to easily specify both positive and
negative constraints.

IV. PUBLIC WARNING SYSTEM FOR LTE

In our case study we produced logs for testing the test
harness with a setup for the Public Warning System (PWS).
This was carried out at an organisation in Ericsson AB, which
is responsible for testing the LTE Radio Base Station. The
Public Warning System is a technology that broadcast Warning
Notifications to multiple users in case of disasters or other
emergencies.

A. E-UTRAN architecture

LTE (Long Term Evolution) [2] is the global standard for
the fourth generation of mobile networks (4G). Radio Access
of LTE is called evolved UMTS Terrestrial Radio Access
Network (E-UTRAN) [3]. A E-UTRAN consists of eNodeBs
(eNBs), which is just another name for radio base stations. Our
setup consists of an eNB, a simulated Mobility Management
Entity (MME) that forwards PWS messages to the eNB, and
some simulated User Equipment (UE). The functions of these
entities are described in more detail below.

eNB

MME / S-GW MME / S-GW

eNB

eNB
S

1

S
1

S
1

S
1

X2

X
2

X
2

E-UTRAN

 

Fig. 1. This figure is from 3GPP TS 36.300

An eNB connects to User Equipment via the air interface.
The eNBs may be interconnected with each other by means of
the X2 interface. The eNBs are also connected by means of the
S1 interface to the EPC (Evolved Packet Core), more specifi-
cally to the MME (Mobility Management Entity) by means of
the S1-MME interface, and to the Serving Gateway (S-GW)
by means of the S1-U interface [3]. The functions of eNBs
include radio resource management; IP header compression
and encryption, selection of MME at UE attachment; routing of
user plane data towards S-GW; scheduling and transmission of
paging messages and broadcast information; and measurement
and reporting configuration for mobility and scheduling [2]. An
eNB is responsible for the scheduling and transmission of PWS
messages received from MME. The MME performs mobility
management; security control; distribution of paging messages;
ciphering and integrity protection of signaling; and provides
support for PWS message transmission. S-GW is responsible
for packet routing and forwarding.

B. ETWS

Earthquake and Tsunami warning system (ETWS) is a part
of PWS that delivers Primary and Secondary Warning Notifi-
cations to the UEs within an area where Warning Notifications
are broadcast [4]. We show in Figure 2 the network structure
of PWS architecture.

 

UE 

LTE-Uu 

eNodeB 

S1-MME 

MME CBC CBE 

SBc 
 

Fig. 2. This figure is from 3GPP TS 23.041

The Cell broadcast Entity (CBE) can be located at the
content provider and sends messages to the Cell Broadcast
Center. The Cell Broadcast Center (CBC) is part of EPC and
connected to the MME.

The CBE sends emergency information to the CBC. The
CBC identifies which MMEs need to be contacted and sends
a Write-Replace Warning Request message containing the
warning message to be broadcast to the MMEs. The MME
sends a Write-Replace Warning Confirm message that indicates
to the CBC that the MME has started to distribute the warning
message to eNBs. The MME forwards Write-Replace Warning
Request to eNBs in the delivery area. The eNB determines the
cells in which the message is to be broadcast based on informa-
tion received from MME [15]. If a Warning Type IE (informa-
tion element) is included in a Write-Replace Warning Request
message, then the eNB broadcasts a Primary Notification. If
Warning Message Contents IE is included in a Write-Replace
Warning Request message, then the eNB schedules a broadcast
of the warning message according to the value of Repetition
Period IE (rPer) and Number of Broadcasts Requested IE
(NumberofBroadcastRequested) [16]. To inform UE about
presence of an ETWS primary notification and/or ETWS
secondary notification, a paging message is used. UE attempts
to read paging at least once every defaultPagingCycle (dPC).
If UE receives a Paging message including ETWS-indication,
then it starts receiving ETWS primary notification or ETWS
secondary notification according to schedulingInfoList con-
tained in SystemInformationBlockType1 (SIB1). ETWS pri-
mary notification is contained in SystemInformationBlock-
Type10 (SIB10) and ETWS secondary notification is contained
in SystemInformationBlockType11 (SIB11). SIB10 and SIB11
are transmitted in System Information (SI) messages with
different periodicity. If secondary notification contains large
message, then it is divided in several segments, which are
transmitted in System Information messages.

UE eNB MME

Test harness

Fig. 3. Block diagram representing the test setup

V. TESTING PROCEDURE

ETWS requires testing that the paging messages, SIB1,
SIB10 and SIB11 are transmitted correctly by the eNB. These



messages appear in a UE protocol log. To test functionality
automatically, the test harness should: initiate transmission
of Write-Replace Warning Request messages by the MME
simulator; configure the UE simulator and initiate logging;
configure the eNB; and capture and read a UE protocol log.

This is done in order to detect errors in timing constraints,
message content, message ordering, and the number of trans-
mitted messages. (see Figure 3). The arrow shown in Figure 3
from the test harness to MME indicates that the test harness
initiates transmission of messages between MME and eNB.
The arrow from the test harness to UE indicates initiation
of logging. The arrow from UE to the test harness indicates
that the test harness captures and analyses UE protocol log.
The arrow from the test harness to eNB indicates that the test
harness initializes some parameters in eNB. The test harness
has many checks on the produced logs, which contributes
to its complexity; therefore the test harness should be tested
itself. Thus, number of logs with errors should be generated
for testing. We used constraint programming [5] to model
ETWS notifications acquisition by UE and based on solutions
provided by Sicstus Prolog we generate UE protocol logs
for ETWS, which consist of sequences of messages with
timestamps, where different types of errors are introduced.

VI. MODELLING AND UE PROTOCOL LOG GENERATION

Our goal is to generate an UE protocol log. To do this,
we defined a model consisting of constraints on lists of
timestamps and message contents. The constraints specified
ordering constraints between messages; constraints on the
number of messages of a certain type and content; and tem-
poral constraints on the timestamps. Time was represented as
integers with a granularity of 20ms, which was sufficient for
our purposes. Several parameters can represent one message.
Our model describes how UE acquires ETWS notifications
sending by eNB after receiving one Write-Replace Warning
Request message from MME. In order to generate incorrect
logs we have extra parameters that indicate if a message should
appear in a log. This was all implemented in Sicstus Prolog
[14] using its CLP(FD) library.

A. Modelling of ETWS notifications acquisition by UE

We only modelled a subset of the ETWS notification
system, where only one warning message is transmitted by
the MME.

The model contains several lists of parameters that rep-
resent time stamps of messages. For example, we have a
list PagSN, whose elements represent timestamps of paging
messages transmitted every repetition period. The length of
the list is nBR = NumberofBroadcastRequested+ 1.

To model ETWS notification acquisition by UE we used
the following constraints. The constraint that defines time dif-
ference between two consecutive paging messages transmitted
every repetition period is (PagSNi+1−PagSNi = brPer/dPCc·
dPC)∨(PagSNi+1−PagSNi = (brPer/dPCc+1)·dPC) for every
i from 1 to nBR − 1, where PagSNi is ith element in the list
PagSN. The constraint that guarantees that there is at least one
paging message every repetition period is ((i−1)·rPer−dPC <
PagSNi−PagSN1)∧(PagSNi−PagSN1 < (i−1) ·rPer+dPC)
for every i from 2 to nBR. Note that although this and all

the following constraints are expressed in first order logic,
the translation into Sicstus Prolog was mechanical. We have
also list PagPN of timestamps for paging messages which are
transmitted every dPC. The size of the list is ndPC and is
configured in eNB.

Timestamps for SIB10 and SIB11 are elements of lists of
lists, since several messages can be transmitted during the same
paging cycle or repetition period. The constraint that defines
that there are n System Information messages with SIB11
during every repetition period is PagSNi < SIB11Timei,j <
PagSNi+1 for all 1 ≤ i ≤ nBR − 1 and 1 ≤ j ≤ n, where
SIB11Timei,j is jth element of ith sublist in the list of lists
SIB11Time, and SIB11Time is a list of lists of timestamps of
System Information messages with SIB11. It can be that UE
reads different number of SIB11 during different repetition
periods, but since we are interested in incorrect behaviour, we
do not model all possible correct behaviours.

Secondary notification can come in one or several
segments. SIB11Segmentij contains the segment number
of SIB11 with timestamp SIB11Timei,j . The UE should
read every segment at least once during every repetition
period. That is for all (0 ≤ i < nSeg), where nSeg is the
number of segments in a secondary notification, and for all
(1 ≤ j ≤ nBR− 1) there should be some 1 ≤ k ≤ n such that
SIB11Segmentj,k = i. We also constraint the time difference
between two consecutive SIB10 received by UE in the same
paging cycle and two consecutive SIB11 received by UE in
the same repetition period. The constraints on two consecutive
SIB11 received by UE for all i from 1 to nBR − 1 and j
from 1 to n − 1 are: SIB11Timei,j+1 − SIB11Timei,j > 0
and SIB11Timei,j+1 − SIB11Timei,j mod siPer = 0
and ((SIB11Timei,j+1 − SIB11Timei,j)/siPer)
mod nSeg = (SIB11Segmenti,j+1 − SIB11Segmenti,j)
mod nSeg. The model contains parameters that represent
timestamps and content of SIB1 messages. SIB1SIB11Time
is a list of timestamps of SIB1 messages during
repetition periods. SIB1SIB11Type is list of values
from 0 to 3 that indicates whether SIB1 contains
schedulingInfoList for SIB10 and/or SIB11.
Then for all i from 1 to nBR we post a constraint:
(SIB1SIB11Typei = 0 ∧ SIB1SIB11Timei > PagPNndPC ∧
SIB1SIB11Timei > PagSNnBR) or (SIB1SIB11Typei = 1
∧ SIB1SIB11Timei > PagPNndPC ∧ SIB1SIB11Timei <
PagSNnBR) or (SIB1SIB11Typei = 2 ∧ SIB1SIB11Timei <
PagPNndPC ∧ SIB1SIB11Timei < PagSNnBR) or
(SIB1SIB11Typei = 3 ∧ SIB1SIB11Timei < PagPNndPC ∧
SIB1SIB11Timei > PagSNnBR).

B. Mutation of the specification

We use three lists of parameters to indicate if messages
should appear in the log. For example, we have the list
PagPNInd of boolean variables that is the same length as
PagPN. If PagPNIndi is equal to 1, then we include paging
message with timestamp PagPNi into protocol log. We use
parameters as arguments in the constraints to introduce specific
errors into the model. For example, we have a parameter whose
value 0 means that every element of PagPNInd is equal to
1, while 1 means that elements of PagPNInd are generated
randomly.



We introduced errors into the model in different ways
by adding or removing messages, randomly changing time
differences, excluding randomly chosen sublists, by changing
the timing between SIB10 and SIB11 messages, generating
the wrong number of segments, and generating random values
that control which message types are generated. For every type
of negation we have an argument in a Prolog rule, that allows
to include or exclude errors in the model.

C. UE protocol log generation and test execution

We created protocol logs automatically by using a script
that generates paging messages, SIB1 messages and System
Information messages with SIB10 and SIB11, based on values
of parameters from solutions found by Sicstus Prolog. Then
we ran the test harness that reads our generated logs. If the
test harness found a fault in the log, then it printed an error
message. It is important to test the test harness, since it can
provide incorrect pass/fail verdict if it contains faults. We
found different types of faults in the test harness: by reducing
length of the lists we found a case when the test harness
does not print an error message if not all messages of certain
type (paging messages) are transmitted; by generating an
incorrect time difference between two messages, we found an
error message, generated by the test harness, which provided
incorrect information about the number of messages; and by
randomly generating extra elements in the list, we found a case
when an error message was displayed, but there was no error
of corresponding type in the protocol logs.

VII. CONCLUSION

It only takes a few seconds for Sicstus Prolog to generate
a log. In contrast collecting logs by executing test cases on
the system can take many minutes. Further, in order to get
sufficient variation in the behaviour of the collected logs many
different setups should be used, changing setups can take a
significant amount of time, and there is no guarantee that
changing the setup will give the desired variation. Thus our
approach gives us a rich set of generated protocol logs.

Also, the modelling is useful to understand what kind of
incorrect behaviour can occur in logs. Generated logs can be
used in the different stages of testing the test harness, from
the very beginning to late in the development process. Our
approach shows that use of constraint logic programming is
an easy way to introduce faults into the model and helped to
find real faults in the test harness.

The use of constraint programming has a lot of potential
applications in model based testing of telecommunication pro-
tocols. These protocols can be complicated, and often require
constraints on the data that appear in messages. With constraint
programming it was easy to model the protocol here. Further,
it was easy, once we had a high level declarative model, to
mutate the model to generate protocol logs that have incorrect
behaviour. In the future we plan to automate the mutation of
the models.

ACKNOWLEDGMENT

The authors would like to thank Frits Vaandrager for
valuable comments on an earlier draft of this paper. The

second author is supported by VINNMER Program 2011-
03229 funded by Swedish Governmental Agency for Innova-
tion Systems. The third author is supported by grant 2012-4908
of the Swedish Research Council(VR).

REFERENCES

[1] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297–312, 2012.

[2] S. Chadchan and C. Akki, “3GPP LTE/SAE: An overview,” Interna-
tional Journal of Computer and Electrical Engineering, vol. 2, no. 5,
pp. 806–814, 2010.

[3] 3GPP, “General packet radio service (GPRS) enhancements for evolved
universal terrestrial radio access network (E-UTRAN) access,” 3rd
Generation Partnership Project (3GPP), TS 23.401. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/23401.htm

[4] 3GPP, “Public warning system (PWS) requirements.” 3rd Generation
Partnership Project (3GPP), TS 22.268. [Online]. Available: http:
//www.3gpp.org/ftp/Specs/html-info/22268.htm

[5] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[6] N. Beldiceanu, M. Carlsson, P. Flener, and J. Pearson, “On the reifica-
tion of global constraints,” Constraints, vol. 18, no. 1, pp. 1–6, January
2013.

[7] E. Farchi, A. Hartman, and S. S. Pinter, “Using a model-based test
generator to test for standard conformance,” IBM systems journal,
vol. 41, no. 1, pp. 89–110, 2002.

[8] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, L. Gerald,
A. J. Simons, S. Vilkomir, M. R. Woodard, and H. Zedan, “Using formal
specifications to support testing,” ACM Computing Surveys (CSUR),
vol. 41, no. 2, p. 9, 2009.

[9] B. Legeard and F. Peureux, “Generation of functional test sequences
from B formal specifications presentation and industrial case-study,”
in 16th Annual International Conference on Automated Software Engi-
neering, 2001. (ASE 2001)., 2001, pp. 377–381.

[10] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, “Model-based testing of object-oriented reactive
systems with spec explorer,” Formal Methods and Testing, pp. 39–76,
2008.

[11] R. DeMilli and A. J. Offutt, “Constraint-based automatic test data
generation,” Software Engineering, IEEE Transactions on, vol. 17, no. 9,
pp. 900–910, 1991.

[12] N. Williams, B. Marre, P. Mouy, and M. Roger, “Pathcrawler: Automatic
generation of path tests by combining static and dynamic analysis,”
in 5th European Dependable Computing Conference (EDCC-5), ser.
Lecture Notes in Computer Science, M. Dal Cin, M. Kaâniche, and
A. Pataricza, Eds., vol. 3463. Springer-Verlag, 2005, pp. 281–292.

[13] M. Carlier, C. Dubois, and A. Gotlieb, “Focaltest: A constraint pro-
gramming approach for property-based testing,” in Software and Data
Technologies, ser. Communications in Computer and Information Sci-
ence, J. Cordeiro, M. Virvou, and B. Shishkov, Eds. Springer Berlin
Heidelberg, 2013, vol. 170, pp. 140–155.

[14] M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite
domain constraint solver,” in PLILP 1997, ser. LNCS, H. Glaser,
P. Hartel, and H. Kuchen, Eds., vol. 1292. Springer, 1997, pp. 191–206.

[15] 3GPP, “Technical realization of cell broadcast service (CBS),” 3rd
Generation Partnership Project (3GPP), TS 23.041. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/23041.htm

[16] 3GPP, “Evolved universal terrestrial radio access (E-UTRA) ; S1
application protocol (S1AP),” 3rd Generation Partnership Project
(3GPP), TS 36.413. [Online]. Available: http://www.3gpp.org/ftp/
Specs/html-info/36413.htm


