
Computing a Language-Based Guarantee for Timing

Properties of Cyber-Physical Systems
Neil Dhruva

Birla Institute of Technology and Science, Pilani, India

Pratyush Kumar, Georgia Giannopoulou, Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract—Real-time systems are often guaranteed in terms
of schedulability, which verifies whether or not all jobs meet
their deadlines. However, such a guarantee can be insufficient
in certain applications. In this paper, we propose a method to
compute a language-based guarantee which provides a more
detailed description of the deadline miss patterns of an observed
task. The only requirement of our method is that the timing
behavior of the real-time system be modelled by a network of
timed automata. We compute the language-based guarantee by
constructing an equivalent finite state automaton in an iterative
manner, using a counter-example guided procedure. We illustrate
the language-based guarantee for two applications: design of a
networked control system and scheduling in a mixed criticality
system. In both cases, we show that the language-based guarantee
leads to a more efficient design than the schedulability guarantee.

I. INTRODUCTION

Cyber-Physical Systems (CPS) interconnect computational
and physical sub-systems which are often designed and an-
alyzed under different theoretical foundations. Consider the
example of a networked control system [1]. The timing prop-
erties of the communication network may be analyzed with
real-time schedulability tests which guarantee whether all jobs
meet their deadlines. On the other hand, given the worst-case
sensor-to-actuator delay, the physical plant can be stabilized
with a controller design for time delayed feedback systems
[2]. A key challenge in the composition of such sub-systems
is the provision of tight and compact guarantees.

The real-time systems community has primarily focused on
providing schedulability as a guarantee. From the perspective
of the real-time system, if a task-set is schedulable, i.e., if all
jobs are guaranteed to finish before their deadlines, then and
only then, will all other sub-systems perform correctly. A large
body of research has investigated methods and tools to verify
such a guarantee under different assumptions of task models,
scheduling policies and resource considerations.

However, schedulability can be insufficient in certain set-
tings. For the networked control system example, the physical
plant may be able to withstand a few missed deadlines. Indeed,
in [3], the authors show that a well-defined class of deadline
hit and miss patterns can guarantee stability of a physical
plant. Hence, it is pertinent to look for richer (more detailed)
guarantees that extend beyond schedulability.

Researchers have proposed alternate richer guarantees. In
[4], the authors proposed two metrics on the deadline hit and
miss patterns, which they called µ-patterns. A

(

n
m

)

µ-pattern
has at least n deadline hits within m consecutive jobs, and a
〈

n
m

〉

µ-pattern has at least n consecutive deadline hits within

978-3-9815370-2-4/DATE14/ c©2014 EDAA

any m consecutive jobs. These patterns can be generalized
by the notion of regular languages as proposed in [3]. A
slightly different approach was followed in [5]. The authors
propose a dual guarantee. A nominal guarantee is the typical
schedulability test, while an exceptional guarantee specifies for
how long deadlines can be missed after an exceptional event.

For the above, a major challenge is the computation or
verification of the guarantees. The µ-patterns approach has
been demonstrated for fixed-priority scheduling in [4]. The
use of regular languages has been shown for time-triggered
architectures in [6]. In [5], the settling-time approach is applied
when modeling in Real-Time Calculus [7]. It is not clear how
to compute these guarantees in a general setting.

Like in [3], we use a regular language that models the
patterns of deadlines hits and misses as a guarantee. However,
we focus on computing the guarantee for a broad class of
scheduling algorithms and task models. To this end, we first
represent the real-time system by a network of timed automata
[8] in the model-checking tool UPPAAL [9]. Then, we aim
to compute a language-based guarantee by model-checking
for different candidate languages until we find the one that
correctly represents the observed hit and miss patterns. Thus,
our approach is limited only by the ability to model a real-
time system as a network of timed automata and by the
computational cost of model-checking.

In spite of their generic applicability, a common limitation
of model-checking tools is the state-space explosion and the
consequent high computation cost. Being conscious of this,
we make two specific choices in our model-checking process.
First, we use a structured approach to identify candidate
languages to model-check. To this end, we employ an iterative
procedure to incrementally compute a language of a given
complexity that models the observed deadline hit and miss
patterns. This is similar to the counterexample guided abstrac-
tion refinement (CEGAR) [10] approach proposed for program
verification. Second, we gradually increase the complexity of
the language we wish to use as the guarantee, while fully re-
using the information gathered from earlier steps. Here, we
define an uncertainty metric to decide when to terminate the
iterative process of increasing the language complexity. With
these two steps we propose a standard approach to compute
the language-based guarantee.

We present two different applications of the language-based
guarantee. First, using language inclusion, we demonstrate
whether the guaranteed real-time performance matches the
assumed performance by another sub-system. As an example,
we choose the controller performance of an inverted pendulum
with a Linear Quadratic Regulator. For chosen system param-
eters, the controller performance cannot be ascertained by the
schedulability guarantee, but is ascertained by the language-
based guarantee. In the second application, we guide the design

of mixed-criticality systems [11] to ‘fairly’ distribute resources
among low-criticality tasks in exceptional cases when high-
criticality tasks require more resources than usual. We do this
using a worst-case deadline miss rate metric. Such a design
step is usually not supported by schedulability analysis.

The rest of the paper is organized as follows. In Section II
we discuss the model of the real-time system and formally
define the guarantee we propose to compute. In Sections III
and IV we formally describe the approach to compute the
language-based guarantee. In Section V we present two ap-
plications of the language-based guarantee and illustrate them
with numerical examples.

II. SYSTEM MODEL

In this section, we will describe the model of the real-
time system, define the language-based guarantee we want to
compute, and illustrate these with an example.

A. Real-Time System

We consider a real-time system with a task-set, T =
{τ0, τ1, ..., τn}, running on a single or multiple processors with
blocking access to shared resources. We compute the language-
based guarantee (which characterizes the deadline hit and miss
patterns of jobs) of a specific task, say τi.

The only requirement of our approach is that the timing
behavior of such a system be modeled by a network of timed
automata [8], which we denote as S (for system). Thus, our
approach is restricted only by the modeling power of timed
automata and the computational cost of model-checking.

B. Guarantee Language LG

All observed deadline hit and miss patterns of the jobs of
a task τ can be thought of as strings in a language, denoted
as LS (for the system language). LS is over the alphabet
Σ = {H,M}, where H implies a hit event and M implies a
miss event. An example string is (MHH)∗, which is a periodic
pattern with a deadline miss followed by two deadline hits.

We aim to identify a guarantee that closely, yet conserva-
tively, approximates LS . To this end, we compute a regular
language [3], denoted LG (for the guarantee language), over
the alphabet Σ = {H,M}. As we will see later, a regular
language admits advantages which will be useful in the model-
checking. We say LG is a correct guarantee if

LS ⊆ LG. (1)

If a property is satisfied for all strings (or no string) of a
correct guarantee LG, then it follows that it is (or is not)
satisfied on LS . An example of such a property is: “Every
deadline miss is followed by at least two deadline hits”.

A regular language can be represented by an equivalent
Deterministic Finite Automaton (DFA). In a DFA, every state
encodes a finite observed history. Let k denote the length of
the longest history encoded by any state of a DFA, then we
represent the DFA as Ak. The parameter k controls the com-
plexity of the corresponding language: a larger k corresponds
to a larger automaton and possibly a more accurate guarantee.

For the Ak accepting our guarantee language, denoted
LG(k), the history encoded in the states is the pattern of
deadline hits and misses of the last k jobs of task τ . Then,

TABLE I. TASK MODEL FOR EXAMPLE 1

Task Read Execute Write Period

τ0 1-2 1-3 1-2 15

τ1 1-2 10-14 1-2 40

τ2 1-3 12-15 1-3 50

TABLE II. GUARANTEE LANGUAGE LG(2) FOR EXAMPLE 1

Last Two Events HH HM MH MM

Next Event H or M H or M H or M H

given a hit and miss pattern of the last k jobs, Ak can be used
to determine if such a pattern can be observed in LS , and if so,
whether the next job would meet or miss its deadline. This is
a Markov interpretation, where only the last k hits and misses
can influence the next job’s deadline hit or miss. Similar ideas
have been proposed in the analysis of cache hits and branch
predictions [12].

Example 1: Consider a task-set T with three periodic tasks
τ0, τ1, τ2 ∈ T running on three separate cores and accessing
a shared memory. Each task has three distinct phases: read
data from memory, execute on respective cores using the read
data, and write modified data back to memory. Such phased
models of tasks have been shown to model many practical
applications in the control and real-time domain [13]. The
period and the minimum and maximum time units for each
phase of each task (as computed, e.g. with static analysis,)
are shown in Table I. Contention time before read or write is
not included. The arbitration on the memory follows a non-
preemptive first-come-first-serve policy.

We examine τ0 for the deadline of D0 = 10. Contention and
blocking accesses to shared memory lead to variable response
times of jobs of τ0 resulting in the deadline hit and miss
patterns. Using the technique described in the next sections, we
derive the language-based guarantee shown in Table II. This
language corresponds to a DFA Ak with k = 2, i.e., given the
deadline hit and miss pattern of the last two jobs, the language
determines the guarantee for the next job. For instance, if τ0
encounters a deadline hit followed by a miss, i.e. HM , then the
next event can be either a hit or miss. But, for two consecutive
misses, i.e. MM , the next event is guaranteed to be a hit. �

III. CONSTRUCTING Ak FOR A GIVEN k

In this section, we will describe how we construct the DFA
Ak for a given value of k, such that the equivalent regular
language LG(k) conservatively approximates LS . We will first
describe a specific template for Ak which can be iteratively
modified. We will then present an observer timed automaton
which models our current estimate of Ak, denoted as Ai

k for
the ith iteration. We then verify a property to check if the
estimated guarantee language conservatively approximates LS .
If a counterexample is generated, we show how to modify
the observer, or equivalently construct Ai+1

k from Ai
k. Finally,

when no more counterexamples are generated and the iterative
procedure terminates, we obtain Ak and show properties of the
corresponding LG(k).

A. The Observer Automaton

We begin by defining a template for Ak. The DFA Ak

is given by a 5-tuple (Q,Σ, δ, q0, F), where Q is the set of

states, Σ = {H,M} is the alphabet of accepted inputs, δ is the
transition function defined as Q×Σ → Q, q0 ∈ Q is the start
state, and F is the set of accepting states. The following are
some properties of Ak.

• Each state q ∈ Q corresponds to a particular string of
size up to k over the alphabet Σ. Thus, there are up
to 2k+1 − 1 states.

• We can represent a state q equivalently by its corre-
sponding string denoted s(q). For example, when the
DFA is in a state q with s(q) = (MHH), the previous
two jobs have met their deadlines while the one before
them missed its deadline. The oldest information is the
left-most. For the initial state q0, we have s(q0) = φ.

• δ is a partial function, i.e., δ(q, x) does not have to
be defined for every state q ∈ Q and for both x ∈
Σ. If the DFA is in state q and the next input is x
where δ(q, x) is not defined, then the input string is not
accepted by Ak, and thus does not belong to LG(k).

• The transition function follows from the string repre-
sentation of the states. For example, let qi, qj be two
states with s(qi) = (MHH) and s(qj) = (HHM).
If δ(qi,M) is defined, then it is equal to qj for k = 3.

• F = {q ∈ Q : |s(q)| = k}.

Thus, the template for Ak defines a class of automata that
accept any regular language with strings of length at least k.
Any language, which can be represented as shown in Table II,
is accepted by a DFA belonging to this class depending on the
transitions defined in the DFA.

Example 2: For the language in Table II, the corresponding
Ak with the above template is shown in Fig. 1b. �

For the template of Ak, we design a specific observer, denoted
as O, as a timed automaton [8] in UPPAAL [9], such that:

• Each state of Ak corresponds to a location of O.

• All possible transitions in Ak are modeled in O. Every
location in O has two outgoing transitions for the two
cases of hit and miss events. Transitions not defined
in Ak have a variable update e = 0 (for enable) in O,
while the others have a variable update e = 1.

• Each transition in O which corresponds to a transition
in Ak that accepts an H (similarly M) has a synchro-
nization channel receive-event hit? (miss?).

The network of timed automata, S, writes to the syn-
chronization channel using send-events hit! and miss!

whenever a job of task τ either meets or misses its deadline,
respectively. Thus, for a particular execution trace, as the
jobs of τ meet or miss deadlines, S and O synchronize over
corresponding channels. We initialize O such that the variable
update rule on each transition is e = 0. This corresponds to
A0

k which has no defined transitions.

B. Iterative Construction

S is extended to include the observer O. Then, (for the
extended network of TA,) we verify the following (TCTL)
safety property:

∀�e = 1 (or equivalently, A[]e == 1 in UPPAAL). (2)

(a) Initial Observer O for k = 2. (b) Guarantee Automaton A2.

Fig. 1. Refinement Illustration.

This property asserts that the variable e equals 1 in all
states. In terms of our usage of e, the property asserts that
at all times the transitions taken by the observer are already
defined in Ai

k. If the property is not satisfied, the model-
checker returns a counterexample which is a specific trace
of inputs observed in the real-time system but not modeled
by the observer. Then, we modify the observer such that the
counterexample will not be generated again. The modification
is direct: we set e = 1 on the transition of O which triggered
the counterexample. Equivalently, we define (add) a new
transition in Ai

k to generate Ai+1
k . We then repeat the process

of verifying property (2) with the modified observer.

C. Properties of the Computed LG(k)

The iterative process will terminate after a finite number of
steps, as in each step we define a new transition amongst the
finite number of possible transitions of Ak. Upon termination,
the states in DFA Ak with no incoming transitions are dropped,
and Ak and the corresponding LG(k) satisfy the following:

Lemma 1 (Correctness): The language LG(k) correspond-
ing to the DFA Ak satisfies LS ⊆ LG(k).

Lemma 2 (Tightness): If A′
k is obtained by disabling any

single transition from Ak, then the corresponding language
L′
G(k) does not satisfy LS ⊆ L′

G(k).

The correctness property follows from the fact that assert-
ing property (2) asserts LS ⊆ LG(k). The tightness follows
from the initialization wherein no transition of A0

k is defined.
Thus, any defined transition in Ak is due to an observed pattern
of hits and misses in S.

Example 3: Consider the setup from Example 1. For k =
2, we illustrate the observer in Fig. 1a. The guarantee au-
tomaton, shown in Fig. 1b, is then generated using the above
procedure. The states are represented as q y, with y = 0 for the
start state and otherwise equal to the history corresponding to
the state. The transition M self-loop on q (MM) is undefined
at the end of the procedure and is thus removed. The computed
LG(k) is shown in Table II. �

IV. GUARANTEE AUTOMATON FOR UNKNOWN k

The previous section described how to compute LG(k) for
a known parameter k. However, for applications in which it
is unclear what k should be, we need a method to choose the
right k. This choice should balance between complexity and
accuracy: for a large k, LG(k) can more accurately represent
LS , but can be computationally expensive to model-check. In
this section, we present an iterative method that sequentially
computes LG(1), LG(2), We show how to fully utilize

(a) Initial Observer for k = 3 from A2. (b) Guarantee Automaton A3.

Fig. 2. Refinement Illustration for Unknown k.

LG(k) when computing LG(k + 1), propose a terminating
condition for this method, and address scalability issues.

The following lemma forms the basis of our approach. It
states that the computed language (as in the previous section)
for a smaller k cannot be a tighter approximation of LS .

Lemma 3 (Inclusion): LG(k + 1) ⊆ LG(k), ∀k > 0.

We will argue the above result in terms of Ak and Ak+1.
For every state q in Ak+1 we define a parent state p(q) in
Ak. Two cases arise based on the string representation s(q).
If |s(q)| < k + 1, then s(p(q)) = s(q). If |s(q)| = k + 1,
then s(p(q)) is obtained by dropping the left-most (oldest)
element in s(q). This definition is such that, when processing
a common input, if Ak+1 is in state q, then Ak has to be in
state p(q). From the tightness of Ak+1 and the correctness
of Ak, we have: if either or both transition(s) (out of H and
M) are disabled in Ak for state p(q), then the corresponding
transitions are also disabled in Ak+1 for state q. Thus, we
cannot have a string that is accepted by Ak+1 and not by Ak.

A. Refining LG(k) by Increasing k

We provide an iterative refinement approach for increasing
k till we get a satisfactory LG(k). We start with the observer
for k = 1, modify it using the procedure in the previous
section, and derive A1. Then, we begin the process for A2.
However, we can now use information from A1 to modify A0

2
before iterative verification with the model-checker. We know
that for every state q in A0

2, if the parent state p(q) in A1 has
either or both transition(s) disabled, then the corresponding
transitions will also be disabled in A2. Using this we modify O,
and hence A0

2, by removing certain transitions. The modified
observer is now used to obtain A2. This process of constructing
Ak+1 by using information from Ak is termed refinement.

Example 4: Consider guarantee automaton A2 shown in
Fig. 1b. Using this we initialize the observer for k = 3, shown
in Fig. 2a. Note that certain transitions are removed from
the observer. For instance, the state q with s(q) = (HMM)
does not have a δ(q,M) transition. Also, state q with s(q) =
(MMM) is not reachable at all and is thus removed. With
this observer and the procedure of the previous section, we
compute the guarantee automaton A3 shown in Fig. 2b. �

This process is complete in the sense that any counterexample
generated when computing Ak will not be generated when
computing Ak+1. This reduces the model-checking time.

TABLE III. UNCERTAINTY METRIC FOR EXAMPLE 1

k 1 2 3 4 5 6 7 8

U(k) 1.000 0.929 0.733 0.500 0.317 0.197 0.120 0.072

Iterative 0.949 2.219 4.335 6.798 9.695 13.901 19.401 27.635

Non-iterative 0.948 2.276 4.750 7.800 11.824 18.438 29.786 53.339

B. Terminating Condition

We propose Uncertainty Metric, denoted U(k), to define a
terminating condition for the iterative process of increasing k

U(k) =
epr
epo

, (3)

where epr is the number of transitions present in Ak, and

epo = 2k+2, the total number of transitions possible in Ak.
The metric conveys the level of uncertainty in Ak with respect
to the predictions at each state, and is similar to the statistical
metric of entropy.

U(k) varies between 0 and 1. U(k) = 1 implies that every
state in Ak has two outgoing transitions. Thus, irrespective of
the previous sequence of hits and misses, the next event can
either be a hit or miss. A lower value of U(k) implies that
there is lesser uncertainty, because there are states with either
one or no outgoing transitions.

From Lemma 3, it is clear that Ak+1 will have a maximum
of twice the number of transitions as Ak. epo increases to twice
the value for each increase in k. Hence, the ratio either remains
constant or decreases with an increase in k, i.e.,

Lemma 4: U(k + 1) ≤ U(k).

Using the above property, we can decide to terminate the
iterative process if U(k) reaches a value close to 0. However,
for some settings, uncertainty may be inevitable. For instance,
if every job of τ can either hit or miss its deadline, then
U(k) = 1 irrespective of k. Thus, in addition to the absolute
terminating condition, we also have a relative condition, such
as U(k + 1)/U(k) is a value close to 1.

Example 5: For the running example, the uncertainty met-
ric for different values of k is shown in Table III. Row 3 shows
time (in s) required to compute each Ak using the iterative
refinement approach (Subsection IV-A). Row 4 shows time
(in s) required if each Ak is computed non-iteratively, i.e.,
without using the iterative refinement procedure. These read-

ings are computed on an Intel R© Core
TM

2 Quad CPU Q6600
@ 2.40GHz ×4 machine with 4GiB RAM. With increase in
k, the iterative approach shows a significant performance gain
over the non-iterative approach. �

C. Scalability

For different representative examples, we computed the
guarantees for k from 1 to 4. For FCFS and fixed priority
arbitration on the bus, systems with up to five cores could be
analyzed within 18 hours on a server-grade Intel R© Xeon R© @
2.90Ghz. With TDMA arbitration, each core can be analyzed
in isolation. Details of the experiments are in the thesis [14].

V. APPLICATIONS

In this section, we will present applications of the
language-based guarantee. First, we will show how to verify a
controller’s performance requirement by a language inclusion

test. Second, we will show how to compare scheduling algo-
rithms for mixed-criticality systems by computing worst-case
deadline miss rates for low-criticality tasks.

A. Language Inclusion

In model-based design, a standard step is to check that
all assumptions are satisfied by the guarantee. Let LA denote
the language of hit and miss patterns which meet given
performance constraints. Then, the real-time system S satisfies
these constraints if LS ⊆ LA. It is sufficient to show that
LG ⊆ LA, under the correctness property (Lemma 1).

We illustrate language inclusion for the design of a net-
worked control system [1]. Consider an inverted pendulum
on a moving cart. Let mass of the cart be 0.5kg, the mass,
inertia and length of the pendulum be 0.2kg, 0.006 kg.m2

and 0.3m, respectively. Let the coefficient of friction of the
cart be 0.1N/m/s. The state of this control plant is given by

z = [x ẋ θ θ̇], where x is the displacement of the cart, and θ
the angular displacement of the pendulum, and derivatives are
denoted with a dot on top. With period P = 0.6s, we sense

the state and compute a feedback control to change ẋ and θ̇.

Assuming a sensor-to-actuator delay of exactly one period,
we design a Linear Quadratic Regulator (LQR) [15]. Whenever
the delay is larger than a period, we do not actuate the
controller output and the plant is in an open-loop configuration.
Thus, we have a switched linear time-invariant system. We
can collate the plant and controller state variables at the nth

sampling time by X[n] with the following dynamics

X[n+ 1] = AclX[n], if d[n] ≤ P,

X[n+ 1] = AolX[n], otherwise,

where Acl and Aol are the system matrices for closed-loop and
open-loop, respectively, d[n] is the sensor-to-actuator delay for
the nth period, and P is the sampling period. For the computed
LQR controller, we have ‖Acl‖ = 0.82, and ‖Aol‖ = 28.2.

Let the given performance requirement be: the augmented
state variable X must be exponentially stable such that

‖X[n+ 6]‖

‖X[n]‖
< 0.5, ∀ n > 0, X[n]. (4)

This condition specifies that the energy in the vector X
must at least halve in every 6 periods. This is a stronger
condition than asymptotic stability. This condition may be
satisfied for different deadline hit and miss patterns of 6
consecutive control signals. Let a such a pattern by represented
as σ = (σ1, . . . , σ6), where σi ∈ {H,M}. For a given
pattern, there is a corresponding matrix Aσ = Πi=1,...,6Ai,
where Ai = Acl if σi = H and Ai = Aol if σi = M . As
shown in [3], condition of (4) is satisfied for a pattern σ if
the corresponding matrix Aσ has an eigenvalue less than 0.5.
All patterns satisfying this condition are specified as a regular
language LA. The minimized automaton corresponding to LA

for the computed matrices Acl and Aol is shown in Fig. 3a.

The controller is implemented in a distributed real-time
system: (a) sensed data is sent via a shared bus to the controller,
(b) control output is computed on a dedicated processing unit,
(c) control outputs are sent via the same shared bus back to
the plant. There are two other tasks which also read data via
the bus, compute and write data back through the bus. The

(a) Minimized Automaton for LA. (b) Minimized Automaton for LG.

Fig. 3. The Minimized Automata.

TABLE IV. TASK PARAMETERS FOR THE CONTROL EXAMPLE

Task Read Range Exec Range Write Range Period

τ0 0.06-0.18 0.06-0.12 0.06-0.12 0.6

τ1 0.9-1.02 0.06-0.12 0.06-0.12 2.4

τ2 1.38-1.5 0.06-0.12 0.06-0.18 3.6

arbitration policy on the bus is non-preemptive first-come-first-
serve. Thus, the bus is a shared resource which can increase the
sensor-to-actuator delay. The minimum and maximum time (in
s), for each phase of each task is shown in Table IV. Contention
time before read or write is not included. τ0 is the controller
task for the inverted pendulum with a period of 0.6s.

Applying the method of [16], the worst-case response time
of τ0 is 0.72s > P . Using the schedulability guarantee, the
plant can never be guaranteed to be in the closed-loop mode,
and thus is not guaranteed to meet the requirement of (4).
Further, no amount of speed-up of the processor executing τ0
can meet the controller requirement. One would have to speed
up the bus by at least 37.5% to satisfy the requirement.

Since the given LA accepts strings of size 6, we compute
LG for k = 5. Fig. 3b shows the corresponding minimized
automaton. We then compute Ldiff = LG∩¬LA, where ¬LA

is the language complement. We verified that Ldiff = φ, and
thus LG ⊆ LA. This shows that the real-time system can meet
the controller constraint of (4), contrary to the conclusion from
the schedulability guarantee. More details are in [14].

B. Calculating Worst-Case Deadline Miss Rate

While the language-based guarantee is very detailed, it can
be used to compute specific metrics. An example of this is
the worst-case deadline miss rate. Let w be an infinite length
string of deadline hits and misses, where the ith element wi ∈
{H,M}. The worst-case deadline miss rate WMR is given as

WMR = max
w∈LS

|{i : wi = M}|

|w|
. (5)

From the correctness property (Lemma 1), computing the WMR
with LG, instead of LS , is a safe over-approximation.

Given Ak corresponding to LG, we compute WMR as follows:

• We construct a graph G′ = (V ′, E′, ρ) where the
vertices V ′ correspond to the states in Ak, the edges
E′ are the defined transitions in Ak, and weights

TABLE V. MIXED CRITICALITY TASK-SET

τi χi Read Write Exec Period Deadline

τ0 HI 5-7 6-9 7-8 80 80

τ1 LO 4-6 7-8 5-6 50 30

τ2 LO 3-5 7-9 6-7 60 30

TABLE VI. MIXED CRITICALITY RESULTS

PA1 PA2

τ1 τ2 τ1 τ2

k 9 12 15 8

WMR 0.3125 0.75 0.5415 0.25

ρ : E → {−1, 1} is -1 (similarly 1) on edges if the
corresponding transition accepts M (H).

• We compute the minimum cycle mean of G′, denoted
MCM, with the Minimum Cycle Mean algorithm [17].

• Then, WMR = 1−MCM

2 .

We use WMR to compare scheduling algorithms for mixed-
criticality systems [11]. In mixed-criticality systems, every task
τi has a defined criticality level say χi, and at any given time, t,
there is a global criticality level say χg(t). If χg(t) > χi then
most existing scheduling policies decide to drop task τi from
t onwards. In other words, when the global criticality level
rises due to certain exceptional run-time events, low criticality
tasks are no more scheduled. We believe this abrupt dropping
of tasks is due to the limitation of the schedulability guarantee.
Instead, we may still run the low criticality tasks under reduced
performance guarantees, in particular with higher WMR.

Consider a dual-criticality (HI, LO) task-set with three
tasks executing on independent processing cores, but interfer-
ing on a shared bus which follows a non-preemptive fixed-
priority arbitration policy. Tasks read data via the bus, compute
using the read data and write data back via the bus. Read and
write is done through individual accesses, each requiring 1
time unit once access to the bus is granted. The ranges of
read-write access requests and execution times (in time units)
for the different tasks, when the global criticality level is HI,
are shown in Table V. In this case, tasks τ1 and τ2 may not be
guaranteed to meet all their deadlines. But we can guarantee
a certain WMR for each.

We consider two priority assignments, PA1 = τ0 > τ1 > τ2
and PA2 = τ0 > τ2 > τ1. For both, we compute the language-
based guarantee for τ1 and τ2. We do not have a pre-defined k
so we use our iterative refinement procedure to increase k with
the terminating condition: U(k) < 0.1 or Uk+1/Uk > 0.9. We
then compute WMR for each task of both priority assignments.
The results in Table VI are interpreted as follows:

• Fairness amongst LO-criticality tasks: The absolute
value of the difference between WMR of τ1 and τ2 is
smaller for PA2.

• Responsiveness of LO-criticality tasks: The sum of the
WMR of τ1 and τ2 is higher for PA2.

Hence, PA2 is clearly a better priority assignment. How-
ever, when using only the schedulability guarantee, the two
priority assignments are indistinguishable in the HI-criticality
mode, and both τ1 and τ2 will be dropped in either case. We
can similarly compare two different scheduling policies using
the language-based guarantee.

VI. CONCLUSION

We proposed a language-based guarantee that details the
deadline hit and miss patterns of the jobs of a task, then
provided a method to compute this guarantee and finally
presented two applications to describe its applicability. We also
showed the superiority of the language-based guarantee against
the schedulability guarantee. With a wide scope of application,
the only limitation of our method is the inevitable cost of
model-checking. Yet, we have reduced such costs by using
a suitable observer template and corresponding modification
procedure, and an iterative refinement approach that reuses
information from one iteration to the next.

In conclusion, we believe the language-based guarantee is
a viable option for the design and analysis of cyber-physical
systems. We are interested to study the implications of the
detailed guarantee in other application domains.

Acknowledgement: This work was partially funded by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 288175.

REFERENCES

[1] A. Bemporad, M. Heemels, and M. Johansson, Networked control

systems. Springer, 2010, vol. 406.

[2] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 138–162, 2007.

[3] R. Alur and G. Weiss, “Regular specifications of resource requirements
for embedded control software,” in RTAS, 2008, pp. 159–168.

[4] G. Bernat, A. Burns, and A. Llamosı́, “Weakly hard real-time systems,”
IEEE Trans. Computers, vol. 50, no. 4, pp. 308–321, 2001.

[5] P. Kumar and L. Thiele, “Quantifying the effect of rare timing events
with settling-time and overshoot,” in RTSS, 2012, pp. 149–160.

[6] A. D’Innocenzo, G. Weiss, R. Alur, A. J. Isaksson, K. H. Johansson, and
G. J. Pappas, “Scalable scheduling algorithms for wireless networked
control systems,” in CASE, 2009, pp. 409–414.

[7] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, 2000, pp. 101–104.

[8] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, pp. 183–235, 1994.

[9] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-

national Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134–152, 1997.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer aided verification.
Springer, 2000, pp. 154–169.

[11] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in RTAS, 2010, pp. 13–22.

[12] I. Hur and C. Lin, “Adaptive history-based memory schedulers,” in
MICRO, 2004, pp. 343–354.

[13] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in RTAS, 2011, pp. 269–279.

[14] N. Dhruva, “Crossing the Deadline: An Automata-Based Hard
Real-Time Guarantee,” Bachelor’s Thesis, ETH Zurich, 2013.
[Online]. Available: ftp://ftp.tik.ee.ethz.ch/pub/students/2013-HS/BA-
2013-17.pdf

[15] J. Hespanha, “Lecture notes on lqr/lqg controller design.” [Online].
Available: http://www.uz.zgora.pl/ wpaszke/materialy/kss/lqrnotes.pdf

[16] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in EMSOFT, 2012,
pp. 63–72.

[17] R. M. Karp, “A characterization of the minimum cycle mean in a
digraph,” Discrete Mathematics, vol. 23, no. 3, pp. 309 – 311, 1978.

