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Abstract—The emerging neuromorphic computation provides a revo-
lutionary solution to the alternative computing architecture and effec-
tively extends Moore’s Law. The discovery of the memristor presents a
promising hardware realization of neuromorphic systems with incredible
power efficiency, allowing efficiently executing the analog matrix-vector
multiplication on the memristor crossbar architecture. However, during
computations, the memristor will slowly drift from its initial pro-
grammed state, leading to a gradual decline of the computation precision
of memristor crossbar-based computing engine (MCE). In this paper, we
propose an inline calibration mechanism to guarantee the computation
quality of the MCE. The inline calibration mechanism collects the MCE’s
computation error through ‘interrupt-and-benchmark (I&B)’ operations
and predicts the best calibration time through polynomial fitting of the
computation error data. We also develop an adaptive technique to adjust
the time interval between two neighbor I&B operations and minimize
the negative impact of the I&B operation on system performance. The
experiment results demonstrate that the proposed inline calibration
mechanism achieves a calibration efficiency of 91.18% on average and
negligible performance overhead (i.e., 0.439%).

I. INTRODUCTION

Power efficiency has become one of the most crucial considera-
tions in computing system design [1]. However, the imminent barrier
to Moore’s Law in CMOS technology, so-called "power wall",
requires a revolutionary architecture to satisfy the continuously
growing performance and power efficiency gains [2]. Fortunately,
the latest innovations of emerging device technologies provide a
promising solution to this problem [3].

Memristor is one of such promising devices that can advance
Moore’s Law beyond the present silicon roadmap horizons [3].
First, its ultra-high integration density enables a large number of
signal connections within a small circuit size [4]. Moreover, the
crossbar structure based on the variable resistance states of the
memristor provides an incredible execution efficiency of the matrix-
vector multiplication, which is one of the most significant operations
of artificial neural networks [5]. And the memristor crossbar-based
computing engine (MCE) can be used to realize a low power
approximate computing system with ≥ 400 GFLOPS/W [6].

In memristor technology, the current through a device in history is
reflected by the changing of the state of memristor. Such a property
leads to the state drifting in a slow rate when using the memristor
for computation. For example, a voltage of 0.1V may cause the
memristor described in Ref. [7] to deviate ∼ 2% from its initial state
in 1 second. As the function of the MCE severely relies on the states
of memristors, the computation precision of the computing engine
will decrease gradually with the operation time. Therefore, an inline
calibration mechanism is necessary to guarantee the computation
quality of the MCE.

However, it’s very difficult to achieve the best calibration time:
even for a single MCE, the time that the computation precision

decays to a certain value varies dramatically from time to time.
Furthermore, as the speed of tuning the memristor to the specific
state could be ∼ 100× slower than the working speed of MCE [6],
[8], a frequent calibration will significantly decrease the performance
of the computing engine. Therefore, there urges an efficient mech-
anism to extend the continuous operation time of the MCE before
calibration as much as possible.

In this paper, we for the first time propose an inline calibration
mechanism which periodically ‘interrupt-and-benchmark (I&B)’ the
MCE and then predict the best calibration time through polynomial
fitting of the benchmark results. The contributions of this paper
include:

1) We propose an inline calibration mechanism which collects
the MCE’s computation error through I&B operations and
predicts the best calibration time through polynomial fitting
of the computation error data. We also propose an adaptive
technique to adjust the time interval between two neighbor
I&B operations in order to minimize the negative impact of
the I&B operation on system performance.

2) We test the proposed inline calibration mechanism on 4
different MCEs. Experiment results show that the proposed
mechanism achieves a calibration efficiency (the proximity of
the practical operation time to its ideal value) of 91.18% on av-
erage, improving 21.77% compared to the one with a constant
calibration period. In addition, the extra performance overhead
of the proposed calibration mechanism is only 0.439%.

II. PRELIMINARIES

A. Memristor

Fig. 1(a) shows the physical model of the HP memristor [7].
The model includes a a two-layer thin film of TiO2. These two
layers demonstrate different conductivity and the overall resistance
depends on the sum of the two layers. The boundary between
the two layers will move when a current passing through the
memristor [7]. Therefore, the memristor may deviate slightly from
its initial programmed state when using. The memristor also has
other attractive features, such as the ‘pinched hysteresis loop’. In
this paper, we mainly take advantage of the variable resistance
states of the memristor and all the memristor model and parameters
used are taken from Ref. [7].

B. Memristor Crossbar-based Computing Engine

The memristor crossbar architecture can be used to implement
the artificial neural network algorithm, which is able to perform
intelligent data processing in many domains [6], [5]. An artificial
neural network can be expressed by stacking the following basic
operation layer by layer [9]:

Y i
m = sigmoid(W i
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Fig. 1. (a). Physical model of the HP memristor; (b)&(c). Memristor Crossbar-based Computing Engine; (d). Inline Calibration Architecture;

where Y i−1
n is the output of Layer i−1 and also the input of Layer

i. W i
m×n is the weight matrix between Layer i−1 and Layer i. bim

is the bias of the layer. The sigmoid function is f(x) = 1
1+e−x .

It can be observed that the most significant operation is the matrix-
vector multiplication, which can be efficiently implemented through
the memristor crossbar architecture as shown in Fig. 1(b) [5]. And
the sigmoid function can be realized through the circuit described
in [10]. Finally, by combining several such architectures layer by
layer, we can realize a powerful MCE to accomplish different tasks.

III. CALIBRATION PROBLEM AND MOTIVATING EXAMPLE

As discussed in Section II-A, the memristor will slowly drift from
its initial programmed state during computations. As the function of
the MCE severely relies on the memristor states, an inline calibration
mechanism is necessary to guarantee the computation precision of
the MCE. However, there’s a calibration problem as follows:

Ttotal = n · TR +m · TC (TR � TC) (2)

where Ttotal is the total time that the MCE works. TR represents
the time consumption for the computing engine to complete a single
regular operation and n represents the number of regular operations
that the computing engine completes in total. The term ‘regular
operation’ is used to represent the operation of processing
the customer’s input data and distinguish the ‘Interrupt-and-
Benchmark (I&B)’ operation, which interrupts the regular
operation, processes the benchmark data, and then works out
the computation error of the computing engine. TC is the time
consumption of calibrating the states of memristors in a computing
engine and m is the number of total calibrations.

Because it usually costs much more time to tune the memristor to
the specific state (∼ 5µs in [8]) than to use the MCE to complete
a single regular operation (≤ 50ns in [6]) a frequent calibration
will significantly decrease the computing efficiency of the computing
engine. The computing efficiency (η) of a MCE can be defined as
follows:

η =
n · TR

Ttotal
=

TR

TR + m
n
· TC

(3)

The calibration problem can be described as minimizing the extra
calibration factor (m

n
·TC ) to maximizing the computing efficiency η.

Assuming that the computing engine completes ni regular operations
between Calibration i− 1 and Calibration i, and the MCE must be
calibrated when its computation error reaches a specific value, there
exists a maximum number of regular operations (supnR) for each
nR. Therefore, in order to maximize η, we should try to make ni

approach supnR as much as possible. We define a term ‘calibration
efficiency’ (γ) to evaluate the approximation degree of nR to supnR

as follows:
γ =

nR

supnR
(4)

Therefore, the calibration problem can be transformed into making
the number of regular operations nR approach its maximum value

supnR between any two neighbor calibrations to maximize the
calibration efficiency γ. However, supnR varies a lot, and therefore,
it’s usually very difficult to predict the best time for calibration. For
example, Fig. 2 illustrates the simulation results of a MCE used
to complete recognition of handwritten digits [11] in Table I. The
operation frequency is 20MHz and the sequence of the input data is
randomly selected from the dataset. The noise rate is set to 5%. It
can be seen that the maximum calibration time (supnR) varies a lot:
the time that the recognition accuracy drops to 95% for the first time
is 29.2s, 35.5s, 41.2s, and 43.3s, respectively. The minimum result
is only 67.43% of the maximum one. As a result, the calibration
period should be dynamic, instead of constant.

IV. INLINE CALIBRATION MECHANISM

We propose an inline calibration mechanism to predict the best
calibration time of a MCE and achieve the best calibration efficiency.
The mechanism is based on an inline calibration unit attached to
the original MCE as shown in Fig. 1(d). The calibration unit will
periodically perform I&B operation on the computing engine and
predict the best calibration time through polynomial fitting of the
computation error data.

The algorithm of the proposed inline calibration mechanism is
illustrated in Algorithm 1. There are two major techniques of the
proposed inline calibration: calibration time prediction technique
by polynomial fitting and adaptive technique of adjusting the time
interval between two neighbor I&B operations.

A. Calibration Time Prediction Technique by Polynomial Fitting

The calibration mechanism will first collect several practical
computation error of the MCE through the I&B operation. All the
practical computation error achieved will be stored in δhistory array
and all the time points of the I&B operation will be also stored in
Thistory array for polynomial fitting. (Line 11 ∼ 24 in Algorithm
1)

After the length of these two arrays reaches S, the required
number of data for fitting, the calibration mechanism will begin
to fit the collected data to an N th-degree polynomial and work
out a function f(T, δ) to represent the approximate relationship
between the computation data and time. Polynomial fitting is one
of the most common mechanisms to approximate an unknown
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Fig. 2. The drift of the memristor state causes a decline of the MCE’s
performance (recognition accuracy in this simulation) over time. And the time
that the accuracy decreases to a certain value varies a lot in 4 simulations.



Algorithm 1: Calibration Algorithm
Input: M , {BT }, Tstart,Tmin, sup δ, ε, S, Dmax, N , Type
Output: Tcalibration

1 Tinterrupt ← Tstart;
2 Thistory ← [];
3 δhistory ← [];
4 δpredict ← 0;
5 i← 0; // Number of Interrupt-and-Benchmark Operations;
6 t← 0; // Number of Regular Operations;
7 D ← 0; // Times of Doubling Tmin;
8 Tcalibration ← Inf ;
9 while t < Tcalibration do

10 if t == Tinterrupt then
11 // Interrupt and Benchmark;
12 Interrupt the regular operation of M ;
13 Use {BT } to compute the practical computation error δ;
14 i+ +;
15 Thistory(i)← t;
16 δhistory(i)← δ;
17 if δ > sup δ then
18 display(’Calibration Method Fail!’);
19 break;
20 end
21 // Adaptively Adjust the Time Interval;
22 if i < S then
23 Tinterrupt ← Tinterrupt + Tmin;
24 end
25 else
26 if |δ − δpredict| < ε then
27 if D < Dmax then
28 D + +;
29 end
30 end
31 else
32 D ← 0;
33 end
34 Tinterrupt ← Tinterrupt + Tmin · 2D ;
35 // Polynomial Fitting;
36 Use an Nth-degree polynomial fitting to obtain the function

f(T, δ) of the last S data from Thistory and δhistory ;
37 δpredict = f(T = Tinterrupt, δ);
38 // Predict Best Calibration Time;
39 if δpredict ≥ sup δ then
40 Solve sup δ = f(T, δ) and the solutions are Troots[N ];
41 // Choose the best solution;
42 for k = 1→ N do
43 if Troots(k) ∈ < && Troots(k) > t &&

Troots(k) < Tcalibration then
44 Tcalibration ← Troots(k);
45 end
46 end
47 end
48 end
49 end
50 Perform a regular operation;
51 t+ +;
52 end
53 Calibrate M ;

function and has been widely used in circuit analysis, test, and
many other domains [12], [13]. The calibration mechanism will use
each computed function f(T, δ) to predict the the computation error
δpredict at the next I&B operation point Tinterrupt. If the predicted
computation error is less than the maximum tolerable computation
error (δpredict < sup δ), the calibration mechanism will assume that
there’s no need for calibration. (Line 35 ∼ 37 in Algorithm 1)

However, once the predicted computation error is greater than
the maximum tolerable computation error (δpredict ≥ sup δ), the
calibration mechanism will assume that it’s necessary to calibrate
the MCE before the next time of I&B operation and start to predict
the best calibration time by solving the equation sup δ = f(T, δ).
Because the polynomial function is continuous and δ < sup δ <
δpredict, there must exists at least one real solution in the range
from the current Tinterrupt to the next Tinterrupt. The calibration

mechanism will set the final predicted calibration time Tcalibration

to the minimum Troots of the solutions that is greater than the current
operation time t. (Line 38 ∼ 47 in Algorithm 1)

One thing need to be mentioned is that the computation error of a
MCE demonstrates Markov property, as the new generated deviation
only accumulate to the current state of the memristor. Therefore, the
proposed calibration algorithm only use the last S data form δhistory
and Thistory for polynomial fitting. This technique can help reduce
the disturbance of the past computation error and prevent overfitting.

B. Adaptive Technique of Adjusting the Time Interval between Two
neighbor I&B Operations

In order to achieve the relationship between the computation error
and time, we must perform the I&B operation to collect enough data
for polynomial fitting. However, the I&B operation will reduce the
efficient times of regular operations. Therefore, the I&B operation
will have a negative impact on the performance of the MCE and the
calibration efficiency (γ) should be modified as follows:

γ =
nR − k · nI&B

supnR
(5)

where nI&B is a constant number representing the regular operation
times cost for calculating benchmarks by each I&B operation and
k is the total times of I&B operations before calibration. Therefore,
we should also minimize k, the number of I&B operations between
two neighbor calibrations, to achieve the best calibration efficiency.

As shown in Fig. 2, the MCE is able to work steadily for a constant
period of time. Therefore, the calibration mechanism will first make
the MCE work continuously for a certain constant period of time
(Tstart) without any I&B operation to reduce the unnecessary I&B
operations. (Line 1 in Algorithm 1)

Then the I&B operation will begin. In order to minimize the
number of I&B operations, the calibration mechanism will also
use the achieved function f(T, δ) to help adjust the time interval
between two neighbor I&B operations: The calibration mechanism
will predict the computation error δpredict at the next point of
I&B point (Tinterrupt) through f(T, δ). Then at the next time of
I&B operation, the calibration mechanism will compare the practical
computation error δ and the predicted computation error δpredict.
If the absolute difference between δ and δpredict is less than a
certain value (ε), the calibration mechanism will assume that the
function is accurate and there’s no need to perform the polynomial
fitting frequently. Therefore, the time interval between the two
neighbor I&B operations will be doubled. Otherwise, the calibration
mechanism will set the time interval back to Tmin. Moreover, there’s
a limit of the times of doubling the time interval (Dmax) in case
that the time interval becomes too large to capture a sudden spurt
of the computation error. (Line 26 ∼ 34 in Algorithm 1)

Finally, at the ideal situation, the proposed adaptive technique of
adjusting the time interval between two neighbor I&B operations can
reduce the number of I&B operations from O(N) to O(log2N).

V. EXPERIMENT RESULTS

A. Experiment Setup

We use the 4 benchmarks in Table I to test the proposed inline
calibration mechanism. The working frequency of the MCE is
20MHz and we test each MCE’s accurate performance every 0.01s
with 5,000 examples. We choose 50 (1%) from the 5,000 examples
to form the small benchmark set in the calibration mechanism. We
keep randomly choosing examples and comparing the computation



TABLE I
SELECTED MEMRISTOR CROSSBAR-BASED COMPUTING ENGINES

Name Target Type Size MSEFunction

HMAX Distance Object
4× 32× 1 0.002Calculation Detection

KMeans Centroid Clustering 8× 64× 1 0.018Calculation

Sobel Sobel Image
25× 100× 25 0.019Gradient Processing

MNIST - Pattern
784× 300× 10 0.0063Recognition

error of the two dataset until the absolute difference is less than 1%
of the MSE of the total examples.

The minimum time interval between two neighbor I&B operations
(Tmin) is set to 0.01s. The maximum tolerable computation error
(sup δ) is set to 10× of the initial MSE in Table I (the MNIST bench-
mark is set to 0.01). The maximum tolerable absolute difference (ε)
between δpredict and δ is set to 5% of the corresponding sup δ. All
the types of computation error in the simulation are mean square
error (MSE). The required number of data for polynomial fitting
(S) is set to 9 ("Poly2") and 10 ("Poly3"). The maximum times of
doubling the time interval (Dmax) is set to 8. The start time of the
I&B operation (Tstart) is set Tstart to 70% of the minimum time
that δ reaches sup δ in 10 different simulations. And the constant
calibration period is set to 90% of the minimum time that δ reaches
sup δ. The noise rate is set to 5%. Each computing engine is tested
5 times with the same initial conditions.

B. Experiment Results

The statistical results are illustrated in Table II, where "Poly2" rep-
resents the calibration mechanism based on 2nd-degree polynomial
fitting and "Poly3" represents the calibration mechanism based on
3rd-degree polynomial fitting. "Constant" stands for the calibration
mechanism which uses a constant calibration period.

In order to quantify the negative impact of the I&B operation, we
define a parameter ∆ to represent the extra performance overhead
of I&B operations:

∆ =
k · nI&B

nR
(6)

where k · nI&B is the extra times of I&B operations and nR

represents the total times that the MCE performs regular operations.
It can be seen that the calibration mechanism based on 2nd-degree

polynomial fitting performs better than other calibration mechanisms
and realizes the a calibration efficiency (γ) of 91.18% on average,
improving 21.77% compared to the one with a constant calibration
period. In addition, an extra performance overhead (∆) of 0.439%
demonstrates that the proposed calibration mechanism has negligible
impact on the performance of the MCE.

Poly 3

Poly 2

Operation Time

δ

supδ
δpredict

δpredict

Error!

Sudden Spurt

Ti+2 ······ Ti+wTi+1

Fig. 3. This figure illustrates the reason that "Poly3" doesn’t perform better
than "Poly2". When a sudden spurt of the computation appears, Poly3 will
work out a 3rd-degree polynomial fitting with an aggressive growth rate and
leads to a smaller prediction of Tcalibration.

TABLE II
SIMULATION RESULTS OF THE PROPOSED CALIBRATION MECHANISM

Name Term HMAX KMeans Sobel MNIST Average
Uniform γ1 79.35 77.82 70.67 71.67 74.88

Poly 2
γ1 92.84 93.89 89.06 89.42 91.18
+2 17.00 20.01 26.04 24.76 21.77
∆3 0.299 0.147 0.372 0.937 0.439

Poly 3
γ1 89.98 69.17 81.17 74.17 78.62
+2 13.40 -11.11 14.86 3.49 5.01
∆3 0.325 0.186 0.396 1.068 0.402

1 γ: Calibration Efficiency (%);
2 +: Improvement (%);
3 ∆: Extra Performance Overhead (%);

VI. CONCLUSIONS

In this work, we propose an efficient inline calibration mecha-
nism for MCE to eliminate the negative impact of the memristor
state drifting on system performance. We also provide an adaptive
technique to reduce the extra performance overhead from O(n) to
O(log2n). The experiment results on 4 different benchmarks show
that the proposed inline calibration mechanism is able to achieve
a calibration efficiency of 91.18% as well as a negligible extra
performance overhead. There is an ongoing debate over which spice
level model should be universally adopted for the memristor-based
design. For future work, we will try to select and integrate proper
spice level memristor models to analyze the hardware and power
overhead of the proposed approach.
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