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Abstract—Data mining, bioinformatics, knowledge discovery, social
network analysis, are emerging irregular applications that exploits data
structures based on pointers or linked lists, such as graphs, unbalanced
trees or unstructured grids. These applications are characterized by
unpredictable memory accesses and generally are memory bandwidth
bound, but also presents large amounts of inherent dynamic parallelism
because they can potentially spawn concurrent activities for each one
of the element they are exploring. Hybrid architectures, which inte-
grate general purpose processors with reconfigurable devices, appears
promising target platforms for accelerating irregular applications. These
systems often connect to distributed and multi-ported memories, po-
tentially enabling parallel memory operations. However, these memory
architectures introduce several challenges, such as the necessity to manage
concurrency and synchronization to avoid structural conflicts on shared
memory locations and to guarantee consistency. In this paper we present
an adaptive Memory Interface Controller (MIC) that addresses these
issues. The MIC is a general and customizable solution that can target
several different memory structures, and is suitable for High Level
Synthesis frameworks. It implements a dynamic arbitration scheme,
which avoids conflicts on memory resources at runtime, and supports
atomic memory operations, commonly exploited for synchronization
directives in parallel programming paradigms. The MIC simultaneously
maps multiple accesses to different memory ports, allowing fine grained
parallelism exploitation and ensuring correctness also in the presence
of irregular and statically unpredictable memory access patterns. We
evaluated the effectiveness of our approach on a typical irregular kernel,
graph Breadth First Search (BFS), exploring different design alternatives.

I. INTRODUCTION

Semantic databases, social network analysis, data mining, bioinfor-
matics, language understanding, pattern recognition and, in general,
knowledge discovery are new, emerging irregular applications. They
feature irregular data structures such as graph, unbalanced trees or
unstructured grids, which employ pointers or linked lists. These data
structures provide a large amount of inherent dynamic parallelism,
because the application can potentially spawn a concurrent activity
for each element to explore. However, they also present very poor
spatial and temporal locality, because any element can point to any
other element, leading to substantially unpredictable, fine-grained,
memory accesses. In addition, these data structures usually are large,
but difficult to partition without generating load unbalance. For
this reasons, it is more convenient to develop irregular applica-
tions by exploiting parallel shared memory programming models.
Lately, several systems targeting irregular applications that employ
hybrid architectures have appeared. Hybrid architectures integrate
both general purpose processors and reconfigurable logic, such as
FPGAs, to accelerate some specific workloads. Solutions like the
Convey HC include custom personalities (hand-designed accelerators)
for some irregular algorithms, such as Breadth First Search (BFS)
[2]. These platforms integrate complex, custom memory controllers
with multiple distributed memories, which support many concurrent
memory requests, high bandwidths and large memory sizes. These
approaches demonstrated promising speed ups with respect to com-

modity systems, providing alternative, smaller scale, solutions than
fully custom systems for irregular applications such as the Cray XMT
multithreaded supercomputer [6]. However, they still are custom
designs, with hand-developed accelerators or even processors, loaded
on the reconfigurable logic. Modifying them means rewriting the
RTL code, the software runtimes and the related interfaces towards
the general purpose processors. It is difficult to adapt them to
specific or new applications. On the other end of the spectrum, High
Level Synthesis (HLS) tools allow automatic generation of hardware
accelerators starting from high level languages such as C. They
appear very promising for hybrid architectures [9]: the developers
can decide to offload some of the kernels to the reconfigurable
logic, and let the tool generate all the RTL code to synthesize.
However current HLS paradigms do not consider many of the issues
in irregular applications. They adopt very restrictive abstractions for
memory, usually considering a single ported memory and serializing
all the accesses. In addition, they provide poor (if any) support
for synchronization directives. The common approach for supporting
synchronization requires interacting with off-the-shelf soft processors
or custom schedulers, which manage the execution on the hardware
modules. This interaction may considerably increase the execution
latencies when compared to full custom designs. In this paper we
introduce an adaptive Memory Interface Controller (MIC), which
enables complete management of concurrency and synchronization
on multiple memory resources. The MIC dynamically maps memory
operations across distributed and/or multi-ported memories, such as
those available in hybrid systems. The MIC routes the memory ac-
cesses towards their memory ports at runtime, enabling the support of
the unpredictable access patterns. The MIC also manages concurrency
through a lightweight arbitration scheme, which avoids any structural
conflict on shared resources, and which does not introduce any delay.
The MIC is able to concurrently issue multiple memory operations,
provided that they do not target the same memory locations, because
it performs access routing and resource availability checking at
runtime, thus improving the overall memory bandwidth utilization
of the systems. The MIC provides synchronization management by
implementing atomic memory operations, such as fetch-and-add and
compare-and-swap, which are the basis for the synchronization primi-
tives commonly adopted in shared memory parallel programming. We
designed the MIC to make it adaptable to different target platforms
and allowing large degrees of customization. It is possible to tune its
implementation through parameters that, for example, allow changing
the bitwidths, the number of concurrent memory accesses, and the
number of memory banks to connect to. An embedded system devel-
oper can easily integrate the MIC in custom hand-written designs, but
we specifically developed it to also enable its automatic allocation in
typical HLS flows. We validate our approach by performing design
space exploration for a typical irregular application kernel, the BFS,
varying the number of concurrent kernels and memories.978-3-9815370-2-4/DATE14/ c©2014 EDAA



II. RELATED WORK

In the last few years, several approaches to accelerate irregular
kernels, such as graph traversal, with hybrid architectures and re-
configurable devices have appeared. The most important examples
are the BFS personalities for the Convey HC systems [2], and the
new Convey MX system, which couples a multithreaded custom
processor on the reconfigurable logic with an OpenMP programming
environment (CHOMP - Convey Hybrid OpenMP) [3], providing
significant speed ups for graph exploration kernels. Betkaoui et
al. [4] present a reconfigurable hardware methodology for efficient
parallel processing of large-scale graph exploration problems. The
authors design the architecture by hand, and increase parallelism
by replicating the basic BFS kernel. The application execution takes
place in a three stages process, through the interaction between the
kernel instances (Graph Processing Elements, GPEs) and a Runtime
Management Unit (RMU). The RMU partitions the vertices, assigning
each partition to a GPE. Then, the GPEs execute concurrently, until
each GPE has processed its assigned partition, notified through a
termination signal to the RMU. In the last step, the RMU manages
synchronization of the GPEs, evaluating whether the execution pro-
cess should restart. The authors suggest the adoption of HLS tools
to only generate the kernel implementation. We can, completely
integrate our approach in a HLS framework. In fact, it does not
require the definition of custom RMUs, because it directly manages
synchronization through atomic memory operations. In [8] the authors
propose a parameterized speculative multi-ported memory subsystem:
it enables speculative execution of memory operations, aiming at
increasing the available parallelism. The introduction of multi-ported
caches allows concurrent execution of multiple memory operations.
A lightweight protocol implements coherency by partitioning the data
on different Coherency Clusters, therefore reducing its management
costs. Access towards the external DDR memories is serial. The
experimental evaluation highlights that the adoption of speculation
has diminishing returns when targeting irregular applications: for the
considered irregular kernels, it shows a performance gain less than
10%. In our work we do not consider either caching or speculation,
because unpredictable accesses increase the costs of coherency man-
agement, and speculation has negligible effects on performance. In
[5], Cong et al present an implementation of the fluid registration
algorithm on a Convey HC-1 multi-FPGA platform. The authors
implement the algorithm exploiting a HLS tool, but they suggest
that further effort is required to fully support the features of a hybrid
architecture in an automatic framework. In [10] the authors show how
ROCCC 2.0, a HLS tool, can support the Convey HC-1 platform. The
paper shows how Dynamic Time Warping and Viola-Jones algorithms
are converted from C specification to a HDL specification, targeting
the Convey system. However, the approach still requires performing
optimizations on the code to fully support the platform. To the
best of our knowledge, current hardware synthesis methodologies
do not address the issues of irregular applications in their entirety.
These include: abundant task level parallelism, unpredictable and
parallel memory accesses, fine grain synchronization through atomic
memory operations. There are, however, some approaches that look
at supporting some of these features. [7] discusses how to extend
ROCCC to support irregular applications. The authors introduce
multithreading to tolerate long memory access latencies, and describe
how they customized the ROCC compiler to generate concurrent
hardware threads and to support customized state information for
each dynamically generated thread. However, they do not address
atomic memory operations.

1 void a p p l i c a t i o n t e m p l a t e ( ) {
2 / / code b l o c k
3 f o r ( i d = i n i t ; id<NUM it ; i d = i d +1 ){
4 k e r n e l ( id , d a t a ) ;
5 }
6 / / code b l o c k
7 }

Fig. 1: Application Template

III. ACCELERATING IRREGULAR APPLICATIONS

Irregular applications typically expose coarse grain parallelism,
usually located in loops. The general template provided in Figure 1
can map most irregular applications, such as graph problems [4].
There are several challenges when mapping these applications to
hardware with automated synthesis flows. First, hardware acceleration
generally relies on fine grained parallelism exploitation: ILP inside
each kernel is usually limited. Furthermore, the kernels are mostly
memory bound, because the largest part of parallel operations are
memory accesses. As a result, hardware design methodologies fo-
cused on ILP provide limited speed ups. Multi-ported or distributed
memories can mitigate this issue by allowing multiple concurrent
memory accesses. However, the memory access patterns are irregular.
Thus, statically binding a memory operation to a hardware resource
is not possible. In turn, this makes concurrent execution of memory
operations non-trivial. Synchronization among different kernels is
an additional source of complexity. In fact, different kernels may
share the same memory resources, so a way to preserve consistency
is required. The graph BFS algorithm presents all the previously
mentioned aspects. We mapped a queue-based implementation of
the BFS algorithm on the general template of Figure 1, identifying
kernels which may execute concurrently. Each one of them iterates
over the out edges of a given vertex: when it traverses a new neighbor,
the neighbor is marked as visited and added to the next iteration
queue. If multiple kernels run concurrently, they perform write
accesses to a shared data structure. Consequently, there must be a way
to synchronize the accesses. In software parallel programming, atomic
operations, such as compare-and-swap and fetch-and-add, provide
synchronization. In this work we propose a hardware accelerator
design for irregular applications, based on the definition of an adap-
tive Memory Interface Controller. To overcome the highlighted issues
and to achieve significant speed ups, the proposed design: 1) allows
concurrent execution of memory operations on multiple memory
banks, also with an irregular access pattern; 2) guarantees memory
consistency when multiple kernels concurrently access shared data;
this is achieved by implementing atomic operations through dedi-
cated hardware; 3) improves coarse grained parallelism exploitation,
allowing kernels to run concurrently without the need of inter-process
communication. The methodology exploits coarse grained parallelism
through “spatial” multithreading, i.e. by replicating multiple times
the same kernel. The introduction of the MIC enables support of
concurrent memory accesses to different memory banks. The MIC
dynamically steers memory access requests to the proper memory
ports, while managing concurrency among them. The MIC also
provides atomic operations, which are considered as a special type of
memory operations. Figure 2 shows the targeted accelerator structure,
which maps on hardware the application template proposed in Figure
1, after applying partial unrolling with unrolling factor of N . This
better exposes task level parallelism, and facilitates the implementa-
tion process. If a kernel function performs memory operations on
shared memories, it forwards execution requests to the caller. In



Fig. 2: Accelerator design template schematic representation.

Fig. 3: Memory Interface Controller schematic representation.

case of nested calls, forwarding is recursive, until the top level is
reached. At the top level, the MIC manages the memory accesses.
The introduction of the MIC adds an abstraction layer between the
accelerator and the memory structure, which decouples the problems
of designing the two components. Varying for example the number
of available memory banks, or the scrambling function used to
distribute data, have no impact on the accelerator implementation. In
fact, the accelerator can be implemented as an independent module:
the designer or the synthesis tool may ignore mutual interferences
between different kernels, or in general, memory accesses, because
the MIC manages synchronization and concurrency. This abstraction
also facilitates the design process: for example, operation scheduling
may be addressed independently for each kernel, without performing
difficult inter-functional analysis. In addition, it allows trivial kernel
replication. All these aspects improve modules reusability and the
efficiency of Design Space Exploration tasks, while reducing their
complexity. This is an important characteristic, because there are
several design choices that may affect system performance, such
as the number of allocated kernel instances, and the number of
concurrent memory operations which the MIC should manage.

IV. MEMORY INTERFACE CONTROLLER

We designed the Memory Interface Controller (MIC) with the
objectives of dynamically addressing irregular memory accesses to
the corresponding memory port, while managing their concurrency.
Basically, the MIC takes in input memory access requests from N
ports, which have an address, a data and an operation type (load/store)
line. It routes requests towards one of the M output ports by evaluat-
ing their addresses. It serves a request as soon as the corresponding
port is available. In a similar way, it routes back M done signals
(which notify termination of an operation) and the results (in case of
loads) to the requesting operation. The memory is composed of M
different and independent banks, and each output port accesses one
bank (Figure 2). Each memory bank has non-overlapping addresses.
This is equivalent to having M different distributed memories. Figure
3 provides a schematic view of the controller structure. The MIC
associates each input operation i to a Control Element (CE) and a
module (PI) that analyzes the input address to establish the destination

port. This is obtained by embedding in the PI design the hardware
implementation of the scrambling function, which distributes data
on the multiple memory partitions. The design allocates a Resource
Manager (RM), which has the role of managing concurrency, for each
output j. Each CE intercepts execution requests and forwards them
to the RMs, until they are accepted. A Port Index signal produced
by the PI, working as selector of the steering logic (connection 1),
allows performing the routing of the requests. Once a RM accepts a
request, it sends back an ack signal to the corresponding CE, disabling
it, and to the UNBD module, which is responsible of setting the
selections while the operation is running. These signals, according
to the output of PIs (connection 2), drive the steering logic that
feeds the memory ports (connection 3). Figure 3 only shows the
connections and logic for the address line of an input port. All the
other input lines follow a similar approach, duplicating the steering
logic and interconnections. Similarly, the MIC routes done signals
and results coming from memory (read accesses), according to the
requesting input port. In this case, OPeration Index (OPI) modules
provide the selectors for the interconnections. OPIs identify the input
port requesting the memory access. The design of the MIC, thanks
to its modularity and regularity, is not constrained by any particular
characteristic of the ports (number or bitsize of inputs/outputs).

Atomic operations: Atomic operations indivisibly perform a
sequence of operations (read and write) on a given memory location,
ensuring that its content is not modified by other operations during
their execution. In our design, we obtain an atomic behavior by
delegating management of atomic operations to the MIC. When
the MIC accepts the execution request of an atomic operation,
it exclusively binds the associated memory port to the operation,
until its completion. The MIC manages atomic execution through
dedicated hardware. For example, fetch-and-add operations read the
value at the specified address, add the provided operand to the
previously read value, and then store the result in the same memory
location. They return the old value read. The MIC implements this
operation as follows. First, it performs the load operation. When the
MIC receives the done signal coming from the memory, it intercepts
the signal, buffers the loaded value, and calculates the sum. Then, it
stores the result of the sum into the memory. The subsequent done
signal is associated to the whole atomic operation, which then returns
the buffered value. The MIC implements other atomic operations
following the same approach. The MIC includes dedicated hardware
to manage atomic operations for each memory port, thus allowing
concurrent execution of one atomic operation per memory bank.

V. EXPERIMENTAL EVALUATION

We implemented the MIC in Verilog, and designed two different
versions of it. The first only considers loads and stores, without
support for atomic operations. It takes in input memory addresses,
input data for store operations, selectors for identifying the operation
type, and a start signal. It produces in output done signals and,
in case of load operations, a result. The second version of the
module extends the previous one by providing support to fetch-and-
add and compare-and-swap atomic operations. There are additional
selectors in input, and dedicated output lines for providing the results.
The same lines used for input data of store operations provide the
operands. Both the MIC implementations are customizable, and take
the number of input operations and the number of memory banks
as parameters. We evaluated the area of the designed modules,
varying both the number of inputs N (associated with the maximum
number of parallel memory operations) and the number of outputs
M (associated with the number of memory banks). We synthesized



TABLE I: Performance evaluation: speed-ups with respect to serial executions; input graph: 5000 nodes; average out degree: 10 (22767
edges), 20 (47597 edges) and 30 (72887 edges).

M = 4 M = 8
avg out degree: 10 avg out degree: 20 avg out degree: 30 avg out degree: 10 avg out degree: 20 avg out degree: 30

ker 2cc 5cc 10cc 2cc 5cc 10cc 2cc 5cc 10cc 2cc 5cc 10cc 2cc 5cc 10cc 2cc 5cc 10cc
4 2.7 2.36 2.2 2.85 2.48 2.27 2.9 2.52 2.29 2.84 2.61 2.48 2.97 2.71 2.53 3.01 2.74 2.57
5 3.09 2.62 2.39 3.33 2.76 2.49 3.36 2.8 2.51 3.34 2.98 2.79 3.53 3.14 2.9 3.57 3.14 2.91
6 3.45 2.85 2.57 3.7 3 2.65 3.78 3.04 2.68 3.81 3.34 3.09 4.03 3.53 3.23 4.1 3.58 3.27
7 3.74 3.01 2.68 4.02 3.15 2.79 4.13 3.22 2.82 4.2 3.66 3.33 4.5 3.88 3.53 4.58 3.93 3.58
8 3.96 3.16 2.8 4.32 3.29 2.89 4.43 3.35 2.92 4.63 3.95 3.61 4.98 4.22 3.82 5.08 4.3 3.89

TABLE II: Area evaluation of the generated designs.

1ker/M=1 4ker 5ker 6ker 7ker 8ker
FF,M=4 942 2466 3066 3415 4124 4563

LUT,M=4 1141 4981 6200 7218 8378 8911
FF,M=8 942 2611 3210 3559 4268 4706

LUT,M=8 1141 6367 7912 9305 10935 11586

the circuits with Xilinx ISE ver 14.4, targeting a Virtex 6 xc6vlx75t
device. We evaluated the proposed approach by exploring area and
performance when synthesizing the BFS algorithms with different
parameters. The choice is motivated by the fact that the BFS is
considered one of the most typical irregular application kernel. We
compared different implementations, varying the number of allocated
kernels and the number of available memory ports. With respect to
similar methodologies (e.g. [4], [8], [7]), our approach facilitates
the adoption of HLS for the synthesis of the accelerators. In fact,
we synthesized all the designs through Bambu, a state of the art
HLS tool [1]. We introduced the MIC in the automatically generated
designs, with negligible effort. Each kernel performs six memory
accesses, and two atomic operations, i.e., one fetch-and-add and one
compare-and-swap. Since the kernels require access to the whole
memory, the MIC manages the memory accesses at the top level.
According to the program dependences, each kernel can issue up to
two concurrent memory operations. For this reason, we reserve two
input ports of the MIC for each kernel. We evaluated the performance,
in terms of execution latency, while also varying the size of the
input graph and the latency model of the memory operations (2,
5 and 10 clock cycles per operation). We targeted an operating
frequency of 100 MHz. Table I reports the obtained Speed-Ups
against single kernel executions, for for the different data sets. To
preserve the irregularity, we randomly generated the graphs. All
the results refer to the execution of the complete BFS algorithm.
We first synthesized the specification allocating only one kernel
function, and interfacing it to a single bank memory. In these settings,
parallelism exploitation is strictly bound to ILP. We compared the
obtained latencies, progressively increasing the number of allocated
kernels (from 4 to 8), targeting a 4-bank and a 8-bank memory
architecture. For all the experiments, we verified speed-ups when
increasing the number of kernels. To demonstrate the effectiveness of
the proposed approach in parallelizing irregular memory accesses, we
must also consider the relative speed-ups when varying the memory
latency. Regardless of the number of kernels, we reported a significant
speedup when increasing the number of memory banks. The gains
are higher with high latency memories, because in such a case the
execution latency is dominated by the memory accesses. This is
a valuable result, especially when considering that the speed up
increases when increasing the number of kernels, thus providing
higher concurrency on the memory resources. Table II summarizes the
area requirements (number of FF and LUT slices) of the accelerators.
We remark that the single kernel implementation interfaces with a
single banked memory. Thus, it is not affected by the area overhead

of the MIC. Two aspects mainly determine the area utilization. The
first one is associated with the number of allocated kernels: each
kernel requires 433 FF and 488 LUT slices. The second component
is the cost of the MIC: increasing the number of kernels slightly
increases the cost of the controller, because two 2 additional ports
per kernel are added to the MIC.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the implementation of an adaptive
Memory Interface Controller (MIC) targeted at irregular applications.
We specifically designed the MIC for the inclusion in automated
HLS flows. The MIC supports distributed and multi-ported memories,
which provide very high bandwidths for fine-grained memory oper-
ations. The MIC allows simultaneous execution of multiple memory
accesses and introduces an abstraction layer that facilitates the design
of custom accelerators, because it manages both synchronization and
concurrency among the memory resources. The MIC also provides
support for atomic memory operations. We described a case study
for our approach, focusing on the Breadth First Search algorithm. We
explored several trade-offs in terms of number of kernels and number
of memories, showing how the MIC allows exploiting the parallelism
available in the algorithm, maximizing concurrency of memory
operations, and thus improving the system bandwidth utilization.
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