Leveraging On-Chip Networks for Efficient
Prediction on Multicore Coherence

Libo Huang
State Key Laboratory of High Performance Computing and School of Computer
National University of Defense Technology, Changsha 400073, China
Email: libohuang @nudt.edu.cn

Abstract—Coherent data prediction is introduced as a promis-
ing architectural technique for reducing cache-to-cache accesses
in directory protocol. However, limited on-chip resources cause
the accuracy of current prediction to be generally low. Low
accuracy would result in a large number of unnecessary or in-
correct predictions, which would consequently generate excessive
network traffic. This leads to large power and performance over-
head for coherent memory access. This paper proposes an early
abort mechanism (EBT) that leverages NoC design to reduce the
negative effect of wrong prediction operations, thus facilitating
overall performance improvement and traffic reduction. Using
detailed full-system simulations, we conclude that EBT provides a
cost-effective solution for designing efficient multicore processors.
To the best of our knowledge, this study is the first to leverage
on-chip network for the prediction optimization on multicore
coherence.

I. INTRODUCTION

One of the biggest challenges facing multicore processors
is the maintenance of cache coherence across all of cores to
support the shared memory programming paradigm. In current
large scale network-on-chip (NoC)-based multicore architec-
tures, directory-based coherence protocols are preferred over
snoop based protocols. However, directory protocols achieve
scalability at the cost of placing the directory access in the
critical path of coherence cache misses. Furthermore, the
exponential increase in the number of cores will result in a
commensurate increase in the hop count of remote data access,
thus restricting overall performance severely.

Coherent data prediction (DP) is introduced as an effective
method to reduce or eliminate cache-to-cache delay. This
process speculatively fetches data to the local buffer (or cache),
which is believed to be consumed shortly thereafter. Thus,
DP can convert 3-hop misses into 0-hop misses when the
prediction is correct. A large number of solutions have been
proposed in multiprocessor systems, which includes producer-
initiated predictor [1], Cosmos coherence message predictor
[14], pattern-based memory sharing prediction scheme [13],
and the SORDS predictor [16]. Axiras et al. [11] proposed
instruction-based predictors as an alternative to address-based
predictors to move the shared data close to the consumers as
soon as possible.

Prior prediction methods that require a large amount of
resources are unsuitable for on-chip usage. A number of recent

This work is supported in part by NSFC (No. 61070037, No. 61025009,
No. 61103016, and No. 61170045), HNNSF (No. 12J14070), RFDP (No.
20114307120010), and CHB (No. 2013ZX01028-001-002).

978-3-9815370-2-4/DATE14/©2014 EDAA

works have integrated a coherence predictor on multicores
such as data prediction [12], and owner prediction [2], [10].
All these solutions focus on the cost-effective implementation
of existing predictors without on-chip network optimization.
Since the on-chip hardware resource is rather limited for
predictors used in multiprocessor systems, the accuracy of
current simple on-chip predictors is generally low. Therefore,
such predictors would make a large amount of unnecessary or
incorrect predictions, generating excessive network traffic. This
condition results in large power and performance overhead for
coherent memory access. To mitigate the negative effect of
this prediction problem, we attempt to optimize the coherence
prediction through on-chip network optimization. There are
already some works for the study of network optimization for
cache coherence. Enright-Jerger et al. proposed Virtual Tree
Coherence [7], Eisley et al. proposed an in-network coherence
[6], and our previous work introduced an NoC design for a
hierarchical cache coherence using traffic locality [8].

This paper presents early abort mechanism (EBT), a novel
cache coherence design that advocates a practical in-network
optimization for efficient DP. EBT attempts to use the network
to abort fetching mispredicted data as early as possible. That
is, the NoC router would abort the wrong data prediction
as long as they travel the same path. Using detailed full
system simulations on a 16-core processor, we find that EBT is
capable of achieving approximately 15% traffic reduction and
approximately 14% energy-delay product (EDP) improvement
on average compared with the conventional DP design when
normalized to baseline directory protocol.

II. MOTIVATION

DP can convert 3-hop misses to local misses, effectively
eliminating the impact of remote memory latency. To integrate
prediction techniques into NoC-based multicore architectures,
the proposed scheme would ideally satisfy the goals of high
performance and low cost. The two goals are possibly contra-
dicting, and simultaneously achieving both would be challeng-
ing. A wrong prediction would not only affect the performance,
but also increase the network traffic. Such possibility increase
of network and buffer contention would result in performance
degradation. However, more predicted data can improve the
DP hit ratio. Thus, this paper attempts to use the in-network
optimization technique to abort fetching such data as early
as possible. Figure 1(a) illustrates the problem of wrong
DP. Given that a time gap exists between the producer (P3)
sending the predicted data and the consumer (P1) finding
the wrong prediction, the data will continue to be sent out

Prediction
Read invalidation

Prediction

Read invalidation Directory

Directory

Predicted Owner,

Time gap

data stream prediction data stream

(a) Data prediction problem (b) Data prediction optimization

Fig. 1. Data prediction optimization

until the prediction abort message has arrived at the producer.
Furthermore, the useless data, which have been sent out, will
continue to be sent to the consumer.

Figure 1(b) illustrates the in-network optimization for
wrong DP, where the prediction abort message is sent through
the same path of prediction data stream. When any router has
found the wrong prediction data stream, this router will abort
such predicted data transmission. Moreover, the router will
continue to abort other predicted data transmissions along the
path until the data stream reaches the producer. Given that the
size of the predicted data message is evidently larger than that
of the coherence control message, the former can save network
traffic significantly.

III. EBT APPROACH
A. Overview

Figure 2 provides an overview of the EBT approach. The
main function of EBT is to perform in-network optimization
to reduce the negative effect of data misprediction. The imple-
mentation of EBT can be divided into two parts. The first part
is related to the message generation of DP abort. We place it
into an L1 controller. The second part is related to the message
abort of data fetching, the logic of which can be implemented
in the NoC router for detection and abort.

We adopt a simple, low-cost, stride-based data predictor.
Previous work has shown that stride-based prediction can be
effective for data stream sharing [15]. This method is also
simple because it involves few entries of address history buffer
to be used for prediction. This predictor implements stream
fetching with non-unit both in ascending and descending
streams strides. For instance, after observing misses for ad-
dresses A, A+4, A+8, the predictor issues prefetch for address
A+12, A+16 and so on. To avoid unnecessary fetches, the
address prediction only fetches the stream that already has two
elements for unit stride and three elements for nonunit stride.

B. EBT Abort Generator

The EBT abort generator is used to detect useless DPs and
send the abort requests to the owner core. Accurate detection
of useless DPs is difficult because we do not know whether
data could be accessed at a later time. This paper proposes an
pessimistic method for implementing the EBT abort generator.

Abort generator
Data predictor

L1 Controller Abort logic

L2 Controller IDiivecierny Router
controller
1] R R [R]
% %
Core Core Core |
L1[L2] L1 2
AN Xl v | v | Router
R | R] [R] [R]
/l// /l// X X Network
Core Core Core Core interface
LI L1L2 L2 T2 < Data

7 link

Cord network
or node

32
‘LAJ
& il
L
=l
L
|
{=]

Core Core Core Core
L1 L2 Li12 L2 L1 L2 L1 cache
R] IR] [R] R L2 cache
/I/f (/g# C /i <
Core Core Core Core
Li[L2 L1[L2 Li[12 Li[L2

Fig. 2. EBT architecture overview for 16-core configuration

On one hand, the DP is built on the data locality and access
pattern of remote data accesses. If the subsequent remote
accesses violate these two conditions, we can regard the data
predicted on the access pattern as useless data. On the other
hand, the transmission overhead of the abort messages is small.
Thus, significant benefit can be obtained if the fetching data
is really useless.

We formalize the following two conditions to trigger abort
mechanism: (1) spatial locality violation: none of the subse-
quent N remote access are in the range of DP locations. To
decrease the number of prefeching data, N should be small. In
our experiments, we set N as two. That is, only one remote data
are allowed to violate current recognized access patterns. (2)
temporal locality violation: all subsequent remote accesses are
mispredicted before the configured time. In our experiments,
we set it as the time that the next predicted cache line arrives
at the local core. That is, if the predicated data can not be
consumed timely, we just abort the subsequent data fetching.

C. EBT NoC Router

Figure 3 illustrates the EBT abort logic along with the
conventional NoC design. The prediction abort logic is respon-
sible for receiving abort requests and subsequently performing
the actual abortion operation. When a packet arrives at the
input channel, such packet would be decoded to verify whether
it is a prediction abort packet. This process is achieved by
verifying the prediction abort bit (PA). If the prediction abort
operation is confirmed, the logic would verify whether the
subsequent packet is the target DP stream. The logic performs
the corresponding abortion operation, which simply discards
the operations. The logic then generates the invalidation packet
to the directory to maintain the coherence protocol. Until the
prediction abort packet is sent to the next router, the logic
continues this abortion operation.

Abort logic

VC Allocator

Switch Allocator

YYvYy

D
£ » 1
1 g
= 8
Crossbar (5 x 5) E—:} o
|
Fig. 3. Block diagram of EBT router

An important function of in-network abortion is the trans-
mission of the prediction abort packet through the reversed
path of the data prediction stream transmission, as shown
in Figure 1(a). This process requires some modifications
in network routing designs. For the deterministic and non-
deterministic routing, we have different different schemes,
which will be described in the following text.

1) Abort for deterministic routing: For deterministic rout-
ing, it is relatively simple to abort the prediction data transmis-
sion since such deterministic routing can be calculated directly.
Taking dimension-ordered XY routing as an example, the
prediction abort packet and corresponding prediction stream
packet would not transferred through the same path in an
opposite direction. Thus, we employ a method in which the
prediction abort packet is routed in a YX ordered manner. This
method requires the prediction abort logic to inform the routing
logic to select the XY or YX routing. In the experiment, we
consider XY routing as the target routing.

2) Abort for non-deterministic routing: For non-
deterministic routing or other topology, a general abort
approach is to record the direction of each hop, and then the
abort message would be transmitted in the opposite direction
according to the record. For one hundred cores, only 18-bit
flit data may be added to record such information. This
method can be applied to the most routing situations when
the transmission hops is smaller than the bit length used to
record the path.

D. Coherence Protocol

Compared with the baseline directory protocol, the main
difference of the EBT protocol is that it updates the directory
information when DP or fetching abort is completed. Predicted
fetching data would be regarded as any other sharer to take
the same coherence operations such as the set corresponding
to the directory sharing bits. When any other core wants to
update the predicted fetching data, such core should invalidate
the fetched data. If the useless predicted data are evicted from
buffer or aborted from the NoC, the directory sharing bit has
to be cleared. If the predicted data is read by the L1 cache,
the core becomes the “real” sharer of the data.

To verify the proposed coherence protocol, we have per-
formed extensive simulation on the protocol. We obtained cor-

TABLE 1. SIMULATION ENVIRONMENT CONFIGURATIONS

Designs Parameter Measure
Topology 2D Mesh 4x4
Basic routing Dimension-ordered XY
Basic Number of ports 5 ports
router VCs per port 4 VCs
design Buffers per VC 16 buffers
Channel width/flit size 128 bits
Packet size 8 flits
EBT prediction fetch size Sp=4
address history buffer 8 entries
prediction buffer 16 entries

rect results for all tested benchmarks. To enhance confidence in
our protocol, we use the Murphi Model Checker [5], a well-
known checker, to conduct an explicit-state model checking
under a small configuration size with four cores. We performed
the exhaustive reachability analysis and found no coherence
violation in the experiments.

1V. EVALUATION
A. Methodology

To evaluate the proposed EBT design, we use the M5
architecture-level simulator [3] as the baseline simulator for
the performance modeling of our target multicore design. We
model our target multicore systems with the Alpha instruction
set architecture (ISA), which is the most stable ISA supported
in M5. Each core is modeled with a 2-way 16KB L1 instruction
cache and 2-way 32-KB L1 data cache, and all cores shares
a 16-way 1MB L2 cache. Given that the original M5 simu-
lator only possesses shared bus communication implementa-
tion, we integrate a cycle-accurate NoC simulator to support
communication over NoC design. We have implemented the
hardware architecture and the associated coherence protocol,
which models a detailed pipeline structure for NoC router. The
address space is statically divided among all nodes, using the
least significant bits of the tag, to determine which node is the
home (directory) node for a given address. We also integrate
Orion [9] to estimate NoC energy and Cacti [4] to estimate
cache energy, thus obtaining the EDP metric for cache-NoC
system.

The benchmarks [Barnes (128K bodies), Cholesky(tk29.0),
FFT(256K pts), FMM(32K particles), LU-con(1024x1024),
Watersp(4K molecules), Water-nsq(4K molecules), Radix(8M
Keys), Volrend (head), and Raytrace(car)] used in our simu-
lations are chosen from the SPLASH-2 benchmark suite [17],
which represents a variety of important scientific and graphic
computations with different communication requirements.

B. Results

1) Network Traffic Reduction: In this experiment, we i-
dentify the network traffic as the number of bytes transmitted
through the each NoC router. Figure 4 illustrates the network
traffic reduction compared with the baseline directory and
conventional DP protocols. Each bar plots the number of bytes
transmitted through the interconnection network normalized
with respect to the basic directory protocol. We can see that
the conventional DP (as listed in the figure) design would
increase the network traffic by approximately 22% increment
on average. This condition is caused by the added unnecessary

‘ u Directory mDP W EBT |

14

Normalized network traffic

Normalized execution time

Fig. 5.

Execution time analysis results

data fetching. Such added network traffic of DP not only
increases power consumption, but also the network congestion,
thus reducing performance benefits. The EBT design reduces
the negative effect of this problem because it significantly
decreases the misprediction traffic, thus resulting in overall
traffic reduction only an approximately 7% increase on average
compared with baseline directory protocol.

2) Performance Improvement: Figure 5 shows the per-
formance results of different coherence designs in terms of
execution time. The primary effect of prediction in cache
coherence is the reduction of the cache-tocache transfer latency
of coherence miss, which would result in application speedup.
Compared with the baseline directory protocol, DP reduces ex-
ecution time by approximately 10% on average because of its
remote access elimination. EBT also has a slight performance
advantage over DP design of approximately 3% execution time
reduction on average. These results successfully demonstrate
that with the same prediction technique, EBT would result in
performance improvements.

3) EDP Improvement: An important metric in current
processor design evaluation is the EDP. As it was for ILP
architectures, power efficiency is currently the key factor for
any novel computer architecture proposal. This case is also
true when prediction is used for unnecessary prediction. Figure
6 shows the EDP results for different coherence designs.
We can see that conventional DP design even increase the
EDP by an approximately 7% on average. This result makes
DP less appealing for utilization in an efficient processor
design. EBT changes this situation to achieve the best EDP
results (approximately 7% reduction on average compared with
directory). These results successfully demonstrate that with the
same prediction technique, EBT optimizations would result in
performance and EDP improvements.

| Directory uDP W EBT |

Normalized EDP

Fig. 6. EDP analysis results

V. CONCLUSION

This paper proposes EBT, a novel multicore coherence
design that supports an early abort mechanism for mispredicted
data fetching. Extensive evaluation results demonstrates that
EBT can reduce the network traffic of DP design by an average
of 15% and improve the EDP of DP by an average of 14%
for 16-core CMP when normalized to the baseline protocol.
For the future, studies can focus on further on-chip network
optimization for improving prediction accuracy.

REFERENCES

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve, “An evaluation
of fine-grain producer-initiated communication in cache-coherent mul-
tiprocessors,” ser. HPCA ’97, 1997.

[2] E. Atoofian and A. Baniasadi, “A power-aware prediction-based cache
coherence protocol for chip multiprocessors,” in /PDPS, 2007, pp. 1-8.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
1EEE Micro, vol. 26, pp. 52-60, July 2006.

[4] CACTI, “http://www.cs.utah.edu/~rajeev/cacti6/.”

[5] D. L. Dill, “The murphi verification system,” ser. CAV '96. London,
UK, UK: Springer-Verlag, 1996, pp. 390-393.

[6] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” ser.
MICRO 39, 2006, pp. 321-332.

[71 N. D. Enright Jerger, L.-S. Peh, and M. H. Lipasti, “Virtual tree co-
herence: Leveraging regions and in-network multicast trees for scalable
cache coherence,” ser. MICRO 41, 2008, pp. 35-46.

[8] L. Huang, Z. Wang, and N. Xiao, “An optimized multicore cache
coherence design for exploiting communication locality,” ser. GLSVLSI
'12. ACM, 2012, pp. 59-62.

[9] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: a fast
and accurate noc power and area model for early-stage design space
exploration,” ser. DATE 09, 2009, pp. 423-428.

[10] S. Kaxiras and G. Keramidas, “Sarc coherence: Scaling directory cache
coherence in performance and power,” IEEE Micro, vol. 30, pp. 54-65,
September 2010.

[11] S. Kaxiras and C. Young, “Coherence communication prediction in
shared-memory multiprocessors,” HPCA '00, p. 156, 2000.

[12] A. Kayi and T. ElI-Ghazawi, “An adaptive cache coherence protocol for
chip multiprocessors,” ser. IFMT *10. ACM, 2010, pp. 4:1-4:10.

[13] A.-C. Lai and B. Falsafi, “Memory sharing predictor: the key to a
speculative coherent dsm,” ser. ISCA 99, 1999, pp. 172-183.

[14] S. S. Mukherjee and M. D. Hill, “Using prediction to accelerate
coherence protocols,” ser. ISCA ’98, 1998, pp. 179-190.

[15] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” ser. ISCA *94, 1994, pp. 24-33.

[16] T.F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, C. Gniady, A. Aila-
maki, and B. Falsafi, “Store-ordered streaming of shared memory,” ser.
PACT °05, 2005, pp. 75-86.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” ser.
ISCA 95, 1995, pp. 24-36.

