
Cache Aging Reduction with Improved Performance
using Dynamically Re-sizable Cache

Haroon Mahmood, Massimo Poncino, Enrico Macii
Departimento di Automatica e Informatica, Politecnico di Torino, Torino, ITALY

Email: {haroon.mahmood, massimo.poncino, enrico.macii}@polito.it

Abstract—Aging of transistors is a limiting factor for long term
reliability of devices in sub-100nm technologies. It’s a worst-case
metric where the lifetime of a device is determined by the earliest
failing component. Impact is more serious on memory arrays,
where failure of a single SRAM cell would cause the failure of
the whole system. Previous works have shown that partitioning
based strategies based on power management techniques can
effectively control aging effects and can extend lifetime of the
cache significantly. However, such a benefit comes as a trade-
off with performance which reduces proportionally as the time
elapses. To address this problem and provide a single solution
to concurrently improve aging, energy and performance of the
cache, we propose an architectural solution based on the dy-
namically re-sizable cache [5] and cache partitioning approaches.
By this strategy, cache is dynamically re-sized and reconfigured
whenever a cache block becomes unreliable. Coupling such aging
mitigation technique along with dynamically re-sizable cache
approach provides on average 30% lifetime improvement with
less than 0.4x degradation in performance whereas, in previous
solutions, performance degradation sometimes goes upto 10x.

I. INTRODUCTION

Aggressive scaling of CMOS technologies has steadily im-
proved process performance over the years along with reduc-
tion in the size of these devices. However, due to power density
and increased temperature, various types of non-idealities have
emerged in scaled technologies. One of them is device aging
which affects the robustness of device operations and deteri-
orate their performance over time. Among various sources of
device aging, Negative Bias Temperature Instability (NBTI)
has been identified as the most critical challenge in sub-65
nanometer technologies. NBTI affects PMOS transistors by
causing temporal drift of threshold voltage over time with
negative gate to source voltage (i.e. a logic “0” on the gate
input) which in turn increases the propagation delay of device.
In recent years, several works have addressed the issue of
NBTI-induced aging by controlling the design variables that
regulate the aging process and in particular the logic values [1],
[2]. Such solutions are not feasible for SRAM memories due
to their symmetric structure: an SRAM cell ages regardless of
the value being stored in it. In alternative, partitioning-based
strategies coupled with power management techniques proved
effective to reduce aging effect in SRAM memories. For
instance, the work of [3] proposed a multi-bank architecture
that allows different cache sub-blocks to age at different rates
thus providing significant improvement in both energy and
aging. However the focus of such works remained on aging and
energy optimization, while performance of the cache decreases
with time due to the fact that first-dying partition is also the

one with maximum accesses. So as soon as a partition dies,
it causes a sudden increase in the miss rate of the cache and
thus reduces its performance significantly.
In this work, we have adopted a new approach to tackle the
issue of cache performance degradation which is based on
dynamically re-sizable cache (DRC) [5] and on the cache
partitioning approach (PLT) [3]. The solution proposed in
[5] though provides a good solution for energy reduction but
for aging it is only partially effective. Aging is a worst-case
metric and lifetime of the cache depends on the line with least
idleness. And in this approach, it is possible that a specific line
is continuously in use and therefore re-sizing does not have any
effect on aging. On the other hand, cache partitioning approach
[3] provides excellent solution to reduce aging and energy but
in this case, performance of the cache reduces significantly as
discussed before.
In this work, we specifically target application-specific systems
to concurrently improve aging, energy and performance of
direct-mapped caches. Our idea is based on the observation that
cache idleness profile always exhibits an uneven distribution
of idleness. Some lines are heavily accessed and therefore
age much more rapidly as compared to a bigger portion of
the cache having fewer accesses and thus less prone to aging
effect. So in our approach when some portion of the cache is
dead, we discard that specific block and re-size the cache to
utilize the remaining healthy portion of the cache. Unlike the
original DRC, we do not require a continuous analysis of cache
workload and repetitively adjust its size; cache works normally
until a line is dead which can be detected easily using a sensor
proposed in [6] and at that point the cache will be re-sized by
discarding the dead cache block. Consequently, the lifetime
of the cache consists of two phases. In the first phase, cache
works normally with its full potential until a line becomes
unreliable which will also mark the end of its original lifetime.
Then in second phase, the cache is reconfigured to work as a
smaller size cache which is done by remapping the addresses
from memory to cache lines. Remapping the addresses will
redirect almost all memory accesses back to cache whereas all
of them were causing cache misses in the work of [3]. This
implies that there will only be a marginal increase in miss rate
whereas in previous techniques, miss rate rises exponentially
when a partition dies. On average our DRC approach limits the
performance degradation to 0.4x as compared to PLT where
average performance degradation was 7x.

II. BACKGROUND AND RELATED WORK

In an SRAM cell, threshold voltage drift caused by NBTI does
not truly affects the delay but rather affects the stability of
the cell. A conventionally accepted metric for the aging of978-3-9815370-2-4/DATE14/ c⃝2014 EDAA



an SRAM cell is the Static Noise Margin (SNM), defined
as the minimum DC noise voltage required to change the
value stored into the cell. Traditionally SNM is represented
graphically by using a ”butterfly curve” made by voltage
transfer characteristic (VTC) of one of the two inverters of
the cell and the inverse VTC of the other inverter as shown in
figure 1 where continuous lines show the initial curves. The
SNM is visually obtained by the side of the largest possible
square that can be drawn between two VTCs of the CMOS
inverters. NBTI affects SNM by causing threshold voltage drift
over time, thus lowering the static characteristics of the two
inverters that form the 6T-SRAM cell. When the SNM of a
cell falls below a threshold that allows safe storage of data
then it can not be safely read or written.
SNM degradation strongly depends on the amount of stress
time, however due to symmetric structure of SRAM cell, the
value dependence is very weak and cell ages regardless of the
value being stored. The worst case occurs when value stored in
the cell does not change frequently and only one of the PMOS
transistors degrades as shown in figure 1. Due to higher NBTI
impact in this case, the SNM window will disappear faster and
cell functionality will be lost earlier as compared to the case
where both inverters exhibits same amount of degradation.

Fig. 1. Worst-case degradation of SNM as a result of Vth Drift

A. Related Work

Previous solution proposed to mitigate NBTI effects in SRAMs
can be categorized into three types. One class of solutions
include approaches that try to balance the degradation by
equalizing cell value probabilities. The work of [7] proposed
hardware and software schemes to periodically invert the
entire contents of memory in order to equalize cell value
probabilities. Another similar approach was proposed by [8] to
invert the contents at word granularity along with much shorter
inversion frequency.
A second set of solutions provided new cell designs with
changes to mitigate aging effect. Approach of [9] introduced
the design of customized NBTI-resilient cells consisting of
a set of NAND gates to minimize the degradation ratio of
all PMOS transistors in the cell. Another approach called
“recovery boosting” [10] put both PMOS transistors of the cell
into recovery mode which is done by raising the ground voltage
and bitlines to the nominal voltage through modification of
each memory cell.
A third class of solutions is based on the idea of exploiting low-
energy states to obtain aging reduction and therefore getting
combined benefit of aging mitigation along with reduced
energy consumption. The work of [11] evaluated the aging

benefits obtained by the application of power gating to a
memory cell and obtained much higher impact on aging as
compared to controlling cell value probability. In [12], an
architecture level solution acting on entire memory blocks
was proposed which is based on power management solutions
(DVS and power gating).
The work proposed in [13] introduced a time-varying cache
indexing strategy called dynamic indexing in order to achieve
a uniform distribution of idleness over the cache lines. This
strategy guarantees the elimination of worst-case and so all
leakage saving also maps in aging reduction. A coarse-grain
version of this strategy was proposed in [14] which implements
a uniform-size, multi-bank cache architecture to obtain uniform
distribution among different partitions and thus achieve a better
design point in aging/energy design space. The work of [3]
used a different technique to deal with lines having worst-
case idleness. The cache is split into uneven sized blocks with
intention to hold lines with maximum accesses and thus shorter
lifetime into a small memory block and discard only this block
on first cell failure. In this way, the remaining cache will keep
functioning with reduced efficiency.

III. AGING AWARE PARTITIONING WITH IMPROVED
PERFORMANCE

A. Dynamically Resizable Cache Architecture

The Dynamically Resizable Cache (DRC) [5] is an architecture
originally devised for instruction caches in which the cache dy-
namically resizes itself to the size required during application
execution and turns off the unused portion of the cache in order
to suppress leakage energy.

Fig. 2. Dynamically Resizable Cache Architecture [5].

In this architecture, the cache resizing process occurs in power-
of-two: upon upsizing/downsizing, the cache size changes by
a factor of two. Re-sizing the cache requires masking of the
index bits of the address needed for a given cache size as
shown in Figure 2. To monitor cache performance an applica-
tion’s execution time is divided into fixed-length intervals. At
the end of each interval, miss count is compared to a preset
value (miss bound) and cache size is determined accordingly.
When downsizing (cache performance below threshold) the
number of index bits is decreased by one (half the cache
size); when upsizing (cache performance beyond threshold)
the number of index bits is increased by one (double the cache
size). Obviously, the increase/decrease in the number of index
bits must be matched by a corresponding decrease/increase
of the tag bits (not shown in the architecture) to guarantee
that cache blocks can be retrieved. This implies some dynamic



enabling/disabling features of tag bits in the cache.
The main objective in the architecture of [5] is to reduce
leakage energy which comes as a trade-off with cache per-
formance. Next section will show how to exploit the DRC
idea to reduce aging while preserving performance (which will
ultimately provide energy reduction).

B. DRC for Aging Reduction

In our architecture, we have combined the concept of DRC
along with cache partitioning to develop a new technique for
improved cache performance along with reduction in both
energy and aging. We used a simplified variant of the DRC in
which the cache is re-sized only once in its lifetime, and only
in one direction, i.e., downsized only. The resizing decision
is taken based on the aging of the cache itself and it is not
performance driven as in DRC. We do not need then to monitor
application behavior nor we have to compensate by miss rate.
Using DRC for aging reduction requires then a much simpler
management. At the end of its normal lifetime, i.e., as soon
as the first unit of access (a line) fails, instead of discarding
whole cache, we only discard that specific portion (block)
of the cache containing that line. This is the basic principle
of the partitioned cache for aging, used in [3], [4]. The
difference between the traditional partitioned architectures and
our modified DRC lies in how the “dead” block is managed.
In the partitioned approach the dead portion of the cache is
marked as invalid, with the result that subsequent accesses to
lines in that block will systematically result into a miss. This
is why the approaches of [3], [4] suffer from a significant
deterioration of performance after the first block fails.
In the proposed architecture, conversely, once a block be-
comes unusable, we resize the cache according to the DRC
principle and then cache is flushed and re-configured to work
as a smaller size cache. The benefits of this architecture for
performance are evident. Since cache lines that age first are
also the ones accessed the most, once the block containing
lines that age quickly becomes unusable (because marked as
invalid) will result in a large number of misses. Conversely, if
we resize the cache, the application will just have a smaller
(half the size) active set of lines.
An important consideration in this analysis is the fact that all
cache lines will have degraded somehow (depending on the
cache access pattern) during the first phase of their operation.
In order to obtain the precise amount of aging it is therefore
necessary to carefully calculate the degradation of each mem-
ory line during first phase and use this info as an initial level
of aging for the second phase of cache operation.

C. DRC Architecture

Consider a direct-mapped cache with L = 2n lines
(l0, . . . , lL−1), where n is the number of the index bits of
the cache address. we consider the two halves of the cache
as 2 blocks B0 and B1 of equal sizes though physically the
cache structure is monolithic without any partition (Figure 3).
The only feature that is partition-oriented is that the power
management occurs at the block (half cache) granularity.

In order to accurately monitor aging, an aging sensor is
required for each line. However due to our strategy discussed
in section III-D, we only need to monitor the aging of second
block B1. We use an array of L/2 sensors, one for each line of

Fig. 3. Adaptation for Aging of a 2-Block DRC architecture.

the second block having same address as that of the cache line.
In this way a sensor will be accessed for the same number of
times as the cache line. Moreover, since we are interested to
the aging of the whole block rather than that of single lines,
all sensors outputs are OR-ed and therefore as soon as one
of these sensors triggers indicating a faulty line, whole cache
block will be disabled and cache will be reset to operate as
half size cache (Figure 4).
We use power gating [15] to turn the unused block into
a standby state (although any other implementation of the
standby state is possible). Implementation of this technique
can be seen in Figure 3 where we have used a sleep transistor.
When a signal is received from the sensor block, the sleep
transistor is turned off and thus all cells of the block are
disconnected from ground. The block SC in the Figure 4

Fig. 4. Internals of the Sensor Block (SB).

denotes the aging sensor that monitors the aging of each
individual line. A wide range of sensors are available in
literature to track NBTI-induced aging but only few dedicated
solutions are suitable to measure the aging of SRAM cells.
Implementation of the sensor proposed in [6] perfectly fits our
need as it is associated to a unit of access and therefore can
easily be embedded into an existing memory array.
Finally, the control block (CB), upon receiving a signal from
the sensors to indicate that a block has become unusable, is
responsible for the masking of the address into an address of
size n− 1.

D. Architectural variants

To keep things simple, we have considered a two partition case
here where the lifetime of each block is determined by the line
with least idleness. Moreover to avoid complications of address
remapping in second phase, we only reuse the lower half of the
cache for DRC method. However, it is obviously not possible
in every case to have worst case idleness in second half and it
can exist in either partition. If worst case idleness exist in lower
partition then whole memory needs to be discarded when first
block dies. To avoid this situation and get maximum advantage,



the knowledge of the idleness profile can be exploited. We have
experimented with a selective swap strategy to move heavily
accessed lines to second half of the cache which can easily be
implemented by modifying the cache indexing function for a
few, selected addresses. In this way we obtain reducible cache
in all cases which provides significant improvement not only
in miss rate but also in energy and aging results.
We have used a simple k-swap algorithm to repeatedly swap
the address with minimum idleness in the first block with
maximum idleness address of the second half. The number of
swaps depends on the proportional benefit obtained by each
swap and will be done only if beneficial in terms of average
miss rate (AMR) and Effective lifetime (ELT).
The operation of k-swap algorithm is quite simple and
is explained by the following pseudo-code which is self-
explanatory: IL and IH are the idleness profiles of two cache
partitions (lower half and higher half respectively).

1: k-Swap (IL, IH)
2: for l = 1 . . . k do
3: i ⇐ index of address with l-th minimum idleness in the

first block.
4: j = index of address with l-th maximum idleness in the

second block.
5: if (IL[i] < IH[j]) then
6: SWAP(IL[i], IH[j])
7: end if
8: end for
9: return

E. Metrics

In order to do a fair comparison against previous works,
we need proper metrics for performance and aging. To this
purpose, we utilize the concept presented in [3], [4] for
Average Miss Rate (AMR), which measures the performance of
the cache by calculating average level of service offered over
time and Effective LifeTime (ELT) defined as the product of
lifetime and size of a memory block. It conceptually measures
for how much time a memory block of a given size can be
used.
Consider an idleness profile I = {i1, . . . , iL} of a cache with
L lines that can be partitioned into 2 blocks B0 and B1. The
lifetime of a block is determined by the line with least idleness
and the ELT can be expressed in this case as:

ELT =
L

2
(LT (min0) + LT (min1))

where mini represents the line with minimum idleness of
block i.

Fig. 5. Average Miss Rate.

AMR is an average metric, measured as the total number of
misses over a reference time interval. The reference interval is

the lifetime of the last-dying partition (B0); since this values
differs in general between PLT and DRC, we choose the
largest of the two LTmax. Figure 5 shows an example of the
AMR concept for three configurations: regular cache with no
partitioning nor aging management (Orig), the non-uniform
multi-bank architecture [3] PLT, and our proposed strategy
DRC.
In regular cache, all L lines are usable reliably for an amount
of time equal to LTorig , when the first line dies. Being the
cache monolithic, from that point on the cache experiences
100% miss rate (solid line).
In PLT and DRC approaches, one of the two blocks will have
the same lifetime as original cache and will die at LTorig ,
but the second half of the memory will keep functioning until
LTPLT and LTDRC respectively. In the case of PLT, after the
first half dies, miss rate degrades significantly due to repeated
misses in the second half (dash-dot line). Conversely our DRC
technique provides a more sophisticated solution: reconfigu-
ration of cache will enable the access to frequent addresses
through cache again and thus maintains the performance of
the cache with negligible degradation (dashed line).
On the plot, AMR is equivalent to area below the curves
divided by the lifetime LTmax, which in this case is LTPLT .
Obviously, smaller values of AMR are better and we can
clearly see the advantage obtained through DRC by looking at
red dotted line.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We have experimented our proposed architecture on a set of
traces, extracted from the simulation of the MiBench suite [16]
with an in-house cache simulator which utilizes aging mod-
els, derived from an industrial 45nm design kit provided by
STMicroelectronics, to estimate aging. We define lifetime as
the time after which the SNM of a cell has decreased by more
than 20%. Results refer to the worst case for aging in which
it is assumed that a fixed value is stored in each cell.
Our target is application-specific systems which require one
time analysis of idleness profile, extracted from cache simu-
lator, to implement partitioning and selective swap strategy.
It does not add any performance overhead during application
execution. In fact, the only overhead is that of a sensor cell
for each cache line which will result in less than 1% area
overhead(1/128 using 16-byte lines as in our case) plus some
wiring power overhead to connect various blocks.

B. Aging Results

Figures 6 and 7 show a comparison of the results obtained
by our proposed architecture against previous work of [3]
for an 8kB cache averaged over all benchmarks. The plot
shows AMR and lifetime improvement over a regular, power-
managed cache; with reference to [3] data refer to the case of
M=2 blocks.

Data is reported as a function of k as discussed in sec-
tion III-D, where k denotes the number of swapped addresses.
From figure 6 and 7, we can notice that the DRC strategy alone
(even without swap, k = 0) improves AMR significantly and
provides appreciable improvement in lifetime. AMR is only
8% in DRC as compared to 23% in case of PLT. Moreover,
lifetime extension is almost equivalent to PLT in this case.



Fig. 6. Average miss rate of 8 KB Cache.

Fig. 7. Lifetime Improvement of 8 KB Cache.

Furthermore, we can also observe from these plots that in our
strategy the AMR remains almost constant for all values of k
while it grows quite rapidly in case of PLT due to the fact that
lines with least idleness are the ones with maximum accesses.
In other terms, the PLT architecture, in order to extend lifetime
beyond the possibilities of DRC (k ≥ 4), it has to heavily
sacrifice performance. For instance, for k = 16 PLT achieves
80% ELT improvement, at the price of a 43% AMR.

Fig. 8. Average miss rate of 8 KB Cache.

By analyzing the results obtained by selective swap strategy
with different values of k, we see that even few swaps are
sufficient to obtain the desired result, infact best trade-off is
obtained for k = 1 and we will use this case in the rest of this

section to obtain other results. We can better appreciate the
benefit obtained through our technique by looking at figure 8
which shows a trace-by-trace result depicting AMR over the
lifetime of a cache with 8KB cache size and k = 1.
Regarding energy reduction, our architecture is a modification
of a traditional power-managed cache, so energy is saved due
to the exploitation of idleness which is equivalent to energy
saved by a conventional power-managed cache architecture
without any aging management. The second component is due
to the energy saved thanks to a reduced number of misses over
time. It can be roughly quantified as the AMR after the death
of the first line (LTorig in Figure 5) multiplied by the cost of
accessing the cache. This product accounts for the accesses to
the next level of hierarchy that are avoided thanks to the fact
that the cache is still active. The savings for this component
are therefore highly correlated to the AMR figures.

Fig. 9. Miss Rate Profile

To have a better view of the advantage obtained by our strategy,
we have shown in figure 9 miss rate profile of two applications
that demonstrates the change in miss rate when a partition dies.
Selected applications show the extreme cases corresponding
to minimum (adpcm.enc, about 10%) and maximum (say,
about 90%) change in miss rate of an application after failing
of the first line. We can clearly see that in case of DRC the
change in miss rate can be significantly smoothed out thanks to
the effective re-distribution of addresses resulting from cache
resizing.
For the sake of completeness, we have also reported detailed
results in table I and table II for the case of 8KB and
16KB cache (see next page). First three columns show a
comparison of Average Miss rate among original, PLT and
DRC architectures. Although there is variation across traces
but the benefit in case of DRC is always sizable. Next three
columns contain the absolute lifetime in all three cases and
last two columns depicts the ELT improvement for PLT and
DRC strategies over a simple power managed cache lifetime.

V. CONCLUSION

We have proposed a cache partitioning architecture that dy-
namically re-sizes and reconfigure the cache to provide a per-
fect solution for aging mitigation and improved miss rate with
minimal hardware overhead. The proposed scheme exploits
cache idleness in a smarter way to take advantage of those
cache lines which are rarely used and can be re-utilized for
concurrent aging and performance improvement. In addition
to basic algorithm, we have exploited selective swap strategy
that selectively swaps addresses among different blocks to get
better aging and performance results.
By employing our DRC strategy, average miss rate of an 8KB
cache reduces from 46% to 8% averaged over all benchmarks



TABLE I. DETAILED RESULTS FOR 8KB CACHE AND K=1
Orig MR PLT MR DRC MR Orig LT PLT DRC LT PLT ELT Impr[%] DRC ELT Impr[%]

adpcm.dec 0.409 0.071 0.015 3.39 5.65 5.59 33.33 32.34
adpcm.enc 0.359 0.046 0.011 4.96 6.89 7.65 19.49 27.18
cjpeg 0.576 0.383 0.061 8.19 18.36 12.95 62.13 29.07
CRC32 0.351 0.180 0.011 4.80 5.67 7.32 9.04 26.25
dijkstra 0.359 0.108 0.039 5.54 6.35 8.38 7.31 25.69
djpeg 0.389 0.259 0.081 10.32 13.35 15.62 14.66 25.64
fft_1 0.436 0.287 0.061 11.60 19.60 17.66 34.45 26.09
fft_2 0.390 0.268 0.066 12.79 19.92 19.45 27.85 26.02
gsmd 0.437 0.161 0.011 4.94 8.70 7.97 38.10 30.64
gsme 0.670 0.472 0.013 6.25 18.80 10.15 100.36 31.16
ispell 0.411 0.338 0.124 11.97 16.83 18.02 20.31 25.29
lame 0.374 0.240 0.066 16.24 21.02 24.60 14.71 25.75
mad 0.362 0.223 0.091 18.32 18.63 26.53 0.86 22.40
rijndael_i 0.565 0.383 0.200 8.11 15.74 12.79 47.05 28.90
rijndael_o 0.613 0.382 0.204 7.50 16.02 11.66 56.82 27.73
say 0.650 0.599 0.085 8.76 23.03 13.81 81.43 28.84
search 0.606 0.480 0.127 7.71 17.37 12.54 62.57 31.31
sha 0.339 0.106 0.010 8.53 8.53 12.82 0.00 25.19
tiff2bw 0.460 0.241 0.194 6.87 6.87 10.49 0.03 26.41
Average 0.461 0.275 0.077 33.18 27.47

TABLE II. DETAILED RESULTS FOR 16KB CACHE AND K=1
Orig MR PLT MR DRC MR Orig LT PLT DRC LT PLT ELT Impr[%] DRC ELT Impr[%]

adpcm.dec 0.468 0.063 0.007 3.62 6.81 5.85 43.99 30.72
adpcm.enc 0.354 0.034 0.004 5.63 8.24 8.72 23.18 27.44
cjpeg 0.572 0.433 0.057 9.11 20.40 13.89 61.97 26.24
CRC32 0.347 0.145 0.011 5.47 6.52 8.30 9.61 25.91
dijkstra 0.390 0.136 0.034 5.42 7.65 8.71 20.62 30.39
djpeg 0.384 0.222 0.071 11.12 14.91 16.97 17.02 26.30
fft_1 0.418 0.243 0.045 12.16 20.48 18.64 34.17 26.60
fft_2 0.362 0.188 0.046 13.97 21.45 20.94 26.78 24.95
gsmd 0.444 0.322 0.009 5.54 9.94 8.63 39.63 27.81
gsme 0.657 0.272 0.012 6.29 18.23 10.13 94.85 30.49
ispell 0.443 0.322 0.112 12.45 20.31 19.11 31.60 26.77
lame 0.353 0.176 0.057 17.40 18.26 25.86 2.47 24.32
mad 0.364 0.205 0.086 19.63 20.08 28.73 1.14 23.18
rijndael_i 0.494 0.251 0.168 9.16 16.15 13.88 38.13 25.74
rijndael_o 0.578 0.428 0.173 8.42 17.81 12.83 55.73 26.15
say 0.405 0.139 0.064 8.42 10.66 13.43 13.36 29.81
search 0.631 0.517 0.126 7.68 18.54 12.30 70.69 30.04
sha 0.330 0.056 0.007 8.48 8.48 12.62 0.00 24.45
tiff2bw 0.399 0.201 0.121 5.91 5.92 9.25 0.04 28.24
Average 0.442 0.229 0.064 30.79 27.13

in contrast to PLT where AMR goes down to 28% only. A
similar trend is shown by 16KB cache.

REFERENCES

[1] S. V. Kumar, et al., “NBTI-Aware Synthesis of Digital Circuits,” DAC-45,
pp. 370–375, June 2007.

[2] Y. Wang et al., “Gate replacement techniques for simultaneous leakage
and aging optimization,” DATE’09: Design Automation and Test in
Europe, pp. 328–333, March 2009.

[3] H. Mahmood, M. Loghi, E. Macii, M. Poncino, “Application-Specific
Memory Partitioning for Joint Energy and Lifetime Optimization”,
DATE’12:Design, Automation and Test in Europe, March 2012, pp. 364-
369.

[4] H. Mahmood, M. Loghi, E. Macii, M. Poncino, “Aging-aware caches
with graceful degradation of performance”, VLSI-SoC’12: IEEE/IFIP
20th International Conference on VLSI and System-on-Chip, vol., no.,
pp.237,242, 7-10 Oct. 2012

[5] Y. Wang et al., “An energy-efficient high performance deep submicron
instruction cache.” IEEE Transactions on VLSI, Special Issue on Low
Power Electronics and Design (2001)

[6] Qi, J., J. Wang, B. H. Calhoun, M. Stan “SRAM-based NBTI/PBTI
sensor system design,” DAC-47 : 47th Design Automation Conference,
June 2010, pp. 48.1–48.4.

[7] S.V. Kumar, K.H. Kim, S.S Sapatnekar, “Impact of NBTI on SRAM read
stability and design for reliability,” ISQED’06, March 2006, pp. 213–218.

[8] Y. Kunitake, T. Sato, H. Yasuura, “A case study of Short Term
Cell-Flipping technique for mitigating NBTI degradation on cache,”
ISQED’10,: International Symposium on Quality Electronic Design, pp.
660–666, March 2010.

[9] T. Siddiqua, S. Gurumurthi, “Recovery Boosting: A Technique to En-
hance NBTI Recovery in SRAM Arrays,” ISVLSI’10: IEEE Annual
Symposium on VLSI, July 2010.

[10] J. Abella, X. Vera, O. Unsal and A. González, “NBTI-Resilient Memory
Cells with NAND Gates for Highly-Ported Structures”, Workshop on
Dependable and Secure Nanocomputing, June 2007.

[11] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Analysis of NBTI-
induced SNM degradation in power-gated SRAM cells,” ISCAS’10:
International Symposium on Circuits and Systems, pp. 785–788, May
2010.

[12] A. Ricketts, J. Singh., K. Ramakrishnan, N. Vijaykrishnan, D. K.
Pradhan. “Investigating the Impact of NBTI on Different Power Saving
Cache Strategies,” DATE’10: Design, Automation and Test in Europe,
pp. 592–597, March 2010.

[13] A. Calimera, M. Loghi, E. Macii, M. Poncino, “ Dynamic index-
ing: Concurrent leakage and aging optimization for caches”, 2010
ACM/IEEE International Symposium on Low-Power Electronics and
Design (ISLPED), pp.343-348, 18-20 Aug. 2010

[14] A. Calimera, M. Loghi, E. Macii, M. Poncino, “ Partitioned cache
architectures for reduced NBTI-induced aging”, DATE 2011: Design
Automation and Test in Europe, pp. 938-943, March 2011.

[15] Powell, M.; Se-Hyun Yang; Falsafi, B.; Roy, K.; Vijaykumar, T.N.,
“Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron
Cache Memories,” ISLPED’00: International Symposium on Low power
Electronics and Design, July 2000, pp. 90–95.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite”, IEEE 4th Annual Workshop on Workload Character-
ization, pp. 3–14, Dec. 2001.


