
Abstract—Today there is a growing interest in the integration 

of health monitoring applications in portable devices 

necessitating the development of methods that improve the 

energy efficiency of such systems. In this paper, we present a 

systematic approach that enables energy-quality trade-offs in 

spectral analysis systems for bio-signals, which are useful in 

monitoring various health conditions as those associated with the 

heart-rate. To enable such trade-offs, the processed signals are 

expressed initially in a basis in which significant components that 

carry most of the relevant information can be easily distinguished 

from the parts that influence the output to a lesser extent. Such a 

classification allows the pruning of operations associated with the 

less significant signal components leading to power savings with 

minor quality loss since only less useful parts are pruned under 

the given requirements. To exploit the attributes of the modified 

spectral analysis system, thresholding rules are determined and 

adopted at design- and run-time, allowing the static or dynamic 

pruning of less-useful operations based on the accuracy and 

energy requirements. The proposed algorithm is implemented on 

a typical sensor node simulator and results show up-to 82% 

energy savings when static pruning is combined with voltage and 

frequency scaling, compared to the conventional algorithm in 

which such trade-offs were not available. In addition, 

experiments with numerous cardiac samples of various patients 

show that such energy savings come with a 4.9% average 

accuracy loss, which does not affect the system detection 

capability of sinus-arrhythmia which was used as a test case.  

I. INTRODUCTION 

    In the last years, the prevalence of unhealthy lifestyles have 
worsened personal health and increased the number of people 

living with chronic cardiovascular and brain disorders [1]. In an 
attempt to handle the need and costs for continuous, portable 

monitoring of such disorders, Wireless Body Sensor Networks 
(WBSNs) have emerged in the last decade [2, 3]. A typical 

WBSN comprises a set of wearable low-power nodes that record, 

monitor and wirelessly sent vital signals to a central network 
coordinator which could be another portable device, capable of 

analyzing the recorded signals. The latest technological progress 
may allow to implement portable devices for realizing such 

WBSNs and even to perform complex algorithms in real-time, 
however the challenge of energy efficient operation still remains 

as one of the most critical in this domain. To this end, new low-
power sensor nodes [4, 5] as well as more efficient compression 

algorithms [3] have been proposed recently that try to reduce the 
amount of signals needed to be communicated and thus limit the 

use of power-hungry radio. In a further attempt to pre-process the 
signals and in a way limit the communicated data, efficient 

electrocardiogram (ECG) delineation as well as heart-rate 

analysis algorithms were recently proposed [6, 7]. Interestingly, 
such algorithms allow early detection of not only heart related 

disorders but also brain related such as epileptic seizures [7].  
     Another, very useful algorithm that could enhance the WBSNs 

capabilities and help in the early detection of various heart and 
brain disorders [8, 9] is the power spectral analysis (PSA) of heart 

rate variability (HRV). Although in recent years it has been 
recognized as a powerful tool for evaluating various autonomous 

nervous system activities, unfortunately its high complexity is 
hindering its use in portable devices, especially in the WBSN 

nodes. Almost all existing works on PSA of HRV [10] focused 
mainly on the algorithmic side, trying to overcome the limitations 

of traditional PSA approaches, which were not suitable for 
unevenly sampled data, as in the case of the intervals between 

heart beats that are the input to such an algorithm. Even very 
recent works that dealt with mapping PSA systems on hardware 

[11] have not tried to improve their energy efficiency. It is 
characteristic that existing PSA systems of HRV try to provide 

always the maximum possible accuracy even in cases that it is not 
required, thus not exploiting any room for energy savings. Recent 

works for instance have accomplished to reduce the complexity of 
compression algorithms by exploiting the characteristics of ECG 

signals [3] and by utilizing the fact that a certain disorder can be 

detected with less information. Such properties remain 
unexploited in PSA systems and thus new approaches are 

required for enabling trade-offs between accuracy and energy in 
such systems required for allowing their integration in WBSNs. 

     Contributions and Outline: In this paper, we present a 
systematic approach for improving the energy efficiency of PSA 

systems with minor accuracy loss by exploiting properties of the 
processed signals. The proposed approach is applied on the 

Welch-Lomb algorithm that allows simultaneous time-frequency 
analysis of HRV. The contributions are summarized as follows:  

1) Analyze the energy and performance profiles of the Welch-
Lomb method on a node simulator and identify its limitations. 

2) Exploit the approximately-sparse representation of heart beats 
in the Wavelet domain and systematically develop a scalable 

PSA system based on Discrete Wavelet Transform (DWT). 
An alternative representation of the power hungry block of the 

Welch-Lomb method based on DWT is presented.       
3) Optimize the complexity of the modified algorithm 

determining the parameters that allow significant complexity 
reduction with minor accuracy loss.  

4) Classify signals and associated operations based on the 
contribution to quality into significant and less significant. 

This is enabled due to the concentration of signal energy into 
few elements achieved due to the modified representation. 

5) Map the developed system on a node simulator and analyze 
the energy-quality trade-offs achieved by pruning less-

significant elements and associated operations after applying 
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thresholds at i) design-time and ii) run-time. 

6) Utilize the throughput gains obtained by the pruned 
operations for applying voltage and frequency scaling (VFS) 

to obtain further energy savings.   
     The rest of the paper is organized as follows. Section II 

discusses the target system and analyzes the conventional PSA 
methods. Section III discusses the proposed design flow while 

Section IV applies the initial steps of the approach to the PSA 
system. Section V describes the steps for reducing the complexity 

of the modified PSA. Section VI presents the achievable energy, 
quality trade-offs. Finally, conclusions are drawn in Section VII.   

II. STATE OF THE ART AND LIMITATIONS 

    The input to a PSA system of HRV is a fixed size window of 

time intervals between successive heart beats (RR intervals) that 
are extracted from a continuous ECG of a person using a 

delineation algorithm (Fig. 1(a)). PSA systems could be 
implemented either on a portable central coordinator of WBSN or 

on each sensor node since latest delineation algorithms (the 
output of which is needed) are already included on modern 

WBSN nodes and thus could provide the required RR-intervals to 
PSA [6]. Before describing our approach for enabling the portable 

integration of PSA we briefly analyze the conventional methods.  

A. State of the art  

    Various methods can be used for the estimation of the 
periodogram which is the output of a PSA system but the non-

periodic nature of the processed RR-intervals indicated the Lomb 
method as one of the most suitable one [8]. By using least squares 

fitting to estimate the amplitude of a given sinusoid with angular 

frequency    over non-uniformly sampled data, the Lomb method 

avoids the use of interpolation and re-sampling needed in 

traditional PSA approaches that may alter the frequency content 
[8]. The Lomb periodogram of a non-periodic signal xj is: 
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where     are the mean and variance of the signal, respectively, 

  is a constant offset for each angular frequency   that makes the 

periodogram invariant to time-shifts,    is the time interval of the 

RR sample and the sums are taken over the corresponding 
window size [10]. The complexity of the Lomb method, soon led 

to a Fast-Lomb algorithm which uses two complex Fast-Fourier-
Transform (FFT) for reducing the sums over trigonometric 

functions in (1) to four less-complex sums. 
    The overall PSA system is depicted on Fig. 1(a). Based on the 

varied number of RR peaks in each window the data are 
extrapolated (i.e., redistributed to the needed order [10]) to size N 

in order to meet the fixed size N (e.g. 512) of the FFT. The FFTs 
then calculate the four sums in (1) for each window and the Lomb 

calculator combines the data in order to provide the real time 
power-spectrum information. Interestingly, by monitoring several 

time intervals during a day through the application of a window 
w(t) to the data, the time-frequency distribution can be obtained 

using the so called Welch-Lomb method [11]. Such a method by 

using a de-normalizing factor 2σ/N allows to average the variance 
of normalized segments obtained from the applied sliding 

window and to better track the time-varying components of the 
heart rate. Note that the Fast-Lomb method can still be used for 

the calculation of the periodogram within each window.   

B. Profiling and Limitations of a Conventional PSA System 

     As an initial step for better understanding the application 

characteristics, we implemented a Lomb-Welch PSA system as 

shown in Fig. 1(a). For the implementation of the 512 sized FFT, 
the split-radix method was utilized, which is one of the fastest 

known FFT realizations. In our sliding window implementation 
we applied a window of 2 minutes of sampled RR-intervals with 

50% overlap between the windows. The system was mapped on a 
simulator configured with typical sensor node parameters [13, 14] 

and the profiling results are depicted in Fig. 1(b). As it can be 
seen, the FFT block consumes most of the overall system power, 

which also accounts for the majority of the total computational 

cycles. Therefore, one can assume that by reducing the 
complexity of the FFT, potentially by approximating some 

operations, the overall system power could be reduced.  
     Usually, pruning methods are applied for the reduction of 

operations in FFT. Such methods take advantage of the potential 
sparsity of input or output signals in the Fourier domain and 

through intelligent dataflow pruning they drop redundant/useless 
operations. However, such methods often require extensive signal 

sparsity (in many cases more than 90% [15]) and  they do not 
work well when the non-zero inputs/outputs are randomly located 

as in the case of the extracted RR-intervals (for each sampled 
window). However, most importantly, the fact that renders the 

straightforward pruning of the FFT in PSA of HRV systems 
difficult is that the RR intervals are not necessarily sparse, neither 

in their original representation nor in the Fourier domain. 
Moreover, in the conventional FFT, all the twiddle factors in the 

butterfly operations are unit magnitude complex numbers [16] 
and thus all parts of the structure are of equal importance making 

any approximation risky since it may lead to large accuracy loss.   

III. PROPOSED APPROACH  

    The analysis performed in the previous section indicates that in 
order to improve the energy efficiency of PSA systems, 

alternative representations, which could enable energy-accuracy 
trade-offs need to be investigated. This is the essential idea 

behind our approach depicted in Fig. 2. Initially, we find a 

domain (i.e. Wavelet) in which the input signal   is approximately 

sparse and we continue by expressing it in this domain using a 

 
Fig. 1. (a) Overall PSA system for heart rate variability, (b) Energy profiling 
of a split-radix-FFT based PSA system 

 
Fig. 2: Proposed design flow 
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suitable transformation   (i.e. DWT). Note that by 
approximately-sparse we mean that few signal components carry 

most of its energy differing significantly in magnitude by other 
small/close to zero components. The few large signal components 

are also most significant/relevant for the overall signal quality, 
while other signal components and the associated computations 

can potentially be skipped/pruned for large complexity reduction.  

    The applied transformation alters the signal representation and 

thus it requires reformulation of the initial FFT representation ( ) 
into an equivalent one (G) for yielding the same original result y. 

The procedure of the first stage of our approach can be written as: 

                   (    )                 (2) 

where       and    are the FFT, Wavelet, and equivalent 
transformation matrices of size N, respectively.  

     In the second stage of our approach the complexity of the 
modified algorithm is reduced by exploiting the approximately-

sparse signal representation. Note that by approximately-sparse 
we mean that in the new signal only few components carry most 

of the energy. Therefore these few components are also most 
important for the overall signal quality, while other signal 

components and the associated computations play a less-
significant role and can be skipped. So in this stage we identify 

the less significant components and prune the associated 
operations in the two transformations W and G that affect the 

output quality/accuracy only to a small extent. To achieve this, 
the statistics at the output of the first transform are obtained and 

threshold values      are determined for distinguishing the 
elements of the output vector into significant and less-significant, 

i.e., according to:  

   {
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where    is the k
th

 element of the output vector z of the first (W) 
transformation. By applying such thresholds the operations 

associated with the less-significant elements of the output vector 
are pruned. In order to ensure that any pruning under the specific 

threshold, results to maximum energy savings and minor quality 
loss we determine suitable thresholds by performing several 

experiments with numerous cardiac samples. Note that pruning in 
the second stage of the algorithm is applied based on the twiddle 

factors of the butterflies, which are distinguished into significant 

and less-significant based on their magnitude. Thresholds are also 
determined in this case for applying different degrees of pruning 

at the butterfly stages required for obtaining energy-quality trade-
offs. The overall system is then mapped to a target platform and 

the improvement in number of computational cycles and energy 
based on i) static pruning, at design-time, through application of 

thresholds to the expectation (across numerous cardiac samples) 
of intermediate results and ii) dynamic pruning, at run-time, 

through thresholding of factors in the second stage are being 
obtained. Note that dynamic thresholding is expected to provide 

fine-grained approximations in a sample by sample case and thus 
to lead to less quality loss, but with an overhead due to the extra 

required comparisons. Finally, the reduced cycles are exploited 
for applying VFS for larger energy savings.   

IV. EXPOSING SIGNAL SPARSITY 

    In this section, we start by applying the initial steps of our 
approach for finding an alternative sparse signal representation of 

the core FFT block within the PSA system.     

A. Seeking an Approximately-Sparse Basis for RR-intervals 
     Interestingly, ECG signals are known to be approximately  

sparse in the wavelet domain which was exploited for 
compressing them [12, 18], motivating us to investigate if such an 

attribute applies also to  the RR- intervals (inputs to PSA).   
     Representation in the wavelet domain occurs through sub-band 

decomposition. In particular, the original signal passes through a 
pair of filters and is then down sampled by a factor of 2. Given 

the low pass-filter (LF) and high-pass filter (HF) that satisfy the 
Wavelet constraints, Wavelet decomposition can be compactly 

expressed as a linear transformation matrix WN constructed from 
LF and HF with N denoting the size of the matrix. The 

decomposition can then be expressed as: 

    [
    

    
]                                           (4) 

where      and      is the decomposed low-pass and high-pass 

signal, respectively [16]. The DWT consists of one or more stages 

depending on the degree of the desired resolution and each of 
them contains a HF and a LF that compute the so-called 

approximation and detail coefficients, respectively. Note that the 
filter order depends on the basis of the mother Wavelet used, i.e., 

Haar, Db2, Db4 etc.  Interestingly, after processing extrapolated 
RR-intervals of numerous heart samples from the MIT-BIH 

arrhythmia database [17]  (Fig. 3(a)) with DWT of various known 
bases (i.e. Haar, Db2 and Db4) we observed that the two output 

bands of high and low frequencies differ significantly in terms of 
their magnitude. Specifically, we observed that the HPF outputs 

were distributed around zero (Fig. 3(c)) indicating that such parts 
could be pruned for complexity reduction with potentially 

minimum impact on quality.  In other words, RR-intervals are 
approximately-sparse in the Wavelet domain, which can be 

utilized for finding an approximately sparse representation.   

B. Finding an Equivalent Formulation in the Sparse Basis 
 To begin with, an N

th
 order FFT can be written as: 
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where      is the diagonal matrix with twiddle factors on the 

diagonal and    is an NxN even-odd separation matrix. The first 

part of the new transform, the DWT WN, obeys   
         

since it is an orthogonal linear transformation. Based on this 

property the Fourier transform can be written as         
    . 

Considering also (5), the following factorization can be written: 
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where                     are all diagonal matrices, which was 

also mathematically proven in [16] but its use was limited up to 

now. The values on the diagonal of      and      correspond to 

the length-N FFT of the lowpass filter of the wavelet transform, 

whereas the values on the diagonal of      and      are the 

length-N FFT of the highpass filter of the wavelet transform. The 

factorization shown in (6) suggests a DWT based FFT algorithm, 
whose block diagram for an order N = 8 is depicted in Fig. 4. The 

 
Fig. 3: Example of (a) extrapolated RR-intervals, (b) lowpass and (c) 

highpass wavelet filter outputs for a Haar based DWT. 
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algorithm consists of 2 main stages; the highpass and the lowpass 

DWT outputs go through separate length-4 DFTs, and then they 
are combined with butterfly operations. The same scheme can be 

applied iteratively to shorter length DFTs to get the full DWT 
based algorithm. The full system is equivalent to a binary tree 

wavelet packet followed by modified FFT butterfly operations, 
where the twiddle factors are the frequency response of the 

wavelet filters. The overall process represents a new 
transformation with the distinguished processes W (DWT) and G 

that we looked for in (2), as part of the first step of our approach.  
     At this point the question that arises is how the complexity of 

the new algorithm compares to the original FFT. To this end, we 
have evaluated the complexity of the algorithm with N=512 using 

various wavelet bases (i.e. Haar, Db2, Db4)  and compared it with 
a split-radix FFT, one of the fastest known FFT implementations.  

Results show that (without pruning or exploitation of the sparsity 
of the signal) the wavelet-based FFT comes with 36%, 49%, and 

76% increased number of computations compared to the split-
radix FFT in case of Haar, Db2, and Db4 DWT bases, 

respectively. Therefore, there is a need to reduce the complexity, 

which is the goal of second part of our approach.   

V. COMPLEXITY REDUCTION OF NEW FORMULATION  

     The second part of our approach is distinguished into two parts 

as we discussed in Section III; discovering less-significant signal 
components and pruning the associated operations within the first 

stage of the algorithm (DWT) and then in the second stage. 

A. Pruning Operations in DWT  

     As we discussed in Section IV, the first stage of the new 
formulation is the DWT, which after processing the RR-intervals 

distinguishes the signal into two groups/bands; the high energy 
(LF outputs) and the low energy (HF outputs) bands. Based on 

such differences the highpass-detail computations associated with 
the less-significant signal components can be pruned, eliminating 

the corresponding half band of the DWT as highlighted in red in 
Fig. 4. By doing so the multiplications and additions associated 

with the dropped signals in the second stage of the wavelet-based 
FFT can also be pruned. After pruning the operations, the new 

sparse wavelet-based FFT process (     ) can be written as: 
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where BN/2 and DN/2 as well as the lower right FN/2 in (6) are set to 

zero due to their less-significant content.    
     We now repeat the complexity comparison and we observe 

that the number of computations is reduced by 28%, 21%, and 8% 

compared to the split radix FFT if the Haar, the Db2, or the Db4 

are used as DWT basis, respectively (Fig. 5(a)). In the above 
approximation the highpass band is eliminated at design-time by 

applying an appropriate threshold, however based on the specific 
samples we could also apply such a threshold at run-time for fine- 

grained pruning.  

B. Significance-Driven Twiddle-Factor Pruning 

    In the second stage of the algorithm, the DWT outputs are 
multiplied with twiddle factors that are the frequency response of 

the filter coefficients of the chosen wavelet basis (Haar, Db2, Db4 
etc.). Such factors carry the unique property that they do not lie 

on the unit circle but they differ in their magnitude substantially 
as opposed to the FFT twiddle factors. Specifically, we observe 

that the twiddle factors, elements of the diagonal sub-matrix AN/2 
in (7) [A11, A22…AN/2N/2] decrease in magnitude 

(A11>A22….>AN/2N/2), whereas the factors within the diagonal 
sub-matrix CN/2 in (7) increase in magnitude. For instance, in case 

of N=8 we have in C4: C51<C62<…<C84. In particular, usually 
elements A4N/2N/2 and C(N/2+1)1, C(N/2+2)2 etc. have a small 

magnitude (close to zero). Fig. 7 shows the values of the elements 
of the matrices AN/2   and CN/2 in case of N=512 where we can 

observe that many factors have a very small value. This indicates 
that the operations associated with these small factors might also 

influence the output result to a smaller extent. To determine the 
significance of each factor and of the associated operations we 

performed a sensitivity analysis by pruning various small twiddle 

 
Fig. 4: DWT-based FFT consists of two stages i) DWT, ii) Twiddle-factors. 
Less-significant data approximated/pruned in red. 
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Fig. 6: Values of twiddle factors in AN/2 and CN/2  matrices, N=512 
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Fig. 5: Complexity comparison of proposed approach with various Wavelet 

basis and approximations applied (a) in 1
st
 stage and (b) in 2

nd
 stage. 
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factors and observed the impact on output quality, quantified in 
terms of the mean-square-error (MSE) between the original 

output signal and the approximated one. Three sets of factors 
were finally distinguished based on their magnitudes and the 

number of pruned computations that can achieve (i.e., Set1 
corresponds to 20% pruned factors/operations, Set2 to 40%, and 

Set3 to 60%). Our results, after applying the above degrees of 
approximations to the modified PSA system and using various 

cardiac samples [17] show that the output quality in terms of 
MSE deteriorates slightly compared to the outputs of the 

conventional algorithm. Such distortions as we will show in next 
section do not affect the monitoring capability of the system.  

     Note also that as the wavelet basis and thus DWT filter sizes 
increases (e.g., in case of Db4), the number of small-valued/zero 

twiddle-factors in the second stage of the algorithm also 
increases. However, at the same time the number of computations 

in the first DWT stage is also increasing. Therefore, there is a 
clear trade-off between the approximations applied in the 2

nd
 

stage and the number of operations in the 1
st
 stage (DWT). Fig. 

5(b) compares the proposed approach to the conventional FFT 
approach in case of using various wavelet bases and for the 

different degrees of approximations (Mode1-20%, Mode2-40%, 
and Mode3-60%) of less significant computations in the 2

nd
 stage. 

It is evident that the choice of Haar wavelet basis has the lowest 
complexity when compared to all other choices. Therefore, Haar 

was chosen as the wavelet basis for the implementation of the 
PSA system since it can lead to low-complexity. Overall, we 

observed that the proposed approximations can reduce by 52% 
the number of additions and 17% the multiplications compared to 

a conventional split-radix FFT algorithm. Note that the savings 
increase with the order (i.e. in case of N=1024 then we obtain we 

obtain further 12% fewer multiplications and 8% fewer additions) 
due to the logarithmic complexity growth of the original FFT 

with the order. Of course, the proposed approximations lead to 
quality degradation which we investigate next along with the 

achieved energy savings.  

VI. ENERGY QUALITY TRADE-OFFS EVALUATION 

 In order, to evaluate the energy savings and the distortions 

obtained by the proposed approximations we have mapped the 

conventional and modified PSA system (with N=512 FFT) on a 

single RISC processor simulator configured with typical, 

available sensor node characteristics [13, 14].  In particular, we 

are simulating a typical single-core sensor node that is 

accompanied with a 64KB SRAM. The available power 

consumption values of the processor in a low leakage 90nm 

technology node [14] are also utilized and the conventional and 

proposed systems are cross compiled for the target architecture. 

To determine the impact of the proposed modified PSA system 

and the applied approximations we have evaluated the ratio 

between the overall low frequencies power (LFP) and the overall 

high frequencies power (HFP) of the heart rate spectra. 

Specifically, we extracted the RR-intervals from numerous sinus-

arrhythmia and healthy samples from PhysioNet [17] and 

provided them as input to the proposed and conventional (Welch-

Lomb based on split radix FFT) PSA system as described in 

Section II.B. The overall HFP within 0.15 – 0.4 Hz and LFP 

within 0.04-015 Hz is then calculated by integrating the total 

power within these bands, at the output of the systems by Lomb 

calculator (Fig. 1(a)).  Typically, a ratio of LFP over HFP much 

less than 1 indicates a sinus arrhythmia condition and is an 

appropriate quality metric for such an application. Note that 

sinus-arrhythmia was used as a test case for quantifying the 

impact of our accuracy loss. Such a test case was also used by 

other recent papers on PSA [11]. In any case, our method can be 

utilized for the detection of any other condition requiring PSA.          

A. Quality under various approximations 
    Table I depicts the average ratio LFP/HFP for various samples 

and for different modes of approximations applied statically at 
design time. We observe that the ratio remains close to the 

original value and much less than 1 even when the highpass-band 
in the first DWT stage and 60% of the twiddle factors in the 

second stage are pruned. The periodogram obtained from the 
proposed PSA system (with the highpass band and 60% of the 

twiddle factors in the modified FFT block being pruned) and the 
conventional system (based on split radix FFT), for a patient with 

sinus arrhythmia is depicted in Fig. 8. Interestingly, we can 
observe that even if we drop 60% of the operations we obtain 

only 3% difference in LFP/HFP ratio compared to conventional 
PSA system, thus we can still easily identify the sinus arrhythmia 

condition. Furthermore, by using a sliding window configuration 
as described in Section II, we obtained time-frequency 

distributions of hourly monitoring of various sinus arrhythmia 
patients. By obtaining the LFP over HFP ratios for the various 
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(Sinus Arrhythmia: dominant 

HFP in 0.15-0.4 Hz )

LF     HF     ULF

TABLE I 

Average LFP: HFP ratio under static and dynamic pruning   

LFP/HFP 
Ratio 

Orig. 
FFT  

based 
PSA  

PSA based on prop. FFT with 1
st

 stage 
approx. and various approx. in 2

nd
 stage 

1
st

 stage 
band drop 

Set1 Set2 Set3 

Static 
Pruning 

0.45 0.465 0.465 0.483 0.492 

Dynamic 
Pruning 

0.45 0.465 0.467 0.47 0.471 

 



time intervals of such time-frequency distributions, using heart 

rate samples of 16 patients we find that on average our approach 
results in approximately 4.9% of error in such ratio and in all 

cases we could correctly identify the sinus-arrhythmia condition.  

B. Energy Savings under static pruning and VFS  

Fig. 9 depicts the energy savings and the distortion in the 

HFL/LFP ratio obtained after applying various degrees of pruning 

as mentioned in previous sections. It can be observed that after 

dropping the highpass band of DWT and pruning 60% of the 

twiddle factors in the second stage we obtain 51% energy savings 

with 9.2% error in the LFP/HFP ratio for the considered samples 

which does not affect the arrhythmia detection capability. In any 

case the degree of pruning could be tuned for obtaining maximum 

energy savings based on the acceptable distortion (QDES).  

 Another advantage of our approach is that any static pruning 

of operations results in reduced number of cycles and less 

execution time. This means that we can relax the frequency of 

operation allowing us to also reduce the supply voltage Vdd, 

which can lead to quadratic energy savings. Specifically, the 

execution time is given by                           (   ), 

where      (   ) is the frequency of operation at a given supply-

voltage. In our case for determining the degree of VFS that can be 

applied while maintaining the same processing time, we noted the 

performance improvement that we obtain with the new system. 

We found that the improvement ranges from 40% up to 51% 

depending on the degree of applied approximations. Based on the 

reduction in execution time we calculated the voltage scaling and 

the resulted energy savings that can be obtained under various 

modes of approximations. We observe that the proposed PSA 

when combined with VFS can lead up to 82% energy savings. 

Note that the additional energy savings come with the same 

distortions obtained under static pruning (without VFS).  

C.  Dynamic Pruning 

     In the above analysis we have applied a fixed number of 
approximations by pruning the highpass band in the 1

st
  stage of 

the modified FFT and the three different sets of factors in the 2
nd

 
stage for each sample based on expected values of individual 

intermediate variables that we analyzed during design time. 
However, as we said in Section IV, it is possible to apply 

dynamic thresholding at run-time for achieving fine-grained 
approximations on sample by sample case. To do so we have 

altered the application software by including some extra 
comparison instructions during the 2

nd
 stage. Data and twiddle 

factors that are below a set of thresholds are eliminated on the fly 

for the various samples. By doing so we can achieve fine-grained 
approximations, limiting the distortions (for the same amount of 

approximations) as shown in Fig. 9. This is due to the elimination 
of only the computations that are below a threshold for the 

specific sample. However, the reduction in distortion comes at an 
approximately 10% energy overhead compared to the static case 

due to the extra instructions i.e., comparisons limiting also the 
degree of the applied VFS. All in all, the proposed approach leads 

to the design of an energy efficient PSA system that could adapt 
its energy and performance based on the allowed distortion (QDES) 

as opposed to recent (non-scalable) implementations [11].  

VII. CONCLUSION 

     An approach for the design of an energy efficient PSA system 

by utilizing the sparsity of the processed signals in the Wavelet 
domain was presented. An equivalent transformation for the core 

kernel of the PSA system was found that exposes signal sparsity 
and helps in classifying the signal components into significant 

and less significant based on their contribution to output quality, 
which was not possible before. Based on the alternative 

formulation, less-significant operations were identified and 
pruned in the various stages. Results show that the proposed 

system can lead up-to 82% energy savings with minor distortions 
that do not affect the detection capability of sinus arrhythmia in 

all samples that we studied. The proposed system allows the 
widespread use of PSA systems in WBSNs enabling the 

enhancement of their monitoring and analysis capabilities.   
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Fig. 9: Energy–Quality trade-offs of the proposed PSA system for various 

degree of static and dynamic pruning (savings compared to the conventional 
PSA system) 

Dynamic pruning limits

the distortion at a cost
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under all approximations

(Band drop, combined with 20%,      40%, 60% twiddle drop)
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Based on 
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