
Accelerating Graph Computation with Racetrack Memory and Pointer-Assisted
Graph Representation

Eunhyuk Park, Sungjoo Yoo, Sunggu Lee and Helen Li*

Embedded System Architecture Lab, POSTECH
University of Pittsburgh*

Abstract
The poor performance of NAND Flash memory, such as long
access latency and large granularity access, is the major
bottleneck of graph processing. This paper proposes an
intelligent storage for graph processing which is based on fast
and low cost racetrack memory and a pointer-assisted graph
representation. Our experiments show that the proposed
intelligent storage based on racetrack memory reduces total
processing time of three representative graph computations by
40.2%~86.9% compared to the graph processing, GraphChi,
which exploits sequential accesses based on normal NAND
Flash memory-based SSD. Faster execution also reduces
energy consumption by 39.6%~90.0%. The in-storage
processing capability gives additional 10.5%~16.4%
performance improvements and 12.0%~14.4% reduction of
energy consumption.

1. Introduction
The graph represents the relationship between objects using
vertices and edges. It is used in many areas like web mining,
social network, chemical compounds, DNA gene analysis, etc.
As more data are being represented by graphs in the above areas,
graph computation is expected to become more and more
important. However, graph computation is challenging in
several aspects. Above all, graph computation suffers from long
disk access latency due to large data sets and random (and fine-
grained) memory accesses (as will be explained in detail in
Section 3). In addition, the ratio of computation to data transfer
is very low so it is often the case that storage I/O and related
functions (e.g., graph data sorting and re-arrangement to better
utilize sequential traffic performance in the storage) dominate
total execution cycles.

In this paper, we propose an intelligent storage for graph
computation which is based on (1) a low-cost, fast and byte-
addressable non-volatile memory, namely, racetrack memory
[2][9] and (2) an optimization of graph representation exploiting
the fast byte-addressability, i.e., a pointer-assisted graph
representation. Racetrack memory is a new non-volatile memory
and can provide large capacity due to the small size of memory
cell. It provides low access latency in both read and write
operations and can be accessed at a fine granularity, e.g., 8-byte
data. As a result, the racetrack memory can improve the
performance of random traffic-dominated graph computation.
Other new memory technologies can also be candidates in our
proposed intelligent storage. We select racetrack memory in
terms of area (PCM provides about 4F2

 cells) and latency (the
latest ReRAM prototype gives 230µs of write latency [3]).
The pointer-assisted graph avoids expensive sorting,
rearrangement and search operations which occupy a significant
portion of graph computation. In addition, the proposed
intelligent storage can perform local operations for simple graph
computations, e.g., pagerank. It can improve the performance of
graph computation, especially, by eliminating traffics from
storage to main memory.

2. Related Work
In this section we review previous work in both categories of
active storage and graph computation. Kang et al. [4] and Cho et
al. [5] propose in-storage processing which treats SSD as a
processing unit using an internal controller or an FPGA
accelerator. Both works show that in-storage processing can
improve performance and reduce power consumption by
exploiting the full bandwidth of the storage device as well as
avoiding host traffics.

In GraphChi [6], Kyrola et al. propose a method called parallel
sliding window (PSW). It tries to exploit the characteristics that
the storage gives higher performance in sequential accesses than
in random ones. GraphChi enables a multi-core machine to give
comparable performance to large-scale graph processing
engines. However, it requires additional steps in graph
computation, sorting and data re-arrangement, which renders its
performance improvement limited.

3. Problem
In order to examine the current problem in graph computation
with the SSD, we first introduce a graph example in Figure 1 (a).
For performing a graph computation with the graph, the edges
are expressed as a tabular form as shown in Figure 1 (b) (in-edge
sorted in this case). Each entry in the table contains two vertex
IDs (‘in’ for destination and ‘out’ for source) connected to the
edge and edge value (edge weight in this example).

Figure 1 A graph example and its tabular representation

Pagerank [7] is an algorithm to determine the importance of web
page using its connection information. Figure 2 gives a pseudo
code of a key function in pagerank. The function iterates
multiple times until the vertex weights converge.

Figure 2 Pagerank

In order to explain how random accesses are generated in graph
computation, assume the pagerank function is applied to the
graph in Figure 1. For instance, when calculating the weight of
vertex 2, the pagerank function first reads the edge weight of its
in-edges (3rd and 4th entries in Figure 1 (b)), calculates the vertex
weight and updates its out-edges with the new vertex weight. In
order to do that, the pagerank function accesses the 6th and 8th
entries in Figure 1 (b), which incurs random accesses. They are

in out weight
1 3 0.5
1 4 1
2 3 0.5
2 1 0.2
3 5 0.6
4 2 0.3
5 1 0.1
6 2 0.2

(a) (b)

1 for each vertex_x in graph
2 for each in-edge in vertex_x
3 sum += in-edge→data
4 vertex_x→value = CalculatePageRank(sum, in-edge number)
5 for each out-edge in vertex_x
6 out-edge→data = vertex_x→value

978-3-9815370-2-4/DATE14/©2014 EDAA

also fine-grained accesses since only the weights (in a few
bytes) of associated edges are accessed.

Random accesses to the graph data in the storage can
significantly degrade the performance of graph computation
since the state-of-the-art storage adopts long-latency memory,
hard disk (10ms of read latency) or NAND Flash memory (more
than 50µs for read latency). Thus, each random and fine-grained
access can take such a long latency. Note that the benefit of
caching is limited in graph computation due to the large size of
graph.

Figure 3 Avoiding random accesses in graph processing

In GraphChi [6], the authors re-organize graph representation in
order to avoid random accesses. Figure 3 illustrates the basic
concept of GraphChi method utilizing the graph in Figure 1 (a).
The graph is partitioned into sub-graphs called shards. Each
shard has the same number (four in Figure 3) of in-edges and
includes all the vertices of those edges. In a shard, in-edges are
first sorted in terms of their source vertex indexes (column ‘out’
in the figure). When performing pagerank in Figure 3 (a), for
instance, the vertices 1 and 2 in shard 1 are first processed. To
be specific, the host fetches the in-edge data in the shard. Since
all the edge data are required for the vertices in the first shard,
the host also fetches their out-edge data which are stored in
other shards. The out-edge data of the shard 1 are shaded in
Figure 3 (a). The computation for the first shard results in
updates in the associated edges. Then, the other shards are
processed in the same way.

GraphChi is effective in that random accesses are reduced by
utilizing shards. However, it incurs another problem of pre-
/post-processing overhead. Figure 3 (b) illustrates the internal
structures containing vertex information (upper table), the
relationship between vertex ID and weight (center table), and an
array of vertex weights (lower table) in GraphChi. They need to
be created for every shard processing thereby incurring pre-
/post-processing overhead. According to our investigation, it can
occupy up to 45.5 % of total runtime in graph computations.

As the above example shows, graph computation incurs lots of
random and fine-grained accesses. A recent improvement to
avoid random accesses suffers from pre-/post-processing
overhead. In this paper, we advocate (1) adopting new high-
density and low-latency memory and (2) exploiting the low
latency of new memory by utilizing a pointer-based graph
representation for the problems.

4. Proposed Storage Structure
Racetrack memory is a spintronics-based non-volatile memory
based on domain wall motion (DWM) and giant-magneto
resistance (GMR) [9]. Racetrack memory consists of a strip of
ferromagnetic material (called racetrack), magnetic tunneling
junction (MTJ) and an access transistor. The read and write
operations are the same as those of spin-transfer torque RAM
(STT-RAM). When both ferromagnetic layers in the MTJ have
the same (different) direction(s) of magnetization, the MTJ has

low (high) resistance and the resistance level is sensed by
applying a small read voltage across the MTJ [2]. For a write
operation, the magnetization direction of free layer in the MTJ is
changed depending on the write bit data by applying a high
current through the MTJ. The direction of write current
determines magnetization direction to be stored in the domain.
In order to access (read or write) a domain which is not in the
MTJ, shift operation(s) is performed by injecting shift current to
the racetrack as shown in Figure 4 (a) to move the magnetic
domains, which is called domain wall motion [9]. The shift
operation typically takes 0.5ns for each domain shift, i.e., one bit
shift [2].

Figure 4 (a) Side view of racetrack and (b) sub-memory

Racetrack memory provides several important benefits. First, it
can give large capacity comparable to vertical NAND Flash
memory because (1) many bit data (domains) share one access
transistor and (2) it can be implemented vertically [9]. Second, it
provides fast access at the order of less than tens of nanosecond
[2]. In addition, the data in multiple racetracks can be accessed
in parallel providing high bandwidth. In Figure 4 (b), eight
racetracks each of which has 4 MTJs can be accessed in parallel
enabling 32-bit access at a time. In order to access more data,
e.g., 64-bit data, the racetracks can be shifted in parallel to
access adjacent data. The third benefit is its non-volatility which
enables low standby power consumption. One drawback is the
latency and power incurred by shift operations.

Figure 5 shows our proposed graph representation. A vertex is
represented by a tuple of vertex value (e.g., vertex weight in
pagerank), in-edge and out-edge pointers. An in-edge pointer
points to an array of in-edge information. Each entry in the array
consists of source vertex ID and edge value (e.g., edge weight in
pagerank). An out-edge pointer in the vertex data points to an
array of out-edge information. Each entry of the array contains
destination vertex ID and edge offset (offset in the in-edge array
of the destination vertex). Note that each edge has its weight
information only at a single location, in its entry of in-edge array
(edge value).

Figure 5 Pointer-assisted graph representation

Note that the benefits of racetrack memory, low latency and
fine-grained access enable us to utilize pointers in the graph

in out weight
shard 1

2 1 0.2
1 3 0.1
2 3 0.3
1 4 0.2

shard 2
5 1 0.5
4 2 0.2
6 2 0.3
3 5 0.2

Vertex
ID

in edge
number

in edge
pointer

out edge
number

out edge
pointer

1 2 1 2 3
2 2 5 2 7

vertex ID 3 4 2 5 1 3 4 6
weight pointer 1 2 3 4 3 5 6 7

weight 0.1 0.2 0.2 0.5 0.3 0.2 0.3

(a) (b)

…

bit 48
~

bit 63

bit 32
~

bit 47

bit 16
~

bit 31

Use 8 racetrack for sub memory

R/W port

bit 0
~

bit 15

Byte 0

Byte 1

Byte 2

IR/W

Ishift

MTJ

Ishift

(a) (b)

Byte 3

Overhead for
shift operation

bit 48
~

bit 63

bit 32
~

bit 47

bit 16
~

bit 31

bit 0
~

bit 15

bit 48
~

bit 63

bit 32
~

bit 47

bit 16
~

bit 31

bit 0
~

bit 15

Vertex
value

In-edge
pointer

Out-edge
pointer

Src. Vertex ID
/ Edge value

Dest. Vertex ID
/ Edge offset

Src. Vertex ID
/ Edge value

Vertex data :

In edge data :

Out edge data :

…

…Dest. Vertex ID
/ Edge offset

representation. As illustrated in Figure 3, the conventional graph
computation requires data re-arrangements. Compared with this,
our proposed pointer-assisted graph representation enables us to
access, with low latency, only the required data from the storage
without additional expensive data re-arrangement steps.

Figure 6 (a) Reading in-edge data (b) Accessing out-edge
data
Figure 6 shows the organization of our proposed intelligent
storage based on racetrack memory. It consists of racetrack
memory and controller sub-system. In the figure, the racetrack
memory consists of two banks which can be accessed in parallel.
The controller sub-system consists of access controller, in-
storage processor, and I/O controller. The access controller
receives requests from the host and issues read/write commands
to access racetrack memory, data transfer commands to the I/O
controller and, if specified in the host request, in-storage
computation commands to the in-storage processor. On the
command from the access controller, the in-storage processor
receives data and performs local computation. The I/O controller
transfers data (racetrack memory data or the data in the in-
storage processor) between the host and the intelligent storage.
Figure 6 (a) shows how the in-edge information of vertex is
accesed. First, the access controller issues a read request to read
the data of a vertex (arrow ①). Vertex data are stored in an array
and the size of each entry is the same. Thus, the desired vertex is
localized with vertex ID. After obtaining the in-edge pointer in
the read vertex data, the controller issues a read command to
access the data of the desired in-edge (arrow ②). Note that in-
edge data can be accessed in a sequential way by placing
contiguously on the racetracks or in a parallel way by
distributing them on multiple banks. Investigating efficient
graph data placement on racetrack memory will be our future
work. After reading all the in-edge data, there are two
possibilities. In case of simple function, e.g., pagerank, the in-
storage processor can perform graph computation (arrow ③).
Otherwise, the in-edge data are transferred to the host via the I/O
controller (arrow ④).

Figure 6 (b) illustrates how the out-edge information of vertex is
accessed. First, the controller reads the vertex data to obtain the
out-edge pointer. Then, it accesses the array of out-edge
information in order to obtain the destination vertex IDs and the
edge offset in the destination vertex (arrows ② and ③ in Figure
6 (b)). The controller reads the in-edge pointer of destination
vertex (arrows ④ and ⑤) and accesses the out-edge data using
previous read edge offset and in-edge pointer (arrows ⑥ and
⑦).

5. Experiments
We simulate graph computations on two designs: a baseline
GraphChi design utilizing a conventional SSD [4][8] and our
proposed racetrack memory-based intelligent storage. Both run
with a high-performance host which consists of x86 out-of-order

core system. Both host and storage are on a PCI-E 3.0 bus
(supporting 1GBps) for higher storage I/O bandwidth than the
popular SATA 3.0. We use a Pin-based event-driven
architecture modeling framework, McSimA+ [10] for our
simulations. Table 1 shows the architectural parameters.

Table 1 Parameters, energy and timing of models

Our SSD timing model uses a linear model in [8] which
expresses N-byte access time as A+N*B with a fixed time, A
(due to Flash Translation Layer overhead such as mapping table
accesses in the SSD controller) and a data size-dependent time,
N*B. Our racetrack memory model is based on [2]. However,
the number of R/W ports per racetrack is reduced for area cost
reduction and the tag is removed since we model the main
memory. The racetrack model uses 256 MB module which has a
hierarchical and dense architecture of 1F2 cells as in [2]. The
area cost of 256 MB module is estimated to be 6.6 mm! at 45
nm technology. In timing aspect, the read and write operation
consists of many steps, like routing, row decoder, etc. Table 1
shows the latency parameters obtained by modeling those
detailed steps.

Both SSD and racetrack memory models have static and
dynamic components in energy consumption. The static energy
is proportional to total execution cycles. In CPU case,
instruction count is used for dynamic power estimation. In host
memory case, DRAM energy is decomposed into static
(proportional to runtime) and dynamic (proportional to the
amount of data traffics) components. On device side, the energy
models are based on [5] for the SSD and [2] for the racetrack as
shown in Table 1.

Table 2 Graph examples

We use three representative graph computation algorithms,
community detection (CD), single source shortest path (SSSP)
[1] and pagerank [7]. Community detection finds groups of
vertices called community in which the level of inter-vertex
connections is higher than the average level of the entire graph.
SSSP finds the shortest path from a given vertex to all the other
vertices in the entire graph. As Table 2 shows, for each of the
three graph algorithms, we use three real graphs which have
millions of edges. The simulations take 30~60 hours to run tens
of billions instructions for these graphs. We did not run
simulations with larger graphs due to too long simulation
runtime.

Figure 7 compares the runtime of GraphChi (denoted as ‘SSD’)
and our method (‘RT’). Our intelligent storage offers by 40.2%
to 86.9% runtime improvement. In the CD case, the speed up is
lower than others because the processing (by the host)
dominates runtime. Thus, even though our intelligent storage

Access
controller

I/O
controller

In-storage
processor

Vertex data In edge data

Data : Control:

① ② ④③

Access
controller

In-storage
processor

Bank (RT x 8)

Vertex data
Out edge

data

① ② ③

Destination
vertex data In edge data

of destination
vertex

④

⑥⑤ ⑦

I/O
controller

(a) (b)

host parameters device energy timing
CPU core out-of-order x86 core, 3GHz DRAM avg 154 mW [5] -
L1 cache I : 4 way, 32KB, d : 8 way, 32KB NAND,8kB read 3.31 uJ [5] A = 50 uS,

B =1 ns/byteL2 cache 16 way, 4MB NAND,8kB write 64.94 uJ [5]
main memory DDR3 4GB, RT, shift 0.62 nJ / bit [2] 0.5 ns

bus PCI-EX 3.0 1x RT, write 0.57 nJ / byte [2] 10ns
SSD/RT memory DDR2 256MB, 6.4 GB/s RT, read 0.074 nJ / byte [2] 0.5ns

host energy processor 192 pJ / inst. [5] -
CPU static idle : 9.25 W, load : 35.7 W [11] ALU 2.11 pJ / op. [5] -
CPU load 1.44 nJ / instruction [11] MUL 67.6 pJ / op. [5] -

DRAM static 1.03 W [12] REG 4.23 pJ / access [5] -
DRAM R/W Max. 1.34 / 2.34 W [12]

-chipset 5.49 W [5]
I/O 9.61 W [5]

graph examples [13][14]
name vertex number edge number average number of edges

amazon0601 400727 3200440 7.98658
dblp-2010 326186 1615400 4.95239

uk-2007-05@100000 100000 3050615 30.5062
algorithm examples [1][6]

iterations
amazon0601 dblp-2010 uk-2007-05@100000

Community Detection 10 10 10
PageRank 5 5 5

SSSP 10 7 5

eliminates the overhead of preprocessing and reduces I/O
traffics, the gain is limited. Our storage reduces I/O traffics in
CD and SSSP, because GraphChi cannot deal with random
vertex queries. To avoid random access, GraphChi requires
additional disk data I/O and shard processing in this case.
However, our racetrack model can provide the required random
data with low latency, thereby significantly reducing I/O traffics.

Figure 7 Runtime of graph processing

Figure 8 shows that the gain in total energy consumption is
similar (average 39.6%~90.0%) to that of runtime in Figure 7. It
is because the major components of energy consumption are the
static energy of CPU and system, and these components are
proportional to total runtime. However, because CPU has
longer idle state in racetrack model, the difference is bigger in
Figure 8 than that in Figure 7, except CD which has processing
as a dominant factor of runtime. The energy consumption of
SSD and racetrack memory is almost the same. In the racetrack
memory, shift operations (~10x and ~14x more frequent than
reads and writes, respectively) dominate total disk energy
consumption because of a lot of random accesses.

Figure 8 Total energy consumption

Figure 9 shows the effects of in-storage processing in our
intelligent storage. In this case, the in-storage processor is
implemented as a stream processor and performs pagerank. The
intelligent storage gives performance benefits mostly by
eliminating data transfer between storage and host. The
comparison between the intelligent storage (i.RT in Figure 9)
and the original racetrack-based storage (RT) shows that, in the
two graphs of Amazon and DBLP, the in-storage processing
reduces I/O traffics between host and storage while increasing
processing time. Their net effect is reduction in total runtime.
The graph, UK gives reductions in both I/O and processing time
because our model finds edge data based on vertex. Thus, the
high average number of edges in UK graph (about 30.5 in Table
2) reduces the amount of pointer operation per each edge, which
enables the device to operate more efficiently compared to the

other graphs thereby reducing processing time. The in-storage
processing gives on average additional 13.8% and 13.1%
improvements in runtime and energy consumption, respectively.

Figure 9 Runtime and energy comparison

6. Conclusion
Graph computation is characterized by random accesses to the
storage. In order to overcome the limitations of current graph
computation based on NAND Flash memory-based SSD, we
propose (1) utilizing a cheap and low latency memory, racetrack
memory and (2) exploiting its low latency benefit with a pointer-
assisted graph representation. Our experiments show that the
proposed storage offers 40.2%~86.9% improvement in graph
computation time and similar improvements in energy
consumption. The in-storage processing of simple graph
computations can also give additional improvements by 13.8%
(runtime) and 13.1% (energy) on average.

7. Acknowledgement
This work was supported by the IT R&D program MKE/KEIT
(No.10041608, Embedded System Software for New Memory-
based Smart Devices) and the Center for Integrated Smart
Sensors funded by the Ministry of Science, ICT & Future
Planning as Global Frontier Project (NRF-2011-0031863).

8. References
[1] L. d. F. Costa, et al., “Characterization of complex networks: A survey of
measurements,” Advances in Physics, 56(1):167–242, 2007.
[2] Z. Sun, et al., “Cross-layer racetrack memory design for ultra high density
and low power consumption,” Proc. DAC, 2013.
[3] T.-Y. Liu, et al., “A 130.7 mm2 2-layer 32Gb ReRAM memory device in
24nm technology,” Proc. ISSCC, 2013.
[4] Y. Kang, et al., “Enabling cost-effective data processing with smart ssd,”
Proc. Storage Conference, 2013.
[5] S. Cho, et al., “Active disk meets flash: a case for intelligent ssds,” Proc.
ICS, 2013.
[6] A. Kyrola, et al., “GraphChi: Largescale graph computation on just a pc,”
Proc. OSDI, 2012.
[7] L. Page, et al., “The pagerank citation ranking: bringing order to the web,”
Stanford InfoLab, 1999.
[8] K. El Maghraoui, et al., “Modeling and simulating flash based solid-state
disks for operating systems,” Proc. WOSP/SIPEW, 2010.
[9] L. Thomas, et al., “Racetrack memory: a high-performance, low-cost,
non-volatile memory based on magnetic domain walls,” Proc. IEDM, 2011.
[10] J. H. Ahn, et al., “McSimA+: A Manycore Simulator with Application-
level Simulation and Detailed Microarchitecture Modeling,” Proc. ISPASS,
2013.
[11] W. L. Bircher, et al., “Complete system power estimation: A trickle-
down approach based on performance events,” Proc. ISPASS, 2007.
[12] Micron Technology, Inc., “DDR3 SDRAM System-Power Calculator,”
http://www.micron.com/products/support/power-calc.html, 2013.
[13] P. Boldi, et al., “Ubicrawler: A scalable fully distributed web crawler,”
Software: Practice and Experience, 34(8):711–726, 2004.
[14] J. Leskovec, “Stanford large network dataset collection,” http://snap.
stanford.edu/data/index.html, 2011.

0

2

4

6

8

10

12

14

SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT

CD PR SSSP CD PR SSSP CD PR SSSP

Amazon DBLP UK

time [s]
i/o

processing

shard

preprocessing

56.8 %

70.3 %

86.2 %
40.2 %

58.8 % 70.9 %

46.6 %

73.5 %
86.9 %

0

100

200

300

400

500

600

700

SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT SSD RT

CD PR SSSP CD PR SSSP CD PR SSSP

Amazon DBLP UK

total energy [J] disk

CPU

system

56.8 %

75.2 %

90.0 % 39.6 %

68.0 % 78.6 %

45.0 %

78.4 %
87.3 %

0

1

2

3

4

5

6

SSD RT i.RT SSD RT i.RT SSD RT i.RT

Amazon DBLP UK

time [s] i/o

processing

shard

preprocessing

0

50

100

150

200

250

300

SSD RT i.RT SSD RT i.RT SSD RT i.RT

Amazon DBLP UK

total
energy [J]

disk

CPU

system

70.3 %

80.8 %

58.8 %
73.1%

73.5 %

89.9 %

75.2 %

87.2 %

68.0 %
82.4 %

78.4 %

91.3 %

