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Abstract 
The poor performance of NAND Flash memory, such as long 
access latency and large granularity access, is the major 
bottleneck of graph processing. This paper proposes an 
intelligent storage for graph processing which is based on fast 
and low cost racetrack memory and a pointer-assisted graph 
representation. Our experiments show that the proposed 
intelligent storage based on racetrack memory reduces total 
processing time of three representative graph computations by 
40.2%~86.9% compared to the graph processing, GraphChi, 
which exploits sequential accesses based on normal NAND 
Flash memory-based SSD. Faster execution also reduces 
energy consumption by 39.6%~90.0%. The in-storage 
processing capability gives additional 10.5%~16.4% 
performance improvements and 12.0%~14.4% reduction of 
energy consumption.  

1. Introduction 
The graph represents the relationship between objects using 
vertices and edges. It is used in many areas like web mining, 
social network, chemical compounds, DNA gene analysis, etc. 
As more data are being represented by graphs in the above areas, 
graph computation is expected to become more and more 
important. However, graph computation is challenging in 
several aspects. Above all, graph computation suffers from long 
disk access latency due to large data sets and random (and fine-
grained) memory accesses (as will be explained in detail in 
Section 3). In addition, the ratio of computation to data transfer 
is very low so it is often the case that storage I/O and related 
functions (e.g., graph data sorting and re-arrangement to better 
utilize sequential traffic performance in the storage) dominate 
total execution cycles.  

In this paper, we propose an intelligent storage for graph 
computation which is based on (1) a low-cost, fast and byte-
addressable non-volatile memory, namely, racetrack memory 
[2][9] and (2) an optimization of graph representation exploiting 
the fast byte-addressability, i.e., a pointer-assisted graph 
representation. Racetrack memory is a new non-volatile memory 
and can provide large capacity due to the small size of memory 
cell. It provides low access latency in both read and write 
operations and can be accessed at a fine granularity, e.g., 8-byte 
data. As a result, the racetrack memory can improve the 
performance of random traffic-dominated graph computation. 
Other new memory technologies can also be candidates in our 
proposed intelligent storage. We select racetrack memory in 
terms of area (PCM provides about 4F2

 cells) and latency (the 
latest ReRAM prototype gives 230µs of write latency [3]). 
The pointer-assisted graph avoids expensive sorting, 
rearrangement and search operations which occupy a significant 
portion of graph computation. In addition, the proposed 
intelligent storage can perform local operations for simple graph 
computations, e.g., pagerank. It can improve the performance of 
graph computation, especially, by eliminating traffics from 
storage to main memory.  

2. Related Work 
In this section we review previous work in both categories of 
active storage and graph computation. Kang et al. [4] and Cho et 
al. [5] propose in-storage processing which treats SSD as a 
processing unit using an internal controller or an FPGA 
accelerator. Both works show that in-storage processing can 
improve performance and reduce power consumption by 
exploiting the full bandwidth of the storage device as well as 
avoiding host traffics.  

In GraphChi [6], Kyrola et al. propose a method called parallel 
sliding window (PSW). It tries to exploit the characteristics that 
the storage gives higher performance in sequential accesses than 
in random ones. GraphChi enables a multi-core machine to give 
comparable performance to large-scale graph processing 
engines. However, it requires additional steps in graph 
computation, sorting and data re-arrangement, which renders its 
performance improvement limited. 

3. Problem 
In order to examine the current problem in graph computation 
with the SSD, we first introduce a graph example in Figure 1 (a). 
For performing a graph computation with the graph, the edges 
are expressed as a tabular form as shown in Figure 1 (b) (in-edge 
sorted in this case). Each entry in the table contains two vertex 
IDs (‘in’ for destination and ‘out’ for source) connected to the 
edge and edge value (edge weight in this example). 

 
Figure 1 A graph example and its tabular representation 

Pagerank [7] is an algorithm to determine the importance of web 
page using its connection information. Figure 2 gives a pseudo 
code of a key function in pagerank. The function iterates 
multiple times until the vertex weights converge. 

 
Figure 2 Pagerank 

In order to explain how random accesses are generated in graph 
computation, assume the pagerank function is applied to the 
graph in Figure 1. For instance, when calculating the weight of 
vertex 2, the pagerank function first reads the edge weight of its 
in-edges (3rd and 4th entries in Figure 1 (b)), calculates the vertex 
weight and updates its out-edges with the new vertex weight. In 
order to do that, the pagerank function accesses the 6th and 8th 
entries in Figure 1 (b), which incurs random accesses. They are 

in out weight
1 3 0.5
1 4 1
2 3 0.5
2 1 0.2
3 5 0.6
4 2 0.3
5 1 0.1
6 2 0.2

(a) (b)

1 for each vertex_x in graph 
2    for each in-edge in vertex_x 
3       sum += in-edge→data 
4    vertex_x→value = CalculatePageRank(sum, in-edge number) 
5    for each out-edge in vertex_x 
6       out-edge→data = vertex_x→value 
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also fine-grained accesses since only the weights (in a few 
bytes) of associated edges are accessed.  

Random accesses to the graph data in the storage can 
significantly degrade the performance of graph computation 
since the state-of-the-art storage adopts long-latency memory, 
hard disk (10ms of read latency) or NAND Flash memory (more 
than 50µs for read latency). Thus, each random and fine-grained 
access can take such a long latency. Note that the benefit of 
caching is limited in graph computation due to the large size of 
graph.  

 
Figure 3 Avoiding random accesses in graph processing 

In GraphChi [6], the authors re-organize graph representation in 
order to avoid random accesses. Figure 3 illustrates the basic 
concept of GraphChi method utilizing the graph in Figure 1 (a). 
The graph is partitioned into sub-graphs called shards. Each 
shard has the same number (four in Figure 3) of in-edges and 
includes all the vertices of those edges. In a shard, in-edges are 
first sorted in terms of their source vertex indexes (column ‘out’ 
in the figure). When performing pagerank in Figure 3 (a), for 
instance, the vertices 1 and 2 in shard 1 are first processed. To 
be specific, the host fetches the in-edge data in the shard. Since 
all the edge data are required for the vertices in the first shard, 
the host also fetches their out-edge data which are stored in 
other shards. The out-edge data of the shard 1 are shaded in 
Figure 3 (a). The computation for the first shard results in 
updates in the associated edges. Then, the other shards are 
processed in the same way.  

GraphChi is effective in that random accesses are reduced by 
utilizing shards. However, it incurs another problem of pre-
/post-processing overhead. Figure 3 (b) illustrates the internal 
structures containing vertex information (upper table), the 
relationship between vertex ID and weight (center table), and an 
array of vertex weights (lower table) in GraphChi. They need to 
be created for every shard processing thereby incurring pre-
/post-processing overhead. According to our investigation, it can 
occupy up to 45.5 % of total runtime in graph computations. 

As the above example shows, graph computation incurs lots of 
random and fine-grained accesses. A recent improvement to 
avoid random accesses suffers from pre-/post-processing 
overhead. In this paper, we advocate (1) adopting new high-
density and low-latency memory and (2) exploiting the low 
latency of new memory by utilizing a pointer-based graph 
representation for the problems. 

4. Proposed Storage Structure  
Racetrack memory is a spintronics-based non-volatile memory 
based on domain wall motion (DWM) and giant-magneto 
resistance (GMR) [9]. Racetrack memory consists of a strip of 
ferromagnetic material (called racetrack), magnetic tunneling 
junction (MTJ) and an access transistor. The read and write 
operations are the same as those of spin-transfer torque RAM 
(STT-RAM). When both ferromagnetic layers in the MTJ have 
the same (different) direction(s) of magnetization, the MTJ has 

low (high) resistance and the resistance level is sensed by 
applying a small read voltage across the MTJ [2]. For a write 
operation, the magnetization direction of free layer in the MTJ is 
changed depending on the write bit data by applying a high 
current through the MTJ. The direction of write current 
determines magnetization direction to be stored in the domain. 
In order to access (read or write) a domain which is not in the 
MTJ, shift operation(s) is performed by injecting shift current to 
the racetrack as shown in Figure 4 (a) to move the magnetic 
domains, which is called domain wall motion [9]. The shift 
operation typically takes 0.5ns for each domain shift, i.e., one bit 
shift [2]. 

 
Figure 4 (a) Side view of racetrack and (b) sub-memory 

Racetrack memory provides several important benefits. First, it 
can give large capacity comparable to vertical NAND Flash 
memory because (1) many bit data (domains) share one access 
transistor and (2) it can be implemented vertically [9]. Second, it 
provides fast access at the order of less than tens of nanosecond 
[2]. In addition, the data in multiple racetracks can be accessed 
in parallel providing high bandwidth. In Figure 4 (b), eight 
racetracks each of which has 4 MTJs can be accessed in parallel 
enabling 32-bit access at a time. In order to access more data, 
e.g., 64-bit data, the racetracks can be shifted in parallel to 
access adjacent data. The third benefit is its non-volatility which 
enables low standby power consumption. One drawback is the 
latency and power incurred by shift operations.  

Figure 5 shows our proposed graph representation. A vertex is 
represented by a tuple of vertex value (e.g., vertex weight in 
pagerank), in-edge and out-edge pointers. An in-edge pointer 
points to an array of in-edge information. Each entry in the array 
consists of source vertex ID and edge value (e.g., edge weight in 
pagerank). An out-edge pointer in the vertex data points to an 
array of out-edge information. Each entry of the array contains 
destination vertex ID and edge offset (offset in the in-edge array 
of the destination vertex). Note that each edge has its weight 
information only at a single location, in its entry of in-edge array 
(edge value).  

 
Figure 5 Pointer-assisted graph representation  

Note that the benefits of racetrack memory, low latency and 
fine-grained access enable us to utilize pointers in the graph 

in out weight
shard 1

2 1 0.2
1 3 0.1
2 3 0.3
1 4 0.2

shard 2
5 1 0.5
4 2 0.2
6 2 0.3
3 5 0.2
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representation. As illustrated in Figure 3, the conventional graph 
computation requires data re-arrangements. Compared with this, 
our proposed pointer-assisted graph representation enables us to 
access, with low latency, only the required data from the storage 
without additional expensive data re-arrangement steps.  

 
Figure 6 (a) Reading in-edge data (b) Accessing out-edge 
data 
Figure 6 shows the organization of our proposed intelligent 
storage based on racetrack memory. It consists of racetrack 
memory and controller sub-system. In the figure, the racetrack 
memory consists of two banks which can be accessed in parallel. 
The controller sub-system consists of access controller, in-
storage processor, and I/O controller. The access controller 
receives requests from the host and issues read/write commands 
to access racetrack memory, data transfer commands to the I/O 
controller and, if specified in the host request, in-storage 
computation commands to the in-storage processor. On the 
command from the access controller, the in-storage processor 
receives data and performs local computation. The I/O controller 
transfers data (racetrack memory data or the data in the in-
storage processor) between the host and the intelligent storage.  
Figure 6 (a) shows how the in-edge information of vertex is 
accesed. First, the access controller issues a read request to read 
the data of a vertex (arrow ①). Vertex data are stored in an array 
and the size of each entry is the same. Thus, the desired vertex is 
localized with vertex ID. After obtaining the in-edge pointer in 
the read vertex data, the controller issues a read command to 
access the data of the desired in-edge (arrow ②). Note that in-
edge data can be accessed in a sequential way by placing 
contiguously on the racetracks or in a parallel way by 
distributing them on multiple banks. Investigating efficient 
graph data placement on racetrack memory will be our future 
work. After reading all the in-edge data, there are two 
possibilities. In case of simple function, e.g., pagerank, the in-
storage processor can perform graph computation (arrow ③). 
Otherwise, the in-edge data are transferred to the host via the I/O 
controller (arrow ④).  

Figure 6 (b) illustrates how the out-edge information of vertex is 
accessed. First, the controller reads the vertex data to obtain the 
out-edge pointer. Then, it accesses the array of out-edge 
information in order to obtain the destination vertex IDs and the 
edge offset in the destination vertex (arrows ② and ③ in Figure 
6 (b)). The controller reads the in-edge pointer of destination 
vertex (arrows ④ and ⑤) and accesses the out-edge data using 
previous read edge offset and in-edge pointer (arrows ⑥ and 
⑦).  

5. Experiments 
We simulate graph computations on two designs: a baseline 
GraphChi design utilizing a conventional SSD [4][8] and our 
proposed racetrack memory-based intelligent storage. Both run 
with a high-performance host which consists of x86 out-of-order 

core system. Both host and storage are on a PCI-E 3.0 bus 
(supporting 1GBps) for higher storage I/O bandwidth than the 
popular SATA 3.0. We use a Pin-based event-driven 
architecture modeling framework, McSimA+ [10] for our 
simulations.  Table 1 shows the architectural parameters. 

Table 1 Parameters, energy and timing of models 

 
Our SSD timing model uses a linear model in [8] which 
expresses N-byte access time as A+N*B with a fixed time, A 
(due to Flash Translation Layer overhead such as mapping table 
accesses in the SSD controller) and a data size-dependent time, 
N*B. Our racetrack memory model is based on [2]. However, 
the number of R/W ports per racetrack is reduced for area cost 
reduction and the tag is removed since we model the main 
memory. The racetrack model uses 256 MB module which has a 
hierarchical and dense architecture of 1F2 cells as in [2]. The 
area cost of 256 MB module is estimated to be 6.6  mm! at 45 
nm technology. In timing aspect, the read and write operation 
consists of many steps, like routing, row decoder, etc. Table 1 
shows the latency parameters obtained by modeling those 
detailed steps. 

Both SSD and racetrack memory models have static and 
dynamic components in energy consumption. The static energy 
is proportional to total execution cycles. In CPU case, 
instruction count is used for dynamic power estimation.  In host 
memory case, DRAM energy is decomposed into static 
(proportional to runtime) and dynamic (proportional to the 
amount of data traffics) components. On device side, the energy 
models are based on [5] for the SSD and [2] for the racetrack as 
shown in Table 1.  

Table 2 Graph examples 

 
We use three representative graph computation algorithms, 
community detection (CD), single source shortest path (SSSP) 
[1] and pagerank [7]. Community detection finds groups of 
vertices called community in which the level of inter-vertex 
connections is higher than the average level of the entire graph. 
SSSP finds the shortest path from a given vertex to all the other 
vertices in the entire graph. As Table 2 shows, for each of the 
three graph algorithms, we use three real graphs which have 
millions of edges. The simulations take 30~60 hours to run tens 
of billions instructions for these graphs. We did not run 
simulations with larger graphs due to too long simulation 
runtime. 

Figure 7 compares the runtime of GraphChi (denoted as ‘SSD’) 
and our method (‘RT’). Our intelligent storage offers by 40.2% 
to 86.9% runtime improvement. In the CD case, the speed up is 
lower than others because the processing (by the host) 
dominates runtime. Thus, even though our intelligent storage 
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④
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(a) (b)

host parameters device energy timing
CPU core out-of-order x86 core, 3GHz DRAM avg 154 mW [5] -
L1 cache I : 4 way, 32KB,  d : 8 way, 32KB NAND,8kB read 3.31 uJ [5] A = 50 uS, 

B =1 ns/byteL2 cache 16 way, 4MB NAND,8kB write 64.94 uJ [5]
main memory DDR3 4GB, RT, shift 0.62 nJ / bit [2] 0.5 ns

bus PCI-EX 3.0 1x RT, write 0.57 nJ / byte [2] 10ns
SSD/RT memory DDR2 256MB, 6.4 GB/s RT, read 0.074 nJ / byte [2] 0.5ns

host energy processor 192 pJ / inst. [5] -
CPU static idle : 9.25 W, load : 35.7 W [11] ALU 2.11 pJ / op. [5] -
CPU load 1.44 nJ / instruction [11] MUL 67.6 pJ / op. [5] -

DRAM static 1.03 W [12] REG 4.23 pJ / access [5] -
DRAM R/W Max. 1.34 / 2.34 W [12]

-chipset 5.49 W [5]
I/O 9.61 W [5]

graph examples [13][14]
name vertex number edge number average number of edges

amazon0601 400727 3200440 7.98658
dblp-2010 326186 1615400 4.95239

uk-2007-05@100000 100000 3050615 30.5062
algorithm examples [1][6]

iterations
amazon0601 dblp-2010 uk-2007-05@100000

Community Detection 10 10 10
PageRank 5 5 5

SSSP 10 7 5



eliminates the overhead of preprocessing and reduces I/O 
traffics, the gain is limited. Our storage reduces I/O traffics in 
CD and SSSP, because GraphChi cannot deal with random 
vertex queries. To avoid random access, GraphChi requires 
additional disk data I/O and shard processing in this case. 
However, our racetrack model can provide the required random 
data with low latency, thereby significantly reducing I/O traffics. 

 
Figure 7 Runtime of graph processing 

Figure 8 shows that the gain in total energy consumption is 
similar (average 39.6%~90.0%) to that of runtime in Figure 7. It 
is because the major components of energy consumption are the 
static energy of CPU and system, and these components are 
proportional to total runtime.  However, because CPU has 
longer idle state in racetrack model, the difference is bigger in 
Figure 8 than that in Figure 7, except CD which has processing 
as a dominant factor of runtime. The energy consumption of 
SSD and racetrack memory is almost the same. In the racetrack 
memory, shift operations (~10x and ~14x more frequent than 
reads and writes, respectively) dominate total disk energy 
consumption because of a lot of random accesses. 

 
Figure 8 Total energy consumption 

Figure 9 shows the effects of in-storage processing in our 
intelligent storage. In this case, the in-storage processor is 
implemented as a stream processor and performs pagerank. The 
intelligent storage gives performance benefits mostly by 
eliminating data transfer between storage and host. The 
comparison between the intelligent storage (i.RT in Figure 9) 
and the original racetrack-based storage (RT) shows that, in the 
two graphs of Amazon and DBLP, the in-storage processing 
reduces I/O traffics between host and storage while increasing 
processing time. Their net effect is reduction in total runtime. 
The graph, UK gives reductions in both I/O and processing time 
because our model finds edge data based on vertex. Thus, the 
high average number of edges in UK graph (about 30.5 in Table 
2) reduces the amount of pointer operation per each edge, which 
enables the device to operate more efficiently compared to the 

other graphs thereby reducing processing time. The in-storage 
processing gives on average additional 13.8% and 13.1% 
improvements in runtime and energy consumption, respectively. 

 
Figure 9 Runtime and energy comparison 

6. Conclusion 
Graph computation is characterized by random accesses to the 
storage. In order to overcome the limitations of current graph 
computation based on NAND Flash memory-based SSD, we 
propose (1) utilizing a cheap and low latency memory, racetrack 
memory and (2) exploiting its low latency benefit with a pointer-
assisted graph representation. Our experiments show that the 
proposed storage offers 40.2%~86.9% improvement in graph 
computation time and similar improvements in energy 
consumption. The in-storage processing of simple graph 
computations can also give additional improvements by 13.8% 
(runtime) and 13.1% (energy) on average. 
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