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Abstract—To maintain a predictable execution environment,
an embedded system must ensure that applications are, in
advance, provided with sufficient resources to process tasks,
exchange information and to control peripherals. The problem
of assigning tasks to processing elements with limited resources,
and routing communication channels through a capacitated
interconnect is combined into an integer linear programming
formulation. We describe a guided local search algorithm to solve
this problem at run-time. This algorithm allows for a hybrid
strategy where configurations computed at design-time may be
used as references to lower the computational overhead at run-
time. Computational experiments on a dataset with 100 tasks and
20 processing elements show the effectiveness of this algorithm
compared to state-of-the-art solvers CPLEX and Gurobi. The
guided local search algorithm finds an initial solution within 100
milliseconds, is competitive for small platforms, scales better with
the size of the platform, and has lower memory usage (2-19%).

I. INTRODUCTION

Embedded systems become larger and increasingly more com-
plex. One of the resulting new challenges to be dealt with is that
at run-time, systems are confronted with unforeseen combinations
of applications, possibly triggered by the environment, and degra-
dation and variability in the hardware. The applications themselves
behave more dynamically, influenced by functional parameters or
the processed data. To handle the unanticipated scenarios, and to
increase the overall operational efficiency, capacity planning and
resource management is shifting from design-time to run-time. The
process of allocating the required set of resources for a single
application is called mapping. As a result of mapping, the allocated
resources compose a virtual platform that ensures that applications
run in a predictable execution environment. The focus of this paper
is on the partitioning of the processing, memory and communica-
tion resources of a physical platform into multiple virtual platforms.
This concept is known as reservation-based resource partitioning,
which is widely acknowledged as a paradigm to design (real-time)
embedded systems [1].

A. Related work and contribution

Recent surveys on application mapping to many-core platforms
are presented in [2] and [3]. In the classification system of [2],
a mapping technique is called static if the resources required by
a task are allocated before its execution and are not changed
thereafter. Our static mapping approach is positioned in the hybrid
or run-time mapping category of [3], targeting heterogeneous archi-
tectures with centralized management.
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In constrast to approaches that try to map applications to
an isolated region in a tiled architecture, we think that multiple
applications should be mapped into an interwoven fashion due
to I/O constraints. Our generalization of the mapping problem
allows for more complex architectures, heterogeneous interconnect
topologies and arbitrary hardware elements.

In the next section, the multi-resource quadratic assignment
and routing problem (MRQARP) is formulated, based on the multi-
resource quadratic assignment problem (MRQAP) [10]. To the best
of our knowledge, this extension of the generalized assignment
problem (GAP) has not yet been considered [4].

II. MULTI-RESOURCE QUADRATIC AS-
SIGNMENT AND ROUTING PROBLEM

Let application A = 〈T,C〉 be a weakly connected graph,
composed of tasks T and channels C ⊆ T × T between tasks. A
hardware platform P = 〈E,L〉 can be described as a graph with
elements E and links L ⊆ E × E between elements. Allocating
a virtual platform with resources for the execution of an applica-
tion involves task assignment and channel routing. Therefore, we
introduce two sets of binary decision variables:

απte: assignment of task t ∈ T to element e ∈ E
αγsduv: assignment of channel 〈s, d〉 ∈ C to link 〈u, v〉 ∈ L

We assume heterogeneous hardware platforms with different
types of elements, including I/O interfaces and memories. Tasks
need resources on compatible elements to be able to activate their
functionality. As this resource demand can often not be described
by a single number, we generalize the problem by modeling ele-
ments with a resource vector. The demand of task t for resource k
on element e is expressed with rπtek. As a dual, the resource
capacity vector cπek gives the availability of resource k at element e.
The total resource demand over all tasks assigned to a specific
element should not exceed its capacity. An arbitrary number of
architecturally different elements may be described by augmenting
the resource vectors (increasing k). Likewise, the bandwidth of
the communication channels and links is modeled in the resource
demand vector rγsd and capacity vector cγuv , respectively. The prob-
lem described so far is known as the multi-resource generalized
assignment problem (MRGAP) [4].

The resource vectors define the constraints on a solution, while
the cost function is used to make a choice out of multiple candi-
date solutions. In addition, the application uses the cost function
to express incompatibility of task-element pairs, and mapping
constraints such as tasks that may only be mapped to one or
more specific elements. The latter is particularly useful to express
constraints on the location of input and output data. The advantage
of modeling compatibility between tasks and elements in the cost
function rather than in a constraint is that the first allows for



the expression of multiple levels of ‘compatibility’. Because the
objective of applications may conflict with the system objectives,
we define the cost function as a product of a user defined metric
and a system metric. This results in the following cost function, in
which the quadratic part of MRQARP is visible:

costπ(t, e) = costuser(t, e)× costsys(e)
costγ(sd, uv) = costuser(s, d)× costsys(u, v)

1) Integer linear programming formulation: The formulation
of the multi-resource quadratic assignement and routing problem is
then given by:

min
∑
t∈T

∑
e∈E

απtecost
π(t, e) +∑

〈s,d〉∈C

∑
〈u,v〉∈L

αγsduvcost
γ(sd, uv) (1)

s.t.
∑
e∈E

απte = 1, (2)∑
〈u,e〉∈L

αγsdue + απse =
∑
〈e,v〉∈L

αγsdev + απde, (3)

∑
t∈T

rπtekα
π
te ≤ cπek, (4)∑

〈s,d〉∈C

rγsdkα
γ
sduv ≤ c

γ
uvk, (5)

απte ∈ {0, 1}, t ∈ T, e ∈ Ei
αγsduv ∈ {0, 1}, 〈s, d〉 ∈ C, 〈u, v〉 ∈ L

A. Computational complexity

Both problems embedded in the MRQARP formulation can be
reduced to the 3-partition problem [5], which is known to be NP-
complete in the strong sense. The problem is made difficult by the
limited resource capacities; i.e. by constraints (4) and (5). Even if
one of the problems could be solved efficiently, a decomposition
into a 2-step approach still gives an NP-hard optimization prob-
lem in the second stage. Therefore, we resort to a metaheuristics
approach based on guided local search in an attempt to integrate
both sub-problems into a single optimization loop.

III. GUIDED LOCAL SEARCH

The complexity of MRQARP renders exhaustive methods to
find the optimal solution inapplicable. Instead, we accept subop-
timal solutions and we aim for short computation times and low
memory usage. More precise requirements are not available, be-
cause the approach should be suitable for a wide range of systems
and applications. Even within the same operational context, the
non-functional requirements may change over time and between
requests. The algorithm described in this work is an anytime
algorithm; i.e. it provides increasingly better solutions when ad-
ditional computation time is allowed. This is one of the proper-
ties that makes GLS widely applicable. First, we describe some
concepts used in the guided local search approach, after which
these concepts are combined into the search algorithm described
in Section III-E.

A. Local search

A local search algorithm applies small changes, called moves,
to a candidate solution in order to obtain a neighbor solution. The
impact of a move is evaluated with the cost function, and only those

moves are applied that improve the solution. We employ a local
search procedure with three different moves. A shift move reassigns
a single task t to another element. Exchanging the assignment
of two task is called swap, which is a well known move for the
GAP [6]. A rotate move removes (ejects) a task t from its assigned
element e. Then another task t′ is shifted from element e′ to
element e, increasing the availability of resources on element e′.
Recursively, tasks are shifted from element e′′ to element e′. As a
last step, the chain is completed by assigning task t to element e′′.
Generalization of the rotate operation is known as chained shift [7],
which is based on ejection chains [7], [8]. The rotate move works
with chains of length 3 and 4.

The neighborhood Nshift(s) is the set of solutions that is ob-
tained by applying all possible shift moves to solution s. We define
Nswap andNrotate for the swap and rotate moves, respectively. Or-
dered on the complexity of the operation, we first search in Nshift,
followed byNswap and lastly inNrotate. A move that improves the
solution is applied directly, after which the local search is restarted
by searching in Nshift, until no improvements have been found in
the entire neighborhood N = Nshift ∪Nswap ∪Nrotate.

Due to the combined structure of the MRQARP, local search
easily becomes stuck at local optima and saddle points, where the
task assignment may be (near) optimal and the communication
routing infeasible, or the other way around. In that case, small
changes in the solution (neighborhood moves) may not improve
the solution as a whole. This is the main reason for the existence
of a variety of metaheuristics; an additional mechanism is often
required to traverse the search space in a clever manner. In our case,
penalties are used to steer the optimization process out of infeasible
or suboptimal areas, towards other parts of the search space.

B. Guidance with penalty weights

A solution is infeasible when some of the resources that are al-
located, are oversubscribed. To improve the feasibility of a solution,
moves have to be performed that trade solution cost for feasibility.
Concretely, this means that some tasks may need to be mapped to
less preferred elements to adhere to the capacity constraints. To
steer this process, the cost function penalizes the extent to which
a resource is oversubscribed. Per resource k at element e, the
contribution of task t to the oversubscription is penalized with a
factor of pek:

pcost(t, e) = costπ(t, e) +∑
k∈R

pek × ((
∑
t∈T

rπtekα
π
te − cπek)− (

∑
t∈T\{t}

rπtekα
π
te − cπek))

The penalty weights p are adjusted after each invocation of the local
search procedure, such that oversubscribed resources become more
expensive to allocate in the next iteration [8]. When the penalty
weights increase sufficiently, a point is reached where the demand
for previously oversubscribed resources is shifting toward other
resources. This approach guides the search away from a potentially
reoccurring difficulty in finding a feasible solution towards other
parts of the search space.

C. Path relinking

When the local optima of a problem are scattered, intensifica-
tion of the local search is not sufficient. Evolutionary algorithms
often resort to randomization to overcome this problem. Instead,
we employ a path relinking technique [9] that shows vast improve-
ments over alternative metaheuristic algorithms [10]. Path relinking
is a technique that combines multiple good solutions in an attempt
to create a ‘path’ out of a local optimum towards other parts of the
search space.



D. Communication routing

We assume that each application channel has to be routed over
a single path, and that some channel demands may be larger than
the minimal link capacity. We solve this sub-problem in a style
similar to the task assignment, by allowing capacity violations on
the links. At initialization, the Floyd-Warshall algorithm is used
to obtain a distance matrix for the shortest path between pairs of
elements. In the local search procedure, this lookup table is used
as an estimate for the cost function costγ , in addition to costπ .
The local search procedure then yields solutions that are locally
optimal with respect to the estimated communication costs. As
a postprocessing step, all channels involved in the neighborhood
operations of the local search are rerouted, possibly still violating
capacity constraints in the interconnect. For the next iteration,
taxation on the oversubscribed links makes them virtually more
expensive (longer), possibly resulting in a different set of shortest
paths. The required tax values can be calculated efficiently [11].

Algorithm 1 Guided Local Search
1: function GLS(p)
2: incumbent,R, S, ub← nil,∅,∅,∞
3: s′ ← GENERATESOLUTION(p)
4: w ← INITIALIZEWEIGHTS(p)
5: repeat . Focus on feasibility instead of cost
6: repeat
7: s, s′ ← s′, SEARCHNSHIFT(p, s′, w)
8: until s′ = s
9: s′ ← SEARCHNSWAP(p, s, w)

10: until s′ = s
11: loop
12: if FEASIBLE(p, s) && COST(p, s) < ub then
13: ub, incumbent← COST(p, s), s

14: if TERMINATECONDITION( ) then
15: return incumbent
16: w ← UPDATEPENALTYWEIGHTS(p, s, w)
17: R← ADDSOLUTIONTOREFERENCESET(R, s)
18: if S = ∅ then
19: if |R| >= MinSizeReferenceSet then
20: S ← PATHRELINKING(R)
21: else
22: S ← {GENERATESOLUTION(p)}
23: s′, S ← S[0], S[1 :]
24: repeat
25: repeat
26: repeat
27: s, s′ ← s′, SEARCHNSHIFT(p, s′, w)
28: until s′ = s
29: s′ ← SEARCHNSWAP(p, s, w)
30: until s′ = s
31: if PENALIZEDCOST(p, s, w) < 1.01× ub then
32: s′ ← SEARCHNROTATE(p, s, w)

33: until s′ = s
34: s← REPAIRCOMMUNICATIONROUTES(p, s′, w)

E. The overall GLS-algorithm

Algorithm 1 provides the pseudo code of our implementation
of guided local search for MRQARP. It takes a problem p as an
argument, and the main loop iterates until the terminate condition
is reached, after which the best known solution is returned, denoted
with incumbent. After initialization of the reference set R, the
working solution set S and the upperbound ub, a random solution s′
is generated. An initial local search procedure within Nshift ∪
Nswap is performed that only takes the resource oversubscription
penalties into account, but not the cost itself. The shift and swap
moves gradually improve solution s′, aiming for feasibility.

A similar local search procedure is defined in lines 29-40, with
the additional search inNrotate if the working solution s is of good
quality; i.e. when the penalized cost approaches the cost of the
incumbent solution. When a solution can no longer be improved,
it is considered to be locally optimal. With each locally optimal
solution s, whether feasible or not, the penalty weights w are

TABLE I. PEAK MEMORY USAGE OF THE EVALUATED SOLVERS (MB)

Solver C Cbus D Dring E Emesh

GLS 2.8 6.2 2.7 6.2 2.7 6.2
CPLEX 12.5 14.4 266.3 44.0 279.7 30.3 268.1

Gurobi 5.1 28.7 1178.5 36.8 1471.9 38.4 1207.0

increased to reflect the difficulties in adhering to the constraints,
or decreased when s is feasible (line 19). Then, the solution is
potentially added to reference set R (line 20), which used for
path relinking. With each iteration, a new local search procedure
is started, but with updated penalty weights w, and on a different
solution. When reference setR is sufficiently large, a solution set S
is generated using path relinking. The local search procedure is
applied to search solution s ∈ S. When S becomes empty again,
the path relinking is reinvoked.

For MRQARP, the local search takes an approximation of the
communication cost into account. In line 41, those communication
routes are repaired that are invalidated due to changes in the local
search procedure. The resulting routing might be infeasible due
to limited capacities in the interconnect. The resource constraint
violations of the interconnect are taken into account in the weight
update of line 19. The taxation on the links then steers the local
search procedure towards a feasible routing.

IV. COMPUTATIONAL EXPERIMENTS

Related work on the multi-resource generalized assignment
problem provides a dataset [12], [8], [10]. The dataset is composed
of three parts named ‘C’, ‘D’ and ‘E’, where the cost and resource
demand for the problems in part ‘C’ are randomly generated,
whereas in parts ‘D’ and ‘E’, the cost and resource demand is
inversely correlated. Each part contains problems parameterized
in their structure, having 100 tasks, 5,10, and 20 elements, and
1,2,4 and 8 resources per element. This results in 12 problems
per part, with 36 problems in total. We extended this dataset to
provide MRQARP instances, by generating interconnects for the
orginally unrelated elements in the dataset, and a communication
topology for the tasks. A random number (within (0,2)) of com-
munication channels is generated per task. Each communication
channel receives a bandwidth demand (within (1,10)) and costs
equal to one (meaning that no differentiation is added on this level).
In line with [8] for MRGAP, each link in the generated interconnect
provides a bandwidth that is 80% of the total bandwidth demand.
Note that the communication routing might use multiple links per
communication channel, increasing the strain on the interconnect.
Problems with 5 elements use a bus structure for communication.
For problems with 10 elements, pairs of elements are attached
to a bidirectional ring structure. For the larger problems with 20
elements, a 5×4 mesh network is constructed. We denote these tests
with Cbus, Dring and Emesh.

The computations are performed on one single-threaded core
of a 2.53 GHz Intel P8700 processor. A reduced clock frequency
(798 MHz) of the processor does not have significant impact, so we
conclude that the algorithms are memory-bounded. Table I shows
the peak memory usage of the solvers.

As we are interested in the short-term performance of the
algorithm, we compare the outcome of the guided local search
algorithm in the time interval (0,10s]. The average solution quality
at each sample moment is compared against the commercially
available solvers CPLEX 12.5 and Gurobi 5.1. The solvers are
configured to adjust their high-level strategy to prefer good quality
solutions over proving optimality. We measure the optimality gap,
which is the relative difference between the best found solution and
the optimal solution. This should be considered as a measure in



X95

X5

100 1,000 10,000

0.1

1

0.1

O
pt

im
al

ity
ga

p(
%

)

C: |T|=100, |E|=5

X95

X5

100 1,000 10,000

0.1

1

10

0.1

10

D: |T|=100, |E|=10

X95

X5

100 1,000 10,000

1

10

100

10

E: |T|=100, |E|=20

X95

X5

100 1,000 10,000

0.1

1

0.1

Time (ms)

O
pt

im
al

ity
ga

p(
%

)

Cbus: |T|=100, |C|=43-61, |E|=5, |L|=11

X95

X5

100 1,000 10,000

1

1010

Time (ms)

Dring: |T|=100, |C|=41-58, |E|=10, |L|=30

X95

X5

100 1,000 10,000

3.16

1010

Time (ms)

Emesh: |T|=100, |C|=39-62, |E|=20, |L|=162

Guided Local Search Cplex 12.5 Gurobi 5.1

Fig. 1. Median convergence characteristics of the GLS algorithm compared to CPLEX and Gurobi on problem instances (C,D,E) and (Cbus,Dring,Emesh).

terms of relative performance over time, between solvers, and over
variations in the problem structure, and not as a measure of absolute
quality. In contrast to the ILP solvers, the results of our guided local
search algorithm vary per run, caused by the list randomization
in the implementation. Therefore, the results of our algorithm
are based on the median of 100 runs for MRGAP instances
(C,D,E), and 30 runs for MRQARP instances (Cbus,Dring,Emesh).
The observed variation is captured with the 5th and 95th percentile,
denoted with X5 and X95 respectively.

The graphs in Fig. 1 show the aggregated results of our GLS
implementation on the 12 problems in dataset ‘C’, ‘D’, ‘E’, ‘Cbus’,
‘Dring’, and ‘Emesh’. Increasing the number of elements provides
more freedom in choice, resulting in solutions with an increased
optimality gap. We observe that the best five percent (X5) of
the solutions from GLS are always better than the results of the
ILP solvers, while the median of the results is competitive. The
dispersion of the results is partly caused by the aggregation of
the 12 problems per graph. On average, the GLS approach yields
feasible solutions within a hundred milliseconds, often within
10% of the optimal solution. Within Cbus, the problem remains a
complex integer packing problem, which is in favor of the ILP
solvers. The solvers have similar convergence characteristics for
the ring structure (Dring), with GLS being slightly faster to the first
feasible solution. The problems with the mesh networks (Emesh)
put more strain on the ILP solvers. GLS clearly outperforms both
ILP solvers in the first seconds of the optimization process. Our
approach is suitable for platforms of the scale of Emesh and beyond.

V. CONCLUSIONS

The integer linear programming formulation of the multi-
resource quadratic assignment and routing problem (MRQARP)
covers a wide range of domain-specific mapping problems. The
problem is NP-hard in the strong sense, disqualifying exhaustive
algorithms. The proposed guided local search (GLS) algorithm for
the MRQARP is robust with respect to all 72 problem instances
in the dataset, and provides an overall balance between good
initial solutions and a stable convergence to the optimum. GLS
outperforms state-of-the-art ILP solvers, as the scale of the plat-
form and interconnect increases. For the problem instances in the

dataset, GLS is able to obtain solutions within 10% of the optimum
with only a few megabytes of memory and within hundreds of
milliseconds. An additionally reduction in the run-time overhead
may be obtained with a hybrid mapping strategy that makes use of
configurations precomputed at design-time.
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