
p-OFTL: An Object-based Semantic-aware Parallel
Flash Translation Layer

Wei Wang, Youyou Lu, and Jiwu Shu ∗

Department of Computer Science and Technology, Tsinghua University, Beijing, China
Tsinghua National Laboratory for Information Science and Technology, Beijing, China

Email: {wangwei11,luyy09}@mails.tsinghua.edu.cn, shujw@tsinghua.edu.cn

Abstract—With increased density and decreased price, flash
memory has been widely used in storage systems for its low
latency and low power features. However, traditional storage
systems are designed and excessively optimized for magnetic
disks, and the potential of flash memory is not brought into full
play in the form of Solid State Drives (SSDs). In this paper, we
propose p-OFTL, an object-based semantic-aware parallel flash
translation layer (FTL). p-OFTL removes the mapping table in
the FTL and directly manages the flash memory in file objects,
which enables optimization of data layout in the flash using object
semantics. While the removing of the mapping table improves
system performance, a challenge remains to exploit the internal
parallelism when maintaining the continuity of logical addresses
in each object, which is essential for efficient garbage collection.
To address this challenge, p-OFTL statically remaps the addresses
by shifting the bits in the addresses, which spreads writes to
different internal parallel units without another mapping table.
Also, p-OFTL employs a semantic-aware data grouping algorithm
to group data pages by trading off the hot-cold clustering for the
continuity of logical addresses, so as to reduce the page movement
in garbage collection. Experiments show that p-OFTL improves
system performance by 4.0% ˜ 10.3% and reduces garbage
collection overhead by 15.1% ˜ 32.5% in semantic-aware data
grouping compared to those in semantic-unaware data grouping
algorithms.

I. INTRODUCTION

Magnetic disks, which have dominated the storage market
for decades, are now threatened by the flash storage, which
has low access latency and low power consumption. With
decreased price and increased density, flash-based Solid State
Drives (SSDs) are widely used in both enterprise and em-
bedded storage systems. But the access to flash memory is
different from that to magnetic disks. Flash memory cannot be
overwritten, which needs an erase operation before overwriting
the data (in-place update). And it is read or written in the unit
of pages (e.g., 4KB) and erased in the unit of blocks (e.g.,
64 pages) [2]. To hide the long latency of erase operations
before overwriting, flash translation layers (FTLs) are used to
remap the writes to free pages, which is called out-of-place
update. With the block device emulation of FTLs, flash-based
SSDs can easily substitute magnetic disks without changes to
existing software or hardware.

∗Corresponding author: Jiwu Shu (shujw@tsinghua.edu.cn).
This work is supported by the National Natural Science Foundation of

China (Grant No. 60925006), the State Key Program of National Natural
Science of China (Grant No. 61232003), the National High Technology
Research and Development Program of China (Grant No. 2013AA013201),
Shanghai Key Laboratory of Scalable Computing and Systems, the research
fund of Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology,
Huawei Technologies Co. Ltd., and Tsinghua University Initiative Scientific
Research Program.

However, the block interface between software systems and
SSDs prevents the optimization of data layout in either side,
while the data layout is important to both the performance
and the endurance of flash storage. Flash memory has limited
program/erase (P/E) cycles, which is known as the endurance
problem. And the problem is getting worse with the increasing
density, e.g., the P/E cycles of SLC are 100,000, and MLC
10,000 [9]. In flash storage, valid pages in flash blocks should
be moved to free blocks before erasing these blocks, which
is known as garbage collection. This movement incurs more
read and write operations, and thus hurts both performance
and endurance.

There are two mapping tables in traditional SSD storage
systems. One is the mapping from file offset to logical page
address in the file system, and the other is the mapping from
logical page address to physical page address in the FTL.
Unfortunately, the indirection found in many FTLs comes at
a high price [11], which manifests as performance cost, space
overhead, or both. Recent researches have proposed to leverage
the storage management in FTLs of SSDs in the storage
management of file systems to remove the duplicated mapping
tables [5], [7], [11]. Unfortunately, file/object semantics (the
type of and the relationship between data pages, e.g., pages
belonging to the same file/object) have not been used to guide
the distribution of data pages to different blocks and banks
in flash memory, which is know as data layout. Since pages
in the same object have higher probability to be created,
deleted and modified at the same time, the continuity of logical
addresses is important to cluster the pages and improve the
efficiency of garbage collection. Failure to cluster the pages in
the same object increases the fragmentation in blocks, which
increases the average number of valid pages in each block and
further decreases the garbage collection efficiency. However,
optimizing data layout to exploit the internal parallelism while
maintaining the continuity of logical continuity remains a
challenge. First, accesses to flash memory can be distributed to
different planes, banks or channels (i.e., internal parallelism).
But aggressively allocating pages from different blocks breaks
the continuity of logical addresses. Second, legacy data group-
ing algorithms [8] separate the hot pages from the cold, which
makes the fragmentation problem more serious.

Our goal in this paper is to exploit the internal parallelism
without additional mapping table and to improve garbage
collection efficiency by optimizing the data layout using
file/object semantics, so as to improve the performance and
endurance of flash-based storage systems.

Observations and Key Ideas: We propose an object-
based parallel flash translation layer, p-OFTL, to directly
manage the flash memory without the FTL mapping table.978-3-9815370-2-4/DATE14/ c©2014 EDAA

Object-based management enables data layout optimization
using object semantics, and we make two major changes in the
object-based FTL to take this advantage. (1) Page addresses
can be remapped statically without introducing another map-
ping table, which would otherwise incur extra maintenance
overhead. In order to exploit internal parallelism of flash
storage, we shift the address bits to remap pages to different
parallel units statically, and pages with continuous addresses
can be written simultaneously. (2) Pages in the same object
have high probability to be modified simultaneously. When
designing data grouping algorithms to group writes, not only
the hot-cold separation but also the logical continuity should
be considered. In order to improve the garbage collection effi-
ciency, we propose a semantic-aware data grouping algorithm,
which only merges the adjacent pages, to keep the continuity
while separating the hot data from the cold.

Our contributions are summarized as follows:

1) We propose p-OFTL to directly manage the flash memory
by removing the mapping table from the FTL of SSDs
and use a static address remapping method to provide
internal parallelism without additional mapping table.

2) We design a new data grouping algorithm, which makes
trade-offs between hot-cold clustering and the page clus-
tering of same objects, so as to improve garbage collection
efficiency using object semantics.

3) Our evaluation of p-OFTL shows that the static address
remapping effectively exploits the internal parallelism of
flash storage, and the access latency is reduced nearly
inversely proportional to the parallelism degree. Also, the
data grouping algorithm using object semantics makes
further efforts to optimize data distribution and gains an
improvement in system performance by 4.0% ˜ 10.3%
and a reduction in garbage collection overhead by 15.1%
˜ 32.5%.

II. MOTIVATION AND RELATED WORK

Flash memory has significant differences from magnetic
disks. Flash-based SSDs not only hide the characteristics of
flash memory from the system, but also prevent the semantics
from the device. We propose an object-based FTL to optimize
the FTL design with both file/object semantics and flash
memory characteristics into consideration.

A. Internal Parallelism

One major difference between magnetic disks and flash-
based devices is the internal parallelism. Magnetic disks have
only one head and have to access the data serially. In contrast,
most SSDs are built on an array of flash memory packages,
which are connected through multiple channels to flash mem-
ory controllers, and provide internal parallelism at different
levels [3]. FTL mapping table is flexible to redirect data writes
to different banks by modifying the page mapping. However,
the object-based flash translation layer aims to remove the FTL
mapping table in order to eliminate its translation and storage
overhead. In this paper, we use static address remapping in
object-based flash translation layer to provide flexible paral-
lelism without additional mapping table.

B. GC Induced Write Amplification

Another major difference is the endurance problem. Flash
memory cells wear out with more program/erase cycles, while

Applications

File Systems(e.g. ext3)

FTL

Flash

Objected-based File
Systems

p-OFTL

Flash

Applications

Fig. 1: Architecture Comparison of p-OFTL and normal FTL
in SSDs.

magnetic disks do not. Garbage collection (GC) has a large
impact on endurance when the average number of valid pages
in flash blocks is high. GC selects blocks for erase and moves
valid pages to free blocks before erasing these blocks. The page
movement causes extra writes. To minimize the pages needed
to move, FTLs usually classify data according to their update
frequencies into hot and cold [8]. Data with the similar update
frequencies are written to the same blocks and will probably
turn invalid in the same time. When the block is picked out
for erasure, few valid pages need to be migrated. In addition,
because pages in the same file/object tend to be updated or
deleted at the same time, the logical address continuity of data
pages in each file/object also has impacts on GC and thus the
write amplification. As such, we aim to achieve better data
layout by using object semantics.

C. Related Work

Nameless Writes [11] and Direct File System [5] propose
to remove the mappings of the file systems to allow the FTL
to directly manage the flash storage space for the purpose of
better performance. But the file semantics fail to be passed to
the FTL for intelligent storage data layout. p-OFTL adopts the
concept of object-based storage instead of traditional local file
systems to export the object interface to the objected-based file
systems, which can easily take advantage of the file semantics
for intelligent data layout. File-system-aware FTL [10] takes
the use of a filter mechanism to separate the access request
of file metadata and contents for better performance based
on the knowledge of the layout of file systems. Aimed at
reducing the overhead introduced by file systems, it has to
get well understanding of the file systems layout, however, it
does little in the data layout in SSDs. OFSS [7] takes use of an
object-based design, OFTL, and significantly reduces the write
amplification from file systems with the system co-design with
flash memory. But it ignores the internal parallelism of flash
and file/object semantics. With the file/object semantics of data
ignored, SFS [8] simply divides the data into cold data and
hot data, and gathers the data with the same update frequency
together. With a view to the internal parallelism, p-OFTL goes
a step further and has the file/object semantics in mind to
optimize the data distribution. With the help of semantics, p-
OFTL can gain a better data distribution and reduce the GC
induced write amplification. Moreover, p-OFTL can also make
the best of the sequential access optimization of the traditional
storage systems.

III. P-OFTL DESIGN

In this section, we present an object-based parallel flash
translation layer, p-OFTL, to directly manage flash memory

using object semantics. The design goals of p-OFTL are:
(1) internal parallelism support without additional mapping
table; (2) semantic-aware data grouping to improve the garbage
collection efficiency.

As shown in Figure 1, p-OFTL merges the storage man-
agement in file systems with the FTL and manages the
flash storage space directly. The address mapping function
is removed from the devices. Without address mapping, the
device provides a simple interface for read, write, and erase
operations. As a consequence, p-OFTL accesses the flash pages
directly. Therefore, p-OFTL is able to determine the locations
that the data writes are performed to. Other functions like
garbage collection and wear leveling are moved to p-OFTL as
well. Simple wear leveling and garbage collection mechanisms
are implemented in p-OFTL and are not discussed much in this
paper.

p-OFLT uses an object storage framework following the
design of OFSS [7]. It uses objects to manage the data layout
and exports the interface to the file systems for accessing the
object data and attributes. An object is a collection of data and
attributes with a unique ID. File data are stored in one or more
objects, and file metadata are stored in the object attributes. As
such, p-OFTL is able to gain the object semantics and optimize
the data layout.

A. Parallelism with Static Address Remapping

In p-OFTL, we exploit the bank-level internal parallelism
of flash devices. The address of a flash physical page can be
described as a 32-bit integer and divided into three parts (A, B,
C). The higher address part A is the bank address and identifies
which bank the page belongs to. The middle part is the block
address in the bank, while the lower part is the page address
in a block. For sequential access, the physical addresses of the
pages accessed are in sequence and will be probably located in
the same bank. This leads to poor performance. To exploit the
parallelism of flash without destroying the semantics, we use
a simple static address mapping and then provide a sequential
address space with no additional mapping table. The core idea
is to combine physical blocks from several banks into super-
blocks and data access will be spread to the pages in super-
blocks for read and write operations, and an entire super-block
for erasure.

The static mapping approach can be easily implemented
by shifting and is described as follows. The bank address A
can be divided into two parts A1, A2, so the page address
becomes (A1, A2, B, C). We then map it to (B, A1, C, A2).
For instance, we set the degree of parallelism to be 4, then
A2 is the low two bits of bank address and A1 is the higher
bits. The parallelism degree is flexible by shifting different
number of bits. We combine the 4 banks (e.g. bank 0,1,2,3)
into a group, and blocks in the banks with the same block
address make up a super-block which is four times larger than a
normal block. A sequential access to multiple pages in a super-
block will be spread to the four banks, which can benefit from
the parallelism. Legacy storage systems have been focusing
on sequential access optimization. No additional mapping
table is needed, this static mapping approach works much
better for the current sequential-access-oriented optimization
model adopted in system and application designs, which is
particularly important for data-intensive applications.

As to the GC, we can erase either the original flash block
or the entire super-block at a time. Erasing an original block
of a super-block with other blocks remained, will destroy
the continuity of the logical address, making it difficult to
maintain the file content addressing. Once erasing the entire
super-block, the write amplification will grow as the super-
block size increases. We choose the second way. As a result, a
more efficient data grouping algorithm is needed for better data
distribution and less write amplification. Moreover, the degree
of parallelism can be easily adjusted for different needs and
compromise between latencies and write amplification.

B. Semantic-aware Data Grouping

In the process of garbage collection, the valid pages within
a block must be migrated to other regions before the block
can be erased, which leads to extra cost. And the more invalid
pages in a victim block, the higher cost. The main reason is
that the pages of a block turn invalid in different periods of
time and when the block is picked out for erasure, some pages
still remain valid. As a result, we can put data which will be
rewritten in the same time together and store them in the same
block, then pages in that block will turn invalid in the same
period of time which leads to less data movement during GC.

Traditional ways [8] obtain the update frequencies of data
from history and then simply classify data as hot and cold
according to their update frequencies. Then data with different
degrees of hot and cold will be stored in different regions.
However, the history information of the data is not accurate
without file/object semantics. For example, when a file is
deleted from file systems, the logical pages the data stored
in will be reclaimed and reused for other files. The history
information becomes unreliable. Moreover, the data appended
to a file, which have never been accessed before have no
history, and cannot be clarified according to the degree of hot
and cold.

Eliminating the dual mapping of system software and FTL-
s, p-OFTL gains a better perception of file/object semantics
which contributes to a better data distribution. First, p-OFTL
can obtain the various data types of the flash pages, such as
data pages, metadata pages. Data of different types can be
separated and conducted to different regions. Second, p-OFTL
combines small writes to a large continuous write and then
writes them simultaneously. When data are written to flash
memory from the main memory, they are grouped according
to their update frequencies and the logical address continuity
of data pages. With logical continuity of data pages, fewer IO
requests are needed for accessing the same amount of data,
which reduces the time spent on the software and makes better
use of internal parallelism of SSDs. The continuity of data
pages also reduces the size of mapping table of an object in
p-OFTL, which will benefit the management and addressing of
object data in turn. Because of the locality of data access, some
data are accessed, and then the contiguous part may be most
probably accessed soon. The adjacent data not only have the
similar update frequency, but also have a fair chance of being
overwritten and turning invalid in the same time. Therefore,
when written back to the flash, the data need to be divided
into groups and written piecewise continuously. Making the
most use of the semantics of file/objects, an semantic-aware
data grouping algorithm is proposed to distribute the data in

flash storage according to both the update frequencies and the
data pages’ semantics.

1) Modeling : The above question can be modeled as
follows:

A write to the flash involves multiple flash pages, let the
number of pages be L. As to a flash page, the degree of hot
and cold is defined as hp:

hp =

{
Wp/(T − Tm

p), (Wp > 0)

h0, (Wp = 0)

Among which, Wp is the write count of the logical pages in
objects, T is the current time, Tm

p is the last modified time of
that page, and h0 is the degree of the adjacent pages (limited
to 5 pages at most).

The degree of a page mainly depends on the access history
of that page, which can be evaluated by the write count and
last modified time. But for appending operations, the pages are
written the first time and have no history. Their degrees of hot
can be defined as the average hot of adjacent pages h0:

h0 =
1

n
∗
∑

1≤i≤n

hi, (n ≤ 5)

Then the goal is to divide the L pages into a few continuous
groups and achieve the following goals.

• For each page in a group, its degree of hot and cold
hp should be as close as possible;

• The number of groups should be as few as possible,
that is the pages should be as continuous as possible.

Assume the pages are divided into k groups,
G1, G2, G3, ..., Gk. Each group is a collection of a number
of continuous pages. The number of groups is k and the hot
diversity of pages within each group is δ(Gi).

Hi =
1

m

m∑
j=1

hpj
, pj ∈ Gi

δ(Gi) =
1

m

∑
p∈Gi

|hp −Hi|

Let the monotone increasing function, f(k) = k2, be the
weight of group number k. For a certain grouping g, define its
total weight Wg .

Wg =

k∑
i=1

δ(Gi) + λf(k)

λ is constant, and g is the grouping G1, G2, G3, ..., Gk, in
other words, the pages are grouped into G1, G2, G3, ..., Gk.
The total weight consists of two parts: the total hot diversity
of each group and how many groups data are divided into. The
goal becomes finding out the grouping that has the minimum
weight, which is the best grouping. For the ith group, it
contains m flash pages p1, p2, p3, ..., pm, the hot of each is
h(pj), and the average is hi.

Achieving the best grouping, the mass of data can be
written to the flash sectional continuously according to the
above grouping.

2) Algorithm: On the basis of the above model, the data
grouping algorithm can be described as the following steps:

(a) Calculate the degrees of hot and cold of the L flash pages
h1, h2, h3, ..., hL;

(b) Initialize the grouping g0 = {G1, G2, G3, ..., Gk}, among
which, Gi = {i} , that is to say each page forms one
group;

(c) For grouping gj , we can try to combine two continuous
groups, Ga, Gb, into one group Gc, and get a new grouping
g

′

j . Then the decrease of weight from gj to g
′

j is

∆j(a, b) = gj − g
′

j

= δ(Ga) + δ(Gb)− δ(Gc) + λf(kj)− λf(kj−1)

= δ(Ga) + δ(Gb)− δ(Gc) + 2λf(kj)− λ
(d) Find out the two groups that can maximize ∆j(a, b),

merge them and get the next grouping gj+1, and go to
Step (c). Otherwise, each of the ∆j(a, b) is no more than
0, in other words, the total weight cannot be reduced any
more;

(e) Now we get the best grouping g = {G1, G2, G3, ..., Gk′},
which leads to the minimum weight. As to each group, find
the region that is the most proximal in update frequency
from the whole write regions (in p-OFTL we set it as four).
Some groups may be mapped to the same region, and we
can write the data to the corresponding region together.

Because we only merge the adjacent pages, the continuity
of logical address will be able to endure in some ways. In
this way, we can gain the continuity and hot-cold separation
at the same time. When data are written to flash piecewise
continuously, each piece of data will probably be overwritten
and turn invalid in a similar period of time. As such, we can
balance the hot and cold separation and the data continuity.

IV. EVALUATION

In this section, we first evaluate the overall performance
of p-OFTL compared to existing SSD-formed flash storage.
And then we evaluate the benefits in exploiting the internal
parallelism from static address mapping and the benefits in
garbage collection from semantic-aware data grouping.
A. SSD Simulator

We conduct our evaluation on an SSD simulator, which
is implemented based on Flashsim [6]. We create a virtual
block device in Linux kernel which simulates the hardware
architecture of SSD: package, die, plane, block, page and
channel for data transmission. In the simulator, flash memory
packages are connected to the controller through multiple
channels. Each channel is shared by multiple packages and
is operated independently. Various parallelism degrees are
provided in the simulator. In addition, it also simulates the
out-of-band (OOB) area of flash page. OOB is the extra
space alongside each flash page, which stores a variety of
information including error correction code for the page data.
In the simulator, OOB is exposed to the software for direct
reads or writes. The latency of each I/O request is calculated to
evaluate the performance in the simulator. For each I/O request,
the data transmission path has to be locked for certain time.
The latency of each operation is the sum of each read/write
latency and the data transmission latency. And the latencies are
collected using the high-precision clock in the Linux kernel.

(a) Read Latency (b) Write Latency

Fig. 2: Performance Comparison of p-OFTL and ext3+PFTL. Note that CH-n means the cache hit rate of mapping table is n%.

(a) Read Latency (b) Write Latency

Fig. 3: Effects of Static Address Remapping. Note that p-OFTL(n) means the parallelism degree is n, and GROUP means that
the semantic-aware data grouping algorithm is used.

TABLE I: Simulator Configurations

Operation Read Write Erase
Latency 0.05ms 0.20ms 1.50ms
Unit size 4KB 4KB 256KB

B. Experimental Setup

We use the system level I/O traces home02 [1], which
are collected from the main campus general-purpose servers.
We extract read and write operations from these traces and
then replay them on p-OFTL. We collect the runtime, the
erase count and the number of pages moved during garbage
collection to evaluate the performance and the endurance of
p-OFTL. We also simulate a page-level FTL (PFTL), which
transforms the logical address to the physical address using a
page-level mapping table, as a kernel module to evaluate the
traditional file systems.

We implement p-OFTL, including the static address remap-
ping and the semantic-aware data grouping algorithm, on the
SSD simulator in Linux kernel 3.2.9. In the simulator, the page
size is set as 4KB, and each block contains 64 pages with a
total size of 256KB [2]. The size of the whole virtual disk
size is 3.64GB. The parallelism degree is 16, i.e., at most 16
operations can be performed independently at the same time.
The latencies for reading and writing a single page, erasing
a block are configured as shown in Table I. The experiments
are conducted on Fedora 16 with kernel 3.2.9 running on a
computer with a 4-core Intel i5 2.4GHz processor and 16GB
memory.

C. Overall Performance

In this section, we evaluate the performance of p-OFTL
against ext3 built on PFTL in terms of read and write latencies.

In the simulation, ext3 is mounted with data journal option.
We collect the average read and write latencies under the
situation that there is enough free space in flash so as not to
be affected by the garbage collection. As the FTL is usually
implemented in the controller with limited DRAM cache, the
mapping table cannot be completely cached. A lot of research
is conducted on optimizing SSD mapping algorithm to improve
the cache hit ratio [4]. To evaluate the performance under
different cache hit ratios, we artificially set the cache hit rate
ranging from 100% to 80%, and then write various sizes
of data to the flash and collect the average read and write
latencies.

Figure 2 shows the read and write latencies of p-OFTL
and ext3 on PFTL. From the figure, we have two observations.
First, the performance of p-OFTL is a little poorer than that of
ext3 on PFTL when the cache hit ratio is 100%. Second, when
the cache hit ratio get lower, which is common for embedded
FTLs, the performance of p-OFTL gets better than ext3 on
PFTL. In this case, the overhead of FTL mapping table gets
visible to the system, making the overall performance poorer.
In contrast, p-OFTL takes use of the redundant host memory
and reduces the latencies by eliminating the mapping table in
the FTL.
D. Effects of Static Address Remapping

In this section, we evaluate the impact of static address
remapping on p-OFTL by measuring the latencies under vari-
ous parallelism degrees. We collect the latencies by varying the

(a) Total Runtime (b) Write Amplification

Fig. 4: Effects of Semantic-Aware Data Grouping.

read/write size from 4KB to 256KB and the parallelism degree
from 1 to 16. Figure 3 shows that both the read and write
latencies are nearly inversely proportional to the parallelism
degree. The latencies are observably reduced as the parallelism
degree increases, and the static address remapping is proved
to be an efficient approach to exploit the internal parallelism
of flash.

E. Effects of Semantic-Aware Data Grouping

With the increase of parallelism degree, the latency is
obviously reduced. However, the size of the super-block also
increases, which leads to more data movement when erasing
one super-block and gives rise to the write amplification.
To measure the impact on write amplification and system
performance, we write totally 20GB data to the 3.64GB SSD
simulator. And we collect the runtime, the number of pages
moved and the erase count during garbage collection.

Figure 4 shows the total runtime as well as the averaged
number of pages moved in erasing one flash block (i.e.,
the number of pages moved divided by the erase count). In
the figure, we first observe the trend of performance and
endurance with the increase of parallelism degree. As shown
in Figure 4(a), the performance is improved with higher
parallelism degree when the parallelism degree is not larger
than 8, but it becomes worse when the parallelism degree
is 16. This performance loss is induced by the overhead
of garbage collection, which has eaten up the benefits from
parallelism. This cause is further explained in Figure 4(b).
Figure 4(b) shows the averaged number of pages moved for
erasing one flash block. We can see the write amplification
increases observably as the parallelism increases.

In Figure 4, we also compare the semantic-aware group-
ing (SA-grouping) algorithm with SFS data grouping (SFS-
grouping) algorithm [8], which is designed only with hot-cold
separation. No-grouping means that the data are written to the
flash sequentially in spite of that whether the data are hot or
cold. The SFS grouping algorithm simply divides the data into
hot and cold, then written them to the flash separately. Figure
4(a) and (b) show that semantic-aware data grouping algorithm
is more efficient than the traditional algorithm. Moreover, we
can see from Figure 3 that the data grouping algorithm has
a very tiny overhead on read and write latencies which can
be ignored. The algorithm reduces the write amplification by
about 15.1% ˜ 32.5%. and brings 4.0% ˜ 10.3% improvements
to the whole system performance compared to SFS data
grouping algorithm.

V. CONCLUSION

Dynamic address mapping in the FTL simplifies the design
and implementation of the software, however, it builds strong
barriers between software and devices. To take better use of
flash storage, an object-based semantic-aware parallel flash
translation layer, p-OFTL, is proposed to tear up the semantic
barriers by directly managing the flash memory. In p-OFTL, a
simple static address mapping approach is used to exploit the
internal parallelism of flash storage. In addition, a semantic-
aware data grouping algorithm is designed to optimize the
data layout with object semantics. The write amplification is
effectively reduced, so as to benefit both the performance and
the endurance of flash storage.

REFERENCES

[1] Sos project traces. http://www.eecs.harvard.edu/sos/traces.html.
[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and

R. Panigrahy. Design tradeoffs for SSD performance. In Proceedings
of USENIX Annual Technical Conference, 2008.

[3] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing. In Proceedings of the 17th IEEE International Symposium
on High-Performance Computer Architecture(HPCA). IEEE, 2011.

[4] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings. ACM, 2009.

[5] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li. DFS: a file
system for virtualized flash storage. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies(FAST), 2010.

[6] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar. Flashsim: A simulator
for nand flash-based solid-state drives. In First International Conference
on Advances in System Simulation(SIMUL). IEEE, 2009.

[7] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-based
storage through reducing write amplification from file systems. In
Proceedings of the 11th USENIX Conference on File and Storage
Technologies(FAST), 2013.

[8] C. Min, K. Kim, H. Cho, S. Lee, and Y. Eom. SFS: Random write
considered harmful in solid state drives. In Proceedings of the 10th
USENIX conference on File and Storage Technologies(FAST), 2012.

[9] C. Wang and W.-F. Wong. Extending the lifetime of nand flash memory
by salvaging bad blocks. In Proceedings of the Conference on Design,
Automation and Test in Europe(DATE), 2012.

[10] P.-L. Wu, Y.-H. Chang, and T.-W. Kuo. A file-system-aware ftl design
for flash-memory storage systems. In Proceedings of the Conference
on Design, Automation and Test in Europe(DATE). IEEE, 2009.

[11] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. De-indirection for flash-based ssds with nameless writes.
In Proceedings of the 10th USENIX Symposium on File and Storage
Technologies(FAST), 2012.

http://www.eecs.harvard.edu/sos/traces.html

