
Tightly-Coupled Hardware Support to Dynamic
Parallelism Acceleration in Embedded Shared

Memory Clusters

Paolo Burgio∗†, Giuseppe Tagliavini∗, Francesco Conti∗, Andrea Marongiu∗‡, Luca Benini∗‡
∗DEI – Università degli Studi di Bologna – Italy

†Università di Modena – Italy
‡Integrated Systems Laboratory – ETH Zurich – Switzerland

Email: {paolo.burgio, giuseppe.tagliavini, f.conti, a.marongiu, luca.benini}@unibo.it

Abstract—Modern designs for embedded systems are increas-
ingly embracing cluster-based architectures, where small sets
of cores communicate through tightly-coupled shared memory
banks and high-performance interconnections. At the same time,
the complexity of modern applications requires new programming
abstractions to exploit dynamic and/or irregular parallelism on
such platforms. Supporting dynamic parallelism in systems which
i) are resource-constrained and ii) run applications with small
units of work calls for a runtime environment which has minimal
overhead for the scheduling of parallel tasks. In this work,
we study the major sources of overhead in the implementation
of OpenMP dynamic loops, sections and tasks, and propose
a hardware implementation of a generic Scheduling Engine
(HWSE) which fits the semantics of the three constructs. The
HWSE is designed as a tightly-coupled block to the PEs within
a multi-core cluster, communicating through a shared-memory
interface. This allows very fast programming and synchronization
with the controlling PEs, fundamental to achieving fast dynamic
scheduling, and ultimately to enable fine-grained parallelism. We
prove the effectiveness of our solutions with real applications and
synthetic benchmarks, using a cycle-accurate virtual platform.

I. INTRODUCTION

During the last decade, we witnessed the shift from single
to multi- and many-core architectures for embedded systems.
One common design paradigm for embedded many-cores con-
sists of multi-cluster computation fabrics, where each cluster
contains up to a few tens of simple processing elements (PEs)
communicating via low-latency, high-throughput interconnec-
tion and shared L1 memory. Examples of cluster-based plat-
forms are nowadays numerous, and include STM STHORM
[5], Plurality HAL [19] or even GP-GPUs as NVIDIA Fermi
[15] among the others[10] [2].

Cluster-based architectures are capable of tremendous peak
Gops/Watt, but efficiently harnessing such a huge computa-
tional power is mostly demanded to the software layer. At the
same time, embedded applications from the domains targeted
by such architectures (e.g., image processing, computer vision
etc) are increasing in complexity and often expose high degree
of parallelism which is irregular in nature and/or dynamically
generated. Consequently, sophisticated programming abstrac-
tions and associated tool-chains are necessary for efficiently
exploiting cluster-based embedded systems.

Notable examples of computation models where units of
work can be dynamically and asynchronously created can be
found in the multi-core general-purpose and high-performance
computing domains. Cilk Tasks [14], Intel Threading Building

Blocks (TBB) [9], or other approaches such as the Apple
Grand Central Dispatch [4], Intel Carbon [11] or the current
OpenMP specification [1] all provide means to dynamically
specify more or less regular types of parallelism in an appli-
cation. Among these programming models, OpenMP is partic-
ularly appealing for the target cluster architecture, for several
reasons: i) most programmers are familiar with its intuitive
interface based on parallelization directives, to be added to a
standard C program; ii) the standard provides several flavours
of dynamic parallelism: dynamic loops, sections and tasks; iii)
unlike the other mentioned programming models, a number
of OpenMP ports for embedded systems exist [7][3][8][13],
which provides guidelines and code to get started.

OpenMP constructs for dynamic parallelism provide a
powerful and flexible solution to exploit irregular parallelism in
target applications, but their practical implementation requires
sophisticated runtime system support, which typically implies
important space and time overheads. The applicability of the
approach is thus often limited to applications exhibiting units
of work which are coarse-grained enough to amortize these
overheads. While this is often the case for general-purpose
systems and associated workloads, things are different when
considering embedded many-core accelerators. Minimizing
runtime overheads is thus a primary challenge to enable fine-
grained dynamic parallelism on embedded clusters.

In this work, we study the major sources of overhead in
the implementation of OpenMP dynamic loops, sections and
tasks, and propose a hardware implementation of a generic
Scheduling Engine (HWSE) which fits the semantics of the
three constructs. The adaptability of this HW block in the
context of different programming models is also discussed.
The HWSE is designed as a tightly-coupled block to the
PEs within a multi-core cluster, communicating through a
shared-memory interface. This allows very fast programming
and synchronization with the controlling PEs, fundamental
to achieving fast dynamic scheduling, and – ultimately – to
enable fine-grained parallelism. We develop RTL models of the
cluster and the HWSE, to obtain accurate synthesis results, and
SystemC models, which allow us to run complete applications
to validate the proposed approach. We compare the results
achieved by our HWSE with two freely-available OpenMP
runtime implementations, OMPi [3] and GNU LIBGOMP [8].

The rest of the paper is structured as follows. We discuss
related works in Section II and the target architectural tem-
plate in Section III. In Section IV we analyze the OpenMP
constructs for dynamic parallelism, and in Section V we
describe the HWSE and how it supports them. Finally, we978-3-9815370-2-4/DATE14/ c© 2014 EDAA

validate our approach and characterize the performance of
our implementation in Section VI, then summarize our main
findings and discuss future work in Section VII.

II. RELATED WORK

Several programming models from the general-purpose
computing domain support dynamic parallelism. Examples
are OpenMP [1], Cilk [14], Intel TBB [9], Apple Grand
Central Dispatch [4], among the others. Dynamic parallelism is
typically implemented by leveraging some sort of centralized
or distributed queue system, where tasks are inserted and
extracted dynamically, as the worker threads become available
at run-time. In some cases [4] [11] [19], the queue management
is supported by a dedicated hardware module. Kuacharoen et
al. [16] propose an HW task scheduler whose policy can be
dynamically reconfigured at runtime, while Pilkington [18]
implement a hardware thread scheduler for multi-processor
systems with real-time constraints. These solutions are tailored
to specific real-time systems, and do not cope with tightly-
coupled integration with processing elements, nor with pro-
gramming models. Paulin et al. [17] propose a object broker
(ORB) to dispatch tasks in a in a NoC-based multi-tile systems.
The approach considers an execution model which adheres to
a synchronous client-server semantic, while OpenMP is more
flexible and supports also asynchronous and deferred task cre-
ations. In addition, ORB is not tightly-coupled to cores, which
implies a high cost (50 call cycles for a complete round trip)
[17], while our HWSE can efficiently spawn and retrieve units
of work in just few clock cycles. Tendulkar et al. [21] propose a
lightweight implementation of OpenMP basic services on the
SARC architecture [20], exploiting architecture–specific fea-
tures (such as hardware counters and low-level communication
primitives). Their architecture is significantly different from
our tightly-coupled clusters, which ultimately leads to different
design requirements and implementation solutions. Kwok et
al. [12] propose an energy efficient hardware scheduler for
an architecture whose tasks are accelerated on an FPGA,
thus targeting an heterogeneous (host+FPGA) architecture with
specialized HW accelerators, which is very different from our
clusters. The Plurality HAL [19] embeds a task scheduler and
synchronization unit called Central Synchronizer Unit (CSU),
and provide a proprietary C-like language for task definition.
Intel Carbon [11] embeds a complex distributed queue sys-
tem+task dispatcher in a ring-based architecture, providing ISA
extensions to interact with the engine. Clearly these products
feature ad-hoc optimized designs for a specific platform and
associated programming model. As such, they obviously do not
share our goal of providing an implementation of a hardware-
scheduler which i) is tightly-coupled to the PEs of a shared-
memory, multi-core cluster, thus allowing very fine-grained
units of computations; ii) generically captures the semantics of
common constructs for supporting dynamic parallelism, which
makes it suitable to accelerate several programming models.
Section V comments on the applicability of the HWSE to some
of these programming models.

III. ARCHITECTURE

In Figure 1 we show a simplified block diagram of
the target cluster. It is inspired by platforms such as STM
STHORM [5], Plurality HAL [19] and Kalray MPPA [10]. It is
composed of (up to) 16 RISC-32 processors connected through
a low-latency, high bandwidth interconnect similar to the
ones proposed by Plurality LTD [19]. Processors communicate
through a fast multi-banked, multi-ported memory, which is

configured as a shared, software-managed scratchpad memory
(SPM). The number of ports and banks is a multiple K of the
number of processors to increase bandwidth. In case there are
no bank conflicts, concurrent accesses by multiple cores to the
SPM are served simultaneously by the interconnection. Bank
conflicts result in a higher latency, due to contention, which is
resolved based on round-robin arbitration. The crossing latency
of the interconnection is one clock cycle, and word interleaving
minimizes the probability of conflicts due to simultaneous
accesses to the same bank from multiple readers/writers. As
a consequence, conflict-free SPM accesses have two-cycle
latency. The interconnection supports read-broadcast: when
multiple processors read the same memory location at the same
time all the requests are serviced in two cycles.

The L1 scratchpad has limited size of 256KB, thus program
code and most of the data are typically stored in larger L2
or L3 memory, while the content of the SPM is manually
updated to the most referenced subset of data at any time.
A cluster thus features a L2/L3 bridge for communication
with the outer world. To allow for performance- and energy-
efficient transfers, the cluster is equipped with a DMA engine.
We consider a simple DMA design, with one slave port
from which processors can directly program transfers through
memory mapped registers, plus two master ports to move
data in/out of the cluster. This DMA is capable of 16-word
burst operations. In this work we consider a two-level memory
system, with an off-cluster main memory, and we assume a
global address space. Synchronization among the processors
is achieved through a segment of the local SPM address space
featuring test-and-set (TAS) semantics.

IV. ANALYSIS OF OPENMP DYNAMIC PARALLELISM COST

In this section we analyze OpenMP constructs for dynamic
parallelism, aiming at i) deriving a minimal set of primitives
that capture their semantics and ii) characterizing the cost of
each primitive, to discover best candidates for HW accelera-
tion. The reference OpenMP implementation considered in this
work is the GNU GCC runtime library (libgomp). This will
be used as a baseline also for our evaluation section.

OpenMP features three different constructs to support dy-
namic parallelism: sections, dynamic loops and tasking. Figure
2 shows three code snippets providing examples of use for each
construct:

1) Sections (Figure 2a). Different portions of code are
annotated to statically decompose a program into
coarse-grained tasks (here, task_A and task_B)
deployed onto parallel threads;

2) Dynamic loops (Figure 2b). Tasks are dynamically
created out of chunks of loop iterations and executed
by parallel threads.

3) Tasking (Figure 2c). OpenMP Tasks have been in-
troduced since specifications version 3.0. Compared
to sections, OpenMP tasks enable more sophisticated
forms of dynamic, irregular and asynchronous paral-
lelism.

Figure 3 shows how the code in Figure 2 is transformed
by the GCC compiler. The compiler resorts to the run-
time system to retrieve the next available chunk of loop
iterations for dynamic loops (GOMP_dynamic_next())
or the next available section (GOMP_section_next()).
Both functions implement a simple FIFO queue, to which
parallel threads access in a mutually exclusive manner to

S
H

A
R

E
D

 S
P

M

PN

I$

Port

B
a

n
k

Port

B
a

n
k

Port
B

a
n

k…

P0

I$
NI

…
Task

Sched

Low-latency IC

D

M

A

Fig. 1. On-chip shared memory cluster
template

#pragma omp sections
{
#pragma omp section
{ task_A (); }
#pragma omp section
{ task_B (); }

} /* End of workshare:
(implicit) Synch */

/* 4 iter => 1 task */
#pragma omp for schedule \
(dynamic, 4)

for (i=0; i<64; i++)
{
work_iter (i);

} /* End of workshare:
(implicit) Synch */

#pragma omp single nowait
{
for (i<64)
{ /* Task creation */

#pragma omp task
{ task_A (i); }

}

/* Task-based synch */
#pragma omp taskwait

#pragma omp task
{ task_B (i); }

} /* (Implicit) thrd synch:
execute all tasks */

a)

b)

c)

Fig. 2. Different construct for dynamic parallelism:
a) sections, b) dynamic loops, c) tasks

/* N_SECTIONS: 2 */
GOMP_sections_start (2);

while(ID = GOMP_sections_next()) {
switch(ID)
{

case 1: task_A (); break;
case 2: task_B (); break;
case 0: /* END */ break;

}
}
GOMP_sections_end ();

/* START: 0, END: 64, INCR: +1, CHUNK: 4 */
GOMP_dynamic_loop_start (0, 64, +1, 4);
while (GOMP_dynamic_loop_next (&ISTART, &IEND))
{
for (i=ISTART; i<IEND; i++)

work_iter (i);
}
GOMP_loop_end ();

if(GOMP_single_start ())
{
for(i<64) /* Pass FN, DATA */

GOMP_task (&task_A, { &i });

GOMP_taskwait ();
GOMP_task (&task_B, NULL);

}
GOMP_single_end ();
/* (Implicit) thread synch:

execute all tasks */

a)

b)

c)

Fig. 3. GCC-transformed dynamic parallelism constructs:
a) sections, b) dynamic loops, c) tasks

/* INIT */
int GOMP_loop_dynamic_start(int start, int end,

int incr, int chunk) {
gomp_work_share_t ws = /* Create WS */;
/* Init WS fields */
ws.chunk = chunk;
ws.end = ((stride > 0 && start > end)

|| (stride < 0 && start < end)) ? start : end;
ws.stride = stride;
ws.next = start;
return INIT_OK;

}

/* END */
void GOMP_loop_end() {

/* Let thread move to the next WS */
current_WS[thread_ID]++;

}

Fig. 4. GOMP code snippet for loop INIT and END

update a shared counter. Sections and dynamic loops rely
on a work-share data structure, which describes the parallel
work to be done (e.g., number of iterations, chunk size,
global lower and upper bounds of a loop, etc.). The code
snippet in Figure 4 shows how the work-share data struc-
ture is initialized in the GOMP_loop_dynamic_start()

function, and how the current thread is pointed to the
next work-share when the loop (or section) is over in the
GOMP_loop_end() function. These operations can be cap-
tured by two generic INIT and END primitives. Figure 5
shows how the GOMP_loop_dynamic_next() function
updates the work-share during loop (or sections) execution.
OpenMP sections can be seen as a specialized case of loops
where chunk = stride = 1. A generic FETCH primitive can
be used to generalize the work-share update operation. A
more in-depth analysis is required for OpenMP tasks, as
follows. Figure 6 shows execution time breakdown for the
Task INIT primitive. The major contributors are the critical
region to update the FIFO queue, and the memory allocation
for the OpenMP Task descriptor. FIFO semantics can easily
be supported in HW, and since management of pre-allocated
memory bins is also a very generic operation, used in every
runtime system, we select also this functionality for HW
acceleration. The FETCH primitive for tasks can thus be
enriched with this functionalities. A task in the work queue
can be executing, unexecuted or ended, thus a mechanism for
tracing its status must be put in place. To this aim we enrich
the semantics of the INIT and END primitives for tasks.

Table I summarizes the functionality of the selected prim-
itives for HW acceleration. Their implementation is discussed
in Section V.

/* FETCH */
int GOMP_loop_dynamic_next (gomp_work_share_t *ws,

int * pstart, int * pend) {
/* 'ws' holds the status on thread’s current WorkShare */
int start, end, chunk, left;

LOCK(); /* Atomically access to the WS */
start = ws->next;
if (start == ws->end)

return WS_ENDED; /* No more work in the WS! */

/* Extract work (a chunk of iterations) from the WS */
chunk = ws->chunk_size * ws->stride;
left = ws->end - start;
/* Adjust boundaries if we exceed # loop iterations*/
if (ws->stride < 0) {

if (chunk < left) chunk = left;
} else {

if (chunk > left) chunk = left;
}
end = start + chunk;
ws->next = end; /* *pstart/end are passed to application */
*pstart = start; *pend = end;
UNLOCK(); /* Release the WS */

return WS_HAVE_WORK;
}

Fig. 5. GOMP code snippet for loop FETCH

Retrieve

Thread Team

infos

12%

Check

Un/Deferred

9%

Desc alloc +

init

24%

Arg copy

4%

Cri!cal

region

(Update

FIFO + Team

infos)

40%

Wake

Threads

11%

OpenMP Task INIT Breakdown

So"ware

Fig. 6. Timing overhead of task INIT performed in software,
breakdown of the different components

V. THE HARDWARE SCHEDULING ENGINE

In this section we describe the Hardware Scheduling En-
gine (HWSE), a module to accelerate in HW the primitives
introduced in Section IV.

Type INIT FETCH END SYNC
Sections W task descr for each section R task descr (section descr) update thread status -

update thread status
Dynamic loops W loop infos: start, end, .. R chunk istart, chunk iend update thread status -

update thread status
Tasking W task descr R task desc update task status explicit

update task status

TABLE I. DESCRIPTION OF THE DIFFERENT PRIMITIVES FOR EACH OF THE THREE DYNAMIC PARALLELISM CONSTRUCTS

HWSE

MEMORY-MAPPED

SHARED REGISTERS

FIFO QUEUE

SHARED

DATAPATH

LOOP_START

LOOP_END

LOOP_INCR

+
+

Decoder

thdr status
SLAVE PORT

Request

FSM

+

LOOP_INCR

CMD

LOAD/

STORE

PTR

thdr status

UPDATE

thread

status

thdr statusthrd status

Fig. 7. Scheme of the HWSE

A. HW Module Implementation and integration in the cluster

The internal core structure of the HWSE (shown in Figure
7) consists of a control finite-state machine that receives the
various INIT, FETCH and END primitives and responds
accordingly. We design a central core datapath implementing
these primitives, plus additional logic to specialize their behav-
ior for the construct at hand (loops, sections, tasks, memory
allocation). Before using it, the HWSE must be configured to
enable the desired construct. This can be done via memory-
mapped configuration registers, which are appropriately set
within SW routines that we provide (hwse_init_*, see
Section IV). The INIT primitive for dynamic loops simply
consists of writing lower bound, upper bound and stride into
the LOOP START, LOOP END, LOOP INCR registers. The
same happens for sections (a special case of loops with
chunk = 1). Loop boundaries (or the next available section)
are computed by a submodule implementing the FETCH
primitive. A simple circular buffer of 32, 64 or 128 elements
implements the FIFO queue; the control FSM is responsible
for storing and extracting elements from the queue. Invoking
the END primitive results in updating a thread-specific register
which stores its current work-share.

To implement the memory allocator functionality we reuse
entirely the logic for loop scheduling. In the INIT primitive the
base address for the memory heap, its global size and the size
of a memory bin (containing the specific work/task descriptor)
are stored respectively in the LOOP START, LOOP END
and LOOP INCR registers. Requests for a new memory bin
are serviced through the loop iterations scheduler, until there
are available bins. Then, memory bins are extracted from the
FIFO queue (alloc) in the FETCH primitive, and inserted
back therein (free) in the END primitive.

Task support deserves further discussion. The INIT prim-
itive supports the creation of a task (function GOMP_task()

in Figure 3c)) by inserting the address of a newly created task
descriptor in the FIFO queue. Similarly, the FETCH primitive
dequeues a task descriptor address from the queue. The END

Area (kgates) Power (mW)
#tasks 32 64 128 32 64 128
Decoder FSM 5.42 5.42 5.38 2.42 4.80 9.57
Datapath 3.00 2.81 2.78 1.35 1.27 1.27
Task queue 4.70 9.39 18.69 2.47 2.47 2.46
Total 13.12 17.62 26.85 6.24 8.54 13.30
% of cluster 1.49 1.99 3.01 1.23 1.67 2.59

TABLE II. HWSE MODULE

primitive for tasks was not accelerated in hardware, and the
reason will be explained in next section.

We integrated the HWSE in the target cluster, tightly cou-
pling it to cores through the high-speed interconnection. The
FSM can be controlled by the cluster by means of a memory-
mapped interface; registers are memory-mapped, and special
addresses trigger the different primitives. We implemented a
RTL (SystemVerilog) model of the HWSE, and synthesized
it using the STMicroelectronics 28 nm bulk low-threshold
libraries as a target, with a clock frequency of 400 MHz. Table
II summarizes the results regarding area (in gates) and power
(in mW), and the impact on the cluster area and power (in
%), which we gathered similarly. Depending on the queue
size, the HWSE adds ≈ 1%-3% to the area and power of
the original cluster design. Much of the area occupation and
power consumption of the HWSE is in the FIFO task queue
and thus depends of its depth (the maximum number of tasks
supported). In absence of contention only 2 clock cycles (for
crossing the IC) + 1 (the delay added by the module) are
necessary to execute any primitive.

B. Programming Interface and integration in the libgomp

To conveniently program the HWSE we have developed
a SW API, which abstracts the low-level process of register
configuration. Table III summarizes the functions provided
by this API and their description. As already discussed pre-
viously, our HWSE implementation is based on the analy-
sis and optimization of the GCC OpenMP runtime library:
libgomp. Table III also lists the corresponding functions in
the libgomp library for supporting dynamic loops, sections
and tasks. Starting from this implementation, we replaced the
schedulers for sections, dynamic loops and tasks with calls to
our HWSE API. For the former two constructs the operation
was straightforward, due to the one to one correspondence
between the HW and SW primitives. Tasks, on the contrary,
have much more sophisticated semantics than a simple FIFO
queue, which required more work for the integration. Task-
level synchronization implies that any thread encountering a
taskwait construct must wait on the completion of child
tasks of the current task (see specifications [1]). This implies
that parent-children information among tasks must also be
stored, other than a FIFO representation. libgomp does so
by using a tree data structure. We opt for a more lightweight
implementation based on atomic counters [3][9], handled in

software rather than in the HWSE, to maintain the generality
of our primitives implementation.

Task descriptors contain information on shared data, thus
can become very large. Thus we do not store the descrip-
tors themselves in the HWSE FIFO, but only their address.
Descriptors are stored in the shared L1 SPM, so once their
address is extracted the SW can quickly access the information
therein. Since the atomic counter to support taskwait is part
of the task descriptor, the END primitive for tasking (which
simply updates it) was not implemented in hardware.

C. Applicability of the HWSE to different programming models

Table IV gives an overview of the most relevant task-based
programming models. As shown most of them are implicitly
asynchronous, and in some cases also assume a fork-join
execution model, as OpenMP. The semantics of INIT/FETCH
primitives perfectly matches the behavior of a work queue sup-
porting asynchronous execution. Synchronicity (and synchro-
nization) can be implemented with the support of the FETCH
primitive, e.g., wrapping it in a software loop until there are
tasks to execute. Complex dependencies between tasks (e.g.,
parent-children relationship) can be expressed enriching the
descriptors of the work to execute. Indeed, our primitives (and
the corresponding HWSE implementation) agnostically handle
the memory address of a language-specific data structure
describing a single task, that therefore can include information
– such as references to other task structures – to be managed by
a higher software level. The work descriptor can be enriched
also to specify a set of tasks, e.g., to support data parallelism
similarly to what happens in Intel TBB [9], where high-level
data parallel constructs are built on top of a task scheduling
library. Finally, all the programming models shown in Table IV
abstract memory allocation to software. The HWSE proposed
in this work can be configured as a pre-allocated memory
manager to support and accelerate memory allocation and free
primitives.

VI. EXPERIMENTS

We prototyped the proposed cluster using a SystemC
Virtual Platform [6] which models the HWSE integrated in
the cluster platform described in Section III, with main archi-
tectural parameters as summarizes in Table VI. With this setup,
we validate our approach both with synthetic benchmarks, and
applications from image processing domains.

ARM v6 cores 16 # L1 SPM banks 32 (K=2)
L1 SPM size 256 KB # L1 SPM latency ≥ 2 cycles

L3 size 256 MB L3 latency ≥ 59 cycles
I$i size 1 KB I$i line 4 words
thit = 1 cycle tmiss ≥ 59 cycles

TABLE VI. ARCHITECTURAL PARAMETERS

A. Synthetic benchmarks

The first experiment to measure the performance improve-
ment brought by our HWSE compared to the software sched-
ulers consists of three synthetic workloads. To test accelerated
sections we spawn 24 sections each consisting of 100 NOPs (to
prevent side effects due to memory contention). For dynamic
loops we create a loop of 64 iterations each containing 100
NOPs, while for the tasking we spawn 18 tasks each containing
a loop of 5000 iterations of 100 NOPs. All the processors
are involved in the computation. Table VII summarizes the

speedup brought by the HWSE for each of the three primitives,
over the pure SW version. Accelerated sections provide the

Type INIT FETCH END
Sections 16× 78× 181×

Dynamic loops 1.07× 6× 14×

Tasks 1.41× 1.21× -

TABLE VII. SECTIONS AND LOOP SPEEDUP COMPARED TO THE PURE

SW VERSION

best speedups, significantly higher than dynamic loops even
if the two constructs share almost identical semantics. The
reason for this difference is that each INIT and FETCH event
for the sections implies a single write (read) in the HWSE,
while loops require multiple consecutive writes (reads). Con-
sequently the HWSE must be locked to prevent non-mutually
exclusive updates from distinct threads. This operation is done
in software, and implies the difference in performance that we
observe. Similarly, the HWSE can only accelerate a portion of
the sophisticated task scheduler, leaving a relevant portion of
the code to be executed in software. For this reason we observe
a more modest 41% speedup for the INIT and 21% for the
FETCH. The END primitive, as already explained, was not
accelerated.

B. Comparison with software schedulers

We compared our HWSE to two freely available OpenMP
runtimes, namely libgomp [8] and OMPi [3]. Both runtime
systems have been ported on the target cluster platform. For
this comparison we consider 5 image processing applications:
JPEG decoding, Color Tracking, Strassen matrix multiplica-
tion, FAST corner detection, Viola-Jones face detection. For
each of them we propose, where possible, two alternative
implementations: one which uses tasks and one which uses
dynamic loops or sections. In both cases we generate work
units as fine-grained as possible [7] [11] [21], to verify the
effectiveness of our HWSE.

Table V shows the performance improvement for each
application, when the HWSE is compared to the software
schedulers in libgomp and OMPi. For the Strassen matrix
multiplication we provide the speedup for each of the three
main phases of the algorithm. We see almost no performance
gain for stage 2, because the work units are very coarse
grained, which tends to minimize the impact of the software
runtime overheads A similar situation takes place for the task-
based version of the face detection. Besides these two cases, on
average the HWSE achieves ≈ 32% speedup versus libgomp,
and ≈ 76% speedup versus OMPi.

VII. CONCLUSIONS

Modern embedded systems are embracing many-core
cluster-based designs. To efficiently exploit the potential of
such machines, new powerful abstractions are necessary, that
support irregular and dynamic parallelism. These abstractions
require a runtime support whose overhead can be significant,
hindering performance and restricting the tasks that can be
efficiently spawned to the ones at coarse granularities. In this
work we analyze the majour sources of overhead incurring
when supporting one of the most expressive programming
models for dynamic parallelism – OpenMP – on shared-
memory many-cores clusters. We formalize a set of primi-
tives for generically supporting all of them, and identify key
performance bottlenecks. We implemented these primitives in
a Hardware Scheduling Engine HWSE and compare against

Type HWSE APIs libgomp API

Sections INIT hwse_sections_init_count(n_sections) GOMP_sections_start(n_sections)

FETCH hwse_sections_fetch_ID() GOMP_sections_next()

Dynamic loops INIT hwse_loops_init_loop(start, end, incr * chunk) GOMP_dynamic_loop_start(start, end, incr, chunk)

FETCH hwse_loops_fetch_iters(&istart, &iend) GOMP_dynamic_loop_next(&istart, &iend)

Tasking INIT hwse_task_init_desc_addr(desc_addr) GOMP_task(FN_PTR, DATA_PTR, ...)

FETCH hwse_task_fetch_desc_addr() Task Scheduling Point. See OpenMP tasking specs.[1] for details.

TABLE III. HWSE APIS. SECTION IV DESCRIBES THEIR PARAMETERS IN DETAILS.

Name Explicit a/synch exec. Task synch. Task Parall. Data Parall. Inter-task dep. Mem. alloc

Intel TBB [9] Fork/Join Explicit Join Tasks Lib built on top of Group Implicit in
Task scheduler spawn_and_wait Class Inherit.

OpenMP [1] Implicitly asynch Implicit at TSP Tasks Dynamic Parent-child Transparent
Explicit synch Explicit (taskwait) Sections Loops taskwait

Cilk [14] Fork/Join Explicit Join Co-operative cilk_for - Transparent
Tasks

Apple GCD [4] Synch/Asynch Explicit Tasks - - Implicit in
(queue-based) (Q WAIT) Q ALLOC

Plurality CSU [19] Asynch Token-based Regular Duplicable Tokens Transparent
Tasks Tasks

TABLE IV. MOST RELEVANT PROGRAMMING MODELS SUPPORTING DYNAMIC PARALLELISM

Type JPEG Color tracking Strassen FAST Face detection Average
GCC-OpenMP [8]

Loops 27% 6% S1: 80% S2: 28% S3: 80% 53% 20% 42%
Tasks 26% 27% S1: 26% S2: 0.5% S3: 22% 48% 3% 21.8%

OMPI [3]
Loops 48% 27% S1: 83% S2: 83% S3: 82% 83% 85% 70.1%
Tasks 80% 97% S1: 96% S2: 44% S3: 97% 95% 90% 85.6%

TABLE V. HWSE PERFORMANCE IMPROVEMENT AGAINST LIBGOMP AND OMPI SW SCHEDULERS.

existing runtimes ported on the target cluster, resulting in
up to 97% performance improvement. We also synthesized
the HWSE RTL model to gather precise area and power
consumption. The HWSE adds approximately 3% to the area
and power of the original cluster design.

ACKNOWLEDGEMENTS

This work was supported by projects FP7 VIRTICAL
(288574), P–SOCRATES (611016) and ERC-AdG MultiTher-
man (291125), funded by the European Community.

REFERENCES

[1] OpenMP Application Program Interface v3.1, 2011.

[2] Adapteva, Inc. Epiphany-IV 64-core 28nm Microprocessor. [Online]
http://www.adapteva.com/products/silicon-devices/e64g401/, 2013.

[3] S. Agathos, P. Hadjidoukas, and V. Dimakopoulos. Design and Imple-
mentation of OpenMP Tasks in the OMPi Compiler. In Informatics
(PCI), 2011 15th Panhellenic Conference on, pages 265–269, 2011.

[4] Apple, Inc. Grand Central Dispatch. http://developer.apple.com/
library/mac/documentation/Performance/Reference/GCD libdispatch
Ref/Reference/reference.html.

[5] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: Building an
ecosystem for a scalable, modular and high-efficiency embedded com-
puting accelerator. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 983–987, 2012.

[6] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero, and L. Benini.
VirtualSoC: a Full-System Simulation Environment for Massively Par-
allel Heterogeneous System-on-Chip. In 013 IEEE 27th International
Symposium on Parallel & Distributed Processing Workshops and PhD
Forum, pages 2182–2187. IEEE, May 2013.

[7] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini. Enabling fine-
grained OpenMP tasking on tightly-coupled shared memory clusters.
In Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pages 1504–1509, 2013.

[8] FSF - The GNU Project. GOMP - An OpenMP implementation for
GCC.

[9] Intel Corporation. Threading Building Blocks. [Online] http://
threadingbuildingblocks.org/, 2006.

[10] Kalray Corporation. Many-core Kalray MPPA. [Online] http://www.
kalray.eu/, 2012.

[11] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural
support for fine-grained parallelism on chip multiprocessors. SIGARCH
Comput. Archit. News, 35:162–173, June 2007.

[12] T.-O. Kwok and Y.-K. Kwok. Practical design of a computation and
energy efficient hardware task scheduler in embedded reconfigurable
computing systems. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 4 pp.–, 2006.

[13] A. Marongiu, P. Burgio, and L. Benini. Fast and lightweight support for
nested parallelism on cluster-based embedded many-cores. In DATE,
pages 105–110, 2012.

[14] Massachusets Institute of Technology. The Cilk Project. [Online] http:
//supertech.csail.mit.edu/cilk/, 1998.

[15] NVIDIA. Next Generation CUDA Compute Architecture: Fermi -
WhitePaper. [Online] http://www.nvidia.fr/content/PDF/fermi white
papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2010.

[16] P. Kuacharoen and M. A. Shalan and V. J. Mooney III. A Configurable
Hardware Scheduler for Real-Time Systems. In in Proceedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms, pages 96–101. CSREA Press, 2003.

[17] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard,
O. Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, and G. Nico-
lescu. Parallel programming models for a multiprocessor SoC platform
applied to networking and multimedia. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 14(7):667–680, 2006.

[18] C. Pilkington. Thread execution scheduler for multi-processing system
and method (US Patent 7802255), 2010.

[19] Plurality Ltd. The HyperCore Processor.

[20] A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, F. Sanchez,
A. Azevedo, C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev.
The SARC Architecture. Micro, IEEE, 30(5):16–29, 2010.

[21] P. Tendulkar, V. Papaefstathiou, G. Nikiforos, S. Kavadias,
D. Nikolopoulos, and M. Katevenis. Fine-grain OpenMP runtime
support with explicit communication hardware primitives. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, pages
1–4, 2011.

