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Abstract—While synchronous system models have many ad-
vantages over asynchronous models concerning verification and
validation, many implementation platforms do not provide effi-
cient means for synchronization. For this reason, we consider a
design flow that starts with a synchronous system model that
is then transformed into an asynchronous one for synthesis.
In essence, it partitions the synchronous system into a set of
asynchronous components that communicate with each other via
FIFO buffers. Of course, the synthesized system still has to behave
as the original synchronous model, i.e., for each variable exactly
the same flow of data values must be observed and only the
membership to synchronous reaction steps is no longer explicitly
given. In this paper, we prove that this correctness guarantee is
given provided that (1) each component knows which of the input
values have to be used for the next reaction (endochrony), (2) each
component is able to perform the reaction (constructiveness), and
(3) components agree on the clocks of their shared variables
(isochrony/clock-consistency).

I. INTRODUCTION

A. Motivation

Synchronous models offer many advantages to a model-based
design like simplified use of formal methods for verification
and analysis, deterministic concurrency for replaying once
observed simulations, simplified worst-case execution time
analysis, and synthesis methods for hardware/software co-
design. However, implementing synchrony is often not efficient
for large systems: In circuit design, clock propagation became
more and more difficult since the clock tree requires a large
part of the chip size and of the power consumption. In embed-
ded systems design, the advent of multicore processors is driv-
ing the use of multithreaded systems whose communication is
typically done via shared memory where synchronization is
again expensive.

To benefit from both synchronous models and asyn-
chronous implementations, we develop a design flow that starts
with a synchronous model that, after simulation and verifica-
tion, is partitioned into asynchronous components. However,
not every partition is a legal one in the sense that the behavior
of the synchronous system will be preserved. We prove in this
paper that there are three important properties that have to be
fulfilled that we first discuss informally in the following. To
this end, we consider system descriptions that are given by
guarded actions xγ ñ αy where the action α is performed as
soon as the guard condition γ holds. To describe the behavior
of systems, we consider particular streams of values for their
input, local and output variables, and the special value d is
used in the synchronous models to denote that at that point of
time, the variable does not have a value.

Since these ‘values’ d do not appear in the asynchronous
implementations, a first requirement is that each compo-

nent has to know which input values are required to per-
form its part of a corresponding synchronous reaction step.
This property is called endochrony which intuitively means
that the component can derive a local clock on its own.

x1 x2 x3 y

1 0 d 1
d 1 0 1
0 d 1 1
0 0 0 0
1 1 1 0

Fig. 1: Gus-
tave Function

This is often done by relying on sequential
functions [1], [2] where one of the inputs
is always read first, and depending on the
value read from it, it is known which input
to read next and also which input values
are not required at all. However, while all
sequential functions are endochronous, there
are endochronous functions that are not se-
quential like the Gustave function shown

in Figure 1. Note that also its asynchronous implementation
knows which of the values found at the input ports x1, x2, and
x3 are needed for the next reaction (and that the synchronous
version has no reaction for cases that are not listed).

A second requirement is the constructiveness which means
that once the component has received the input values for
the next reaction, it must be able to algorithmically compute
the outputs without guessing. This requirement has been dis-
cussed in many papers, e.g. [3] and is required also for the
synchronous model without considering desynchronization.

Endochrony and constructiveness are however not suffi-
cient to guarantee a correct desynchronization. In addition,
components that communicate via a shared variable must
agree on the ‘clock’ of that variable, i.e., they must agree
to which of the synchronous reactions the values of that
variable refer to. To demonstrate this, consider a simple system
with two components P and Q where x is an input of P ,
y an output of Q, and v1, v2 are outputs of P and inputs
of Q. The behavior of P is given by the guarded actions
P :“ txIsEvenpxq ñ v1 “ xy, xIsEvenpxq ñ v2 “ 2 ¨ x ´
2y, xIsOddpxq ñ v1 “ x`1y, xIsOddpxq ñ nextpv2q “ 2 ¨xyu
and Q :“ tx1ñ y “ v1 ` v2yu.

x 1 3 5 7 9 . . .
v1 2 4 6 8 10 . . .
v2 d 2 6 10 14 . . .
y d 6 12 18 24 . . .

x 2 4 6 8 10 . . .
v1 2 4 6 8 10 . . .
v2 2 6 10 14 18 . . .
y 4 10 16 22 28 . . .

Fig. 2: Example Demonstrating the Need of Isochrony

Both components P and Q are endochronous and construc-
tive1, but still their desynchronization is not correct: Figure 2
shows two synchronous behaviors for two input streams of x.
As can be seen, the same values are sent through the shared
variables v1 and v2, but these refer to different points of time of
the synchronous model, and this leads to different values in the
output stream y. If the two components were desynchronized,

1P always reacts if a value arrives at x, and Q needs one value at each of
its input ports v1 and v2 whose arrivals will trigger a reaction.978-3-9815370-2-4/DATE14/ c©2014 EDAA



i.e., we only communicate the values except for the ‘value’
d, there is no chance for component Q to distinguish between
the two cases.

For this reason, isochrony is a third requirement to guar-
antee correct desynchronization. Intuitively, the original def-
inition of isochrony [4] means that two components agree
on the clocks of their shared variables. However, its formal
definitions were stated differently (based on comparing flows)
in the literature, see e.g. [5], [6]. To distinguish between
the two versions, we call the original version of isochrony
clock-consistency, and prove the result of [5], [6] with clock-
consistency instead of isochrony.

B. Related Work

We share the same spirit with the desynchronization methods
in circuit design as [7], [8] in the sense that we also start from a
synchronous specification of the system. However, we consider
a much higher abstraction level and have a general view on
embedded system design like [9]. Our approach is therefore
closely related to the work on the polychronous design [10] of
embedded systems where [4] the concepts of endo/isochrony
have been originally proposed. The definition of isochrony
given in [4] is similar to what we call clock-consistency (we
use that notion to avoid confusion with other definitions of
isochrony like [5], [6] that we also use). However, at least
in our setting, the older version of endo/isochrony does not
guarantee a correct desynchronization. This can be shown by
the following example:

Adders :
x1ñ y1 “ x1 ` x2y

x1ñ y2 “ x1 ` x3y

behavior1 :

x1 1 2 . . .
x2 2 3 . . .
x3 4 5 . . .
y1 3 5 . . .
y2 5 7 . . .

behavior2 :

x1 d 1 2
x2 2 3 . . .
x3 4 5 . . .
y1 d 4 . . .
y2 d 7 . . .

In this system, two synchronous adders are composed, where
one has inputs x1 and x2, and the other one has inputs x1 and
x3, thus the only shared variable is the input x1. Adders is
not clock-consistent, as shown by behavior2, where in the first
reaction, x1 is absent. This makes both adders remain silent,
and the inputs on x2, x3 are lost. However, by the original
definition of [4], it is ‘isochronous’, and it is trivial that both
adders are endochronous. Therefore, it should allow a correct
desynchronization (by Theorem 2 of [4]). However, it is not the
case here, since once the boxes are removed, only behavior1
can be reconstructed. In later papers [5], [6], the definition
of isochrony has been changed to demand the preservation of
the flows of the synchronous system. Thus, it moved towards
the definition of correct desynchronization, but away from the
original intuitive idea of having the same clock. Moreover,
since based on streams/flows, it is now undecidable. Instead,
our result makes use of the original intuition of isochrony, and
proves the theorem that was intended in [4], i.e., we prove
that given the assumption of endochrony and constructiveness,
clock-consistency implies the new definition of isochrony.

C. Outline

In this paper, we prove a theorem stating that the desyn-
chronization of a synchronous composition of components
is correct provided that each component is endochronous,

constructive, and that the variables are clock-consistent. We use
the notion of clock-consistency as a replacement of isochrony
as defined in [5], [6], and therefore come back to its original
meaning as intended in [4]. The great advantage over the
definition of isochrony given in [5], [6] is that checking clock-
consistency is decidable, and can be done by model-checkers
using state-based reasoning instead of considering streams or
flows of data values.

The remainder of the paper is organized as follows: We
first introduce the formal foundations in the next section. We
propose our design flow and main theorem in the third section,
and discuss some implementation issues in the fourth section,
followed by the experimental results. In the final section, we
list some conclusions.

II. FOUNDATIONS

A. Synchronous System

The starting point of our design flow is a synchronous system.
A synchronous system xV,Py is defined over a set of variables
V “ Vin Y Vloc Y Vout (input, local and output variables)
where each variable v is a pair pclkpvq, valpvqq consisting of
its clock clkpvq and its value valpvq. The domain of clocks is
B “ ttrue, falseu and the domain of other values is D. If the
context is clear, we may also simply write v instead of valpvq.
P is a set of synchronous guarded actions (GA for short) over
V . Each GA ρ has the form xγ ñ αy where the guard γ is a
boolean formula, and α is an immediate or delayed assignment.
For a GA ρ “ xγ ñ αy, we also denote its guard γ by grdpρq
and its action α by actpρq. We denote the set of variables that
are read and written by ρ as rdpρq and wrtpρq, respectively.

The execution of P follows the synchronous semantics, i.e.,
the computation of P consists of a sequence of discrete reac-
tion steps where in each reaction every actpρq is executed if
grdpρq is true. A reaction r is thereby a function: V Ñ pBˆDq
that maps variables to values, and we write JeKr for the evalua-
tion of an expression e with respect to r. A GA ρ is enabled if
JgrdpρqKr “ true holds. For an input variable x, rpxq depends
on the environment, while for local and output variables x,
we must have rpxq “ ptrue, JeKrq for every enabled GA
ρ “ xγ ñ x “ ey, and we must have r1pxq “ ptrue, JeKrq
for every enabled GA ρ “ xγ ñ nextpxq “ ey where r1 is
the next reaction. Note that an action only assigns values to
valpxq and implicitly sets thereby clkpxq. If no action assigns
a value to x, JclkpxqKr “ false and x is absent which means
it has no value in that reaction.

An execution of a synchronous system is formally defined
by a stream t “ r1, r2, . . . that is an infinite sequence of
reactions of P . We denote ri by tpiq, and the set of streams
of P by T pPq. The projection r|V 1 of reaction r on V 1 Ď V is
r|V 1 : V 1 Ñ BˆD where for all x in V 1, r|V 1pxq “ rpxq. r|txu is
simply denoted by r|x. Projection of a reaction can be extended
to streams in the obvious way. A stuttering reaction r is a
reaction such that for all v P V , JclkpvqKr “ false. Let Clptq be
the stream where all stuttering reactions of t are removed. t1, t2
are stretch-equivalent if Clpt1q “ Clpt2q, denoted as t1 “st t2.
The leftmost column of Figure 3 shows three synchronous
systems that consist of single GAs ρ1, ρ2 and ρ3. The middle
column shows example executions for each of them where d

denotes that the variable is currently absent. Since both ρ1
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ρ1 : Vin “ tx1u,Vout “ tx2u

clkpx1q ñ nextpx2q “ x1 ` 1

ρ2 : Vin “ tx2u,Vout “ tx3u

clkpx2q ñ nextpx3q “ x2 ` 1

ρ3 : Vin “ tx3u,Vout “ tx1u

clkpx3q ñ x1 “ x3 ´ 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

t1 x1 0 d 3 d 6 d . . .

x2 d 1 d 4 d 7 . . .

t2 x2 1 d 4 d 7 d . . .

x3 d 2 d 5 d 8 . . .

t3 x1 0 d 3 d 6 d . . .

x3 2 d 5 d 8 d . . .

t1,2 x1 0 d 3 d 6 d . . .

x2 d 1 d 4 d 7 . . .

x3 d d 2 d 5 d . . .

t2,3 x1 d 0 d 3 d 6 . . .

x2 1 d 4 d 7 d . . .

x3 d 2 d 5 d 8 . . .

t1,3 x1 0 d 3 d 6 d . . .

x2 d 1 d 4 d 7 . . .

x3 2 d 5 d 8 d . . .

Fig. 3: Synchronous systems, streams and synchronous composition

and ρ2 have delayed actions, their outputs’ clocks are set at
the successive reactions of the reactions reading their inputs,
which is not the case for ρ3. Another possible execution for
ρ3 might be t4 shown below that is stretch-equivalent to t3:

t4 x1 0 d 3 6 d . . .

x3 2 d 5 8 d . . .

The synchronous composition of xV1,P1y and xV2,P2y, de-
noted as P1}P2, is the synchronous system xV1YV2,P1YP2y.
Two streams t1 and t2 of P1,P2 can be synchronously com-
posed if t1|V1XV2 “ t2|V1XV2 , and the composition is denoted
as t1}t2. The right column of Figure 3 shows three streams
t1,2, t2,3 and t1,3 of ρ1}ρ2, ρ2}ρ3 and ρ1}ρ3, respectively.

B. Clock-Consistency

Pairing clkpvq and valpvq for a variable v constrains the
semantics of a synchronous system: In particular, if valpvq
is computed or read during some reaction, then its clock
clkpvq must be true. This is called the clock-consistency of
the synchronous system.

For any reaction r and any variable v, we define a
predicate usedpr, vq to denote whether v is used by r. First,
consider a variable v P rdpgrdpρqq: If valpvq is used by an
expression, then usedpr, vq :“ true, otherwise if clkpvq is
used, then usedpr, vq :“ JclkpvqKr. Second, for v P wrtpρq,
if JgrdpρqKr “ true, then usedpr, vq “ true if actpρq is
immediate or if actpρq is delayed then for all successive
reaction r1, usedpr1, vq “ true, and for all v in rdpactpρqq
usedpr, vq “ true. If none of the previous cases applies, it’s
false.

Definition 1: A synchronous system xV,Py is clock-
consistent if and only if for all x in V , for all streams t in
T pPq, for all reactions r of t, usedpr, xq Ø JclkpxqKr “ true.

For example, x clkpxq ñ x “ 5y is not clock-consistent, as
during any reaction, when clkpxq is false, the guard is satisfied
and x is assigned to 5, and thereby usedpr, xq “ true. Clock-
consistency can be statically checked against the safety con-
dition in the definition. For synchronous data-flow languages
like Lustre, it can be embedded and checked in the type system
[11].

C. Constructiveness

One assumption of our design flow is that all synchronous
systems must be constructive [3] which is checked by most

compilers. Informally, a synchronous system is constructive if
its outputs can be constructively computed without speculation.
Constructiveness ensures that our system is causally cor-
rect [12], [13] so that our system will be free of causality cycles
where components’ computations mutually depend on each
other at the same instance. Causality analysis is performed
in order to check if a synchronous system is constructive.
Note that constructiveness and clock-consistency are different
concepts. For example xclkpxq ^ px “ trueq ñ x “ falsey is
clock-consistent, but is trivially not constructive. More details
are discussed in the next section.

III. THE SYNCHRONOUS DESIGN FLOW

Our design flow starts with partitioning a synchronous system
P into a set of synchronous systems tP1, . . . ,Pnu, so that
P “ P1}P2} . . . }Pn. We call P1, . . . ,Pn the synchronous
components. In this paper, we only concentrate on the cor-
rect desynchronization of the asynchronous composition of
P1, . . . ,Pn, while the problem of how to determine an efficient
partition is not within our scope right now.

Our design flow obeys the criteria for correct desynchro-
nization given in [4], and we briefly review the formal concepts
here. To this end we introduce the desynchronized streams, or
flows. Assume t is a stream. Let k1, k2, . . . be the instances
where each JclkpxqKtpkiq “ true, and let s|x : N Ñ D denote
the flow of x where each s|xpiq “ JvalpxqKtpkiq. The flow of
t is then s : V Ñ N Ñ D where spxq “ s|x for each x in
V , denoted as Flptq. Projection s|V 1 is thus V 1 Ñ N Ñ D. Fl
can be naturally extended to T pPq. Two synchronous streams
t1 and t2 are flow-equivalent if Flpt1q “ Flpt2q, denoted
by t1 “fl t2. The asynchronous composition of flows s1, s2
is denoted by s “ s1}as2 if s1|V1XV2 “ s2|V1XV2 , where
@i P t1, 2u,@v P Vsi , spvq “ sipvq, for Vsi the variable
domain of si. }a can be naturally extended to sets of flows.
We define the asynchronous composition of two synchronous
components P1 and P2, denoted by P1}aP2, by its behaviors:
FlpT pP1qq}aFlpT pP2qq.

Definition 2: A synchronous system P is endochronous if
for streams t1 and t2, t1|Vin

“fl t2|Vin
implies t1 “st t2.

Definition 3: A synchronous system P is flow-insensitive
if for streams t1 and t2, t1|Vin “fl t2|Vin implies t1 “fl t2.

Intuitively, an endochronous system can reconstruct the
stretch-equivalent streams from the asynchronous inputs as the
synchronous system does, while a flow-insensitive component
rebuilds the flow-equivalent streams. Therefore endochronous



systems are flow-insensitive, as stretch-equivalence implies
flow-equivalence. The notion of flow-insensitivity generalizes
endochrony as well as weak-endochrony [5].

Definition 4: [5] The asynchronous composition of syn-
chronous systems P1}a . . . }aPn is isochronous if and only if
FlpT pP1qq}a . . . }aFlpT pPnqq “ FlpT pP1} . . . }Pnqq.
Isochrony ensures that the asynchronous composition should
have exactly the same flows of computations as the syn-
chronous composition, so that the desynchronization won’t
introduce new flows of behaviors. We examine isochrony in
the following subsection in detail.

A. The Problem

Let’s go back to the example in Figure 3. First, all three
components are endochronous, since they all have only one
input and one output. Therefore flow-equivalence and stretch-
equivalence coincide. The Gustave function in Figure 1 is
endochronous, since at each reaction step, there is a unique
action that can be triggered. Endochrony can be checked
statically [4], however endochronous compositions are not nec-
essarily isochronous. Checking isochrony is undecidable [5],
and the worse is that isochrony is not compositional, i.e., for
systems of P1 . . . ,Pn, even if each Pi}aPj is isochronous,
P1}a . . . }aPn may not be isochronous. These facts are re-
flected in Figure 3.

First, ρ1}aρ2, ρ2}aρ3 and ρ1}aρ3 are all isochronous. For
example, for any flow s of ρ1}aρ2, we can always separate
the two flows s1 “ s|tx1,x2u and s2 “ s|tx2,x3u. In particular,
s1 and s2 share s|x2

which is written by ρ1 and read by ρ2,
therefore in the corresponding stream of ρ1, say t1, clkpx2q
is set by ρ1. We use t1|x2 as input to ρ2 and assume t2 is
produced by ρ2. Since ρ2 is endochronous and Flpt2|x2q “

s2|x2 , it must be Flpt2q “ s2, therefore t1}t2 P T pρ1}ρ2q and
Flpt1}t2q “ s. Also, for any stream t of ρ1}ρ2, it is easy to see
that once we split them into t11}t

1
2, both Flpt11q and Flpt12q can

still be computed locally by ρ1 and ρ2 in ρ1}aρ2. To conclude,
by Definition 4 ρ1}aρ2 is isochronous.

However ρ1}aρ2}aρ3 is not isochronous anymore. This can
be verified by examining the right column of Figure 3. In
particular, according to ρ1}ρ2, x2 should be present at the
successive reaction of the reaction x1 is read and x3 is present
at the successive reaction of the reaction x2 is read. However
both ρ2}ρ3 and ρ1}ρ3 demand x1 and x3 to appear at the
same reaction. As a result T pρ1}ρ2}ρ3q is empty. Nevertheless,
Flpt1,2q}aFlpt2,3q}aFlpt1,3q exists, therefore the asynchronous
composition is not isochronous.

B. The Main Theorem

The counterexample in Figure 3 shows the complexity dur-
ing desynchronization: neither does the composition of en-
dochronous systems nor mutually isochronous systems lead
to an isochronous network. As already discussed in the in-
troduction, in order to avoid creating new behaviors, we
must pay respect to the original clocks that coordinate the
synchronous components. As a result, for a partitioned system
P “ P1} . . . }Pn, we demand the following two assumptions:

1 The synchronous system P is constructive and clock-
consistent.

2 Each system component Pi is flow-insensitive.

Clock-consistency is important not only for ensuring
isochronous composition, but also for defining whether a
component is flow-insensitive. As an example, ρ : ptrue ñ
o “ x ` yq is clearly constructive, however it is not flow-
insensitive considering all inputs. Given the following input:
x : ptrue, 3q, y : pfalse, 6q, assume r is the reaction to this
pair of inputs. As grdpρq is true, r computes o, indicating
JclkpyqKr “ true. Nevertheless by the input of y, JclkpyqKr “
false and therefore usedpr, yq ‰ JclkpyqKr, i.e. P is not
clock-consistent. This example shows the necessity to take
inputs into consideration. In particular, in order for ρ to be
clock-consistent the environment must push the inputs to it
in a friendly way, so that the input variables’ clocks are set
consistently with the timing they are used.

If we insist that ρ must be clock-consistent, then it is easy
to see that the inputs’ clock must satisfy JclkpxqKr Ø JclkpyqKr
for all reactions r, so that whenever one of the inputs’ clock is
set, the other’s must also be set. When both values appear, the
computation is performed. Therefore, it is obviously the case
that ρ is flow-insensitive. If we drop the assumption of clock-
consistency, ρ would not be flow-insensitive to the following
two inputs:

i1 x 3 4 . . .

y 1 5 . . .

i2 x d 3 4

y 1 5 . . .

where i1 and i2 are flow-equivalent, as for i1 the first two
outputs of ρ are ptrue, 4q, ptrue, 9q but for i2 the first output
is ptrue, 8q. Until now, we can formally present our main
theorem:

Theorem 5: For a constructive and clock-consistent syn-
chronous system P “ P1} . . . }Pn, P1}a . . . }aPn is
isochronous if each Pi is flow-insensitive.

Proof: (sketch) By definition of isochrony, we need
to prove FlpT pP1qq}a . . . }aFlpT pPnqq Ď FlpT pP1} . . . }Pnqq
and FlpT pP1qq}a . . . }aFlpT pPnqq Ě FlpT pP1} . . . }Pnqq.

(Ě). Assume s P FlpT pP1} . . . }Pnqq, then there must be a
stream τ P T pP1} . . . }Pnq such that s “ Flpτq. We can extract
for each Pi its own stream τi “ τ |VPi

P T pPiq from τ and
si “ Flpτiq. Then it is easily seen that: s “ s1}a . . . }asn P
FlpT pP1qq}a . . . }aFlpT pPnqq.

(Ď). Without losing generality, we assume P “ P1}P2 and
s “ s1}as2 P FlpT pP1qq}aFlpT pP2qq with the structure:

P1 P2

a b c

d e f

for the given flows s1|a, s1|f there are unique flows s1
1 and s1

2
produced by P . Since P is causally correct, there are no causal
cycles between P1 and P2. Therefore, P1 computes to channel
b only depending on inputs from a and previously computed
values from e. By flow-insensitivity of P1, a unique flow to b
is computed. This is the same case for P2. Therefore, s1

1 “ s1
and s1

2 “ s2. Finally, since P is clock-consistent, when pushing
s1|a and s2|f to P in a clock-consistent way, there must be
stream t P T pPq and Flptq “ s1}as2 “ s.



A natural application of the main theorem to endochronous
components leads to the following corollary:

Corollary 6: For a constructive and clock-consistent syn-
chronous system P “ P1} . . . }Pn, if every Pi is en-
dochronous, then P1}a . . . }aPn is isochronous.

Corollary 6 follows immediately from Theorem 5 and the
fact that endochronous systems are flow-insensitive. Now we
can check that the example in Figure 3 cannot be desynchro-
nized, as the synchronous composition ρ1}ρ2}ρ3 is not clock-
consistent.

IV. IMPLEMENTATION ISSUES

A. Building Wrappers

By the main theorem, we also need to make sure that each
synchronous component is flow-insensitive. Therefore we try
to build wrappers for the components ensuring their flow-
insensitivity (which might not be always possible). A wrapper
periodically checks the input channels, and decides based on
the observed values whether to trigger a reaction, i.e., to
determine the set of firing rules. Checking flow-insensitivity is
undecidable (otherwise isochrony is decidable), and we check
instead for endochrony, which is statically verifiable.

In particular, it is shown in [14] that verifying endochrony
of a state-less node in a data-processing network can be
reduced to checking if the firing rules describing its behaviors
overlap. At each reaction, a firing rule tests the input patterns
and based on each pattern triggers a corresponding action. For
example, it is easy to see that the firing rules of the Gustave
function do not overlap. This technique can be extended to a
synchronous component shown as follows.

Given a GA ρ, let termpρq be all arithmetic terms occurring
in ρ not having the form clkpxq and let Vρt “

Ť

tPtermpρq rdptq.
Denote Normpρq be the normalized formula of ρ such that for
all t in termpρq, if it is a conjunct then replace it by true, or
if it is a disjunct then replace it by false. The clock trigger of
ρ is defined as:

CTpρq “ Normpgrdpρqq ^
ľ

xPVρt

clkpxq

We further define:

TrigPattpρq :“ tpG,VinzGq|G Ď Vin such that there exist:

I :“ tclkpxq | x P Gu Ñ ttrueu,

I 1 :“ tclkpxq | x P VinzGu Ñ tfalseu,

I2 :“ tclkpxq | x P VzVinu Ñ ttrue, falseu,

pI Y I 1
Y I2

q |ù CTpρqu,

FiringRulepρq :“ xTrigPattpρq, actpρqy

TrigPattpPq :“ tpG,G1
q | Dρ P P.pG,G1

q P TrigPattpρqu

FiringRulespPq :“ tFiringRulepρq | ρ P Pu

We say that the firing rules FiringRulespPq of system P
overlap, if there exists pG,G1q and pF ,F 1q in TrigPattpPq
such that either G X F ‰ H or G1 X F 1 ‰ H. Finally, we
utilize the result in [14] and introduce the following theorem:

Theorem 7: A synchronous system xV,Py is
endochronous if the firing rules of P do not overlap.

For example, consider the following synchronous systems:

ρ1 : pl1 ą 0q ^ clkpi1q ^  clkpi2q ñ nextpl1q “ fpi1, i3q

ρ2 : pi1 ď 0q ^  clkpi2q ^ clkpi3q ñ l1 “ hpi3q

ρ3 : clkpi1q _ clkpi2q ñ o “ fpl1, i3q

ρ4 :  clkpi1q ^  clkpi3q ñ o “ fpl1, i2q

where Vin “ ti1, i2, i3u,Vloc “ tl1u and Vout “ tou, and we
have:

CTpρ1q “
`

clkpi1q ^  clkpi2q
˘

^
`

clkpl1q ^ clkpi3q
˘

TrigPattpρ1q “ tpti1, i3u, ti2uqu

CTpρ2q “
`

 clkpi2q ^ clkpi3q
˘

^
`

clkpi1q
˘

TrigPattpρ2q “ tpti1, i3u, ti2uqu

CTpρ3q “
`

clkpi1q _ clkpi2q
˘

^
`

clkpl1q ^ clkpi3q
˘

TrigPattpρ3q “ tpti1, i3u, ti2uq, pti2, i3u, ti1uq, pti1, i2, i3u,Hqu

CTpρ4q “
`

 clkpi1q ^  clkpi3q
˘

^
`

clkpi2q
˘

TrigPattpρ4q “ tpti2u, ti1, i3uqu

For example, for ρ3,

tclkpi1q ÞÑ true, clkpi2q ÞÑ false, clkpi3q ÞÑ true,

clkpl1q ÞÑ true, clkpoq ÞÑ trueu

is a proper interpretation satisfying CTpρ3q from which
pti1, i3u, ti2uq is extracted in TrigPattpρ3q, and ρ1}ρ3 is not
endochronous because TrigPattpρ1}ρ3q overlaps. In particular,
variable pairs in TrigPattpρ3q already overlap inside. Instead,
ρ2}ρ4 is endochronous, since the trigger patterns of ρ2 and ρ4
do not overlap, and ρ1}ρ2 is endochronous, since their trigger
patterns coincide.

B. Explicit Absent Signaling

Once we found ρ1}ρ3 to be not endochronous, we can transmit
additional absent signals to make it endochronous. In particu-
lar, for ρ1}ρ3, we should explicitly transmit the absent value
for i1 and i2 when their clocks are down. This degenerates our
implementation to a latency-insensitive design [15].

V. EXPERIMENTAL RESULTS

For illustrating our theorem and related concepts, we propose
case studies inspired by [16] where FPGAs are exploited for
hardware acceleration of continuous queries against streams
of data. A query plan is translated from a query language
like SQL and is used for computing a data query. In [16],
all query plans are implemented purely synchronously, i.e., as
synchronous circuits. For better performance, a natural exten-
sion is to apply our synchronous design flow to desynchronize
the synchronous implementation into an isochronous network.

Our case study is a set of 4 stream query plans for real-time
stock-market queries, similar to those in [16]. In particular,
Q1 “ SepBuy}SepSell separates the trades into two types:
buys and sells, Q2 “ Avrg and Q3 “ InBuy}InSell}Count
compute the average prices and total number of trades from
two input sequences of trades respectively. Finally Q4 “

Fork}Win1}Win2}Merge computes the weighted price of trades
regarding a period of time (by using sliding windows). Be-
cause of the similarity between the model of computation



TABLE I: Endochronous Components

SepBuy SepSell Avrg InBuy InSell Count Fork Win1 Win2 Merge

Endochrony 3 3 7 3 3 7 3 3 3 3

TABLE II: Desynchronization Results

Synchronous Systems Desynchronization Assumptions Signaling Isochrony
Q1 SepBuy}aSepSell 3 3 3

Q3 InBuy}aInSell}aCount 3 7 3

Q4 Fork}aWin1}aWin2}aMerge 3 3 3

Q1}Q2 SepBuy}aSepSell}aAvrg 7 – 7

Q1}Q3 SepBuy}aSepSell}aInBuy}aInSell}aCount 3 7 3

of streaming queries (particularly discrete logical time) and
synchronous programs, we can easily translate the query plans
to synchronous programs and perform our analysis.

Table I shows whether endochrony holds for each query
plan’s components, where 3 means the component is en-
dochronous and 7 means it lacks of endochrony. Based on
the results of Table I, we show the result of desynchronization
of the query plans in Table II, where the column ‘Assump-
tion’ lists whether the synchronous composition satisfies the
assumptions 1 and 2 of our theorem (3 for satisfied and 7 for
not satisfied), column ‘Signaling’ lists whether no additional
signaling is needed (3 for not needed, 7 for needed, and
- for not applicable), and the last column lists whether the
decomposition is isochronous.

For example, Count is not endochronous, therefore it needs
additional signaling of absent values when desynchronizing
Q3. Avrg is assuming that the bought trades and sold trades
coming at the same reaction, which is not the case for SepBuy
and SepSell (as they separate one single trade stream into
two different streams, therefore values of two streams never
appear at the same reaction). Therefore Q2}Q3 is not clock-
consistent. Q4 uses two copies of a size-2 window to accelerate
the weighted price of the two latest trades, therefore Fork
outputs two copies of one single trade to both windows at
each reaction, and only one of the windows will output a
weighted price at each reaction to Merge, and therefore forms
a pipeline. All four components of Q4 are endochronous, and
the desynchronization is isochronous.

VI. CONCLUSIONS

In this paper, we proved a theorem that states that the desyn-
chronization of a synchronous composition of components
is correct provided that each component is endochronous,
constructive, and that the variables are clock-consistent. We use
the notion of clock-consistency as a replacement of isochrony
as defined in [5], [6], and therefore come back to its original
meaning as introduced in [4]. The great advantage over the
definition of isochrony given in [5], [6] is that checking clock-
consistency is decidable, and can be done by model-checkers
using state-based reasoning instead of considering streams or
flows of data values.
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