
Towards Verifying Determinism
of SystemC Designs
Hoang M. Le1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{hle,drechsle}@informatik.uni-bremen.de

Abstract—Ensuring the correctness of high-level SystemC
designs is an important and challenging problem in today’s
Electronic System Level (ESL) methodology. Prevalently, a design
is checked against a functional specification given by e.g. a
testcase with reference output or a user-defined property. Another
research direction takes the view of a SystemC design as a piece
of concurrent software. The design is then checked for common
concurrency problems and thus, a functional specification is not
required. Along this line, several methods for deadlock detection
and race analysis have been developed.

In this work, we propose to consider a new concurrency
verification problem, namely input-output determinism, for Sys-
temC designs. That means for each possible input, the design
must produce the same output under any valid process sched-
ule. We argue that determinism verification is stronger than
both deadlock detection and race analysis. Beside being an
attractive correctness criterion itself, proven determinism helps
to accelerate both simulative and formal verification. We also
present a preliminary study to show the feasibility of determinism
verification for SystemC designs.

I. INTRODUCTION

The so-called Electronic System Level (ESL) methodol-
ogy [1] has become state of the art for the design and ver-
ification of today’s complex electronic systems. The essential
idea is to start the design and verification process at a high
level of abstraction using a system modeling language such as
the de facto standard SystemC [2]. Here, the functionality of
the system is realized and evaluated in an abstract fashion,
typically using algorithmic modeling or Transaction Level
Modeling (TLM) [3] techniques. From the first abstract design,
the RTL implementation is obtained by successive refinement
steps across different levels of timing accuracy. During this
process, it is important to detect errors in the SystemC models
as early as possible to prevent costly late changes or product
delay.

Functional verification of SystemC designs is therefore of
major interest. The main challenge is the huge verification
space of a SystemC design that consists of all valid inputs and
all possible process schedules. Among existing academic and
industrial approaches, simulation is most widely employed due
to its scalability and ease of use. Simulation-based approaches
apply test vectors to the design and then check produced
outputs against reference outputs, or alternatively monitor
user-defined temporal properties during simulation [4], [5].
The shortcoming of simulation is that it considers only one

978-3-9815370-2-4/DATE14/ c© 2014 EDAA

possible schedule for a given data input, resulting in a poor
coverage of the verification space. Methods based on Partial
Order Reduction (POR) have been proposed [6], [7] to address
this issue. They explore all possible scheduling sequences of
SystemC processes, however, only for a given data input. The
complete coverage of both inputs and process schedules can
only be ensured by formal verification approaches [8], [9],
[10], [11]. These verify a design exhaustively against a given
property, but do not yet scale to large designs.

In contrast to conventional functional verification, which
requires a functional specification (reference outputs or prop-
erties), another research direction takes the view of SystemC
designs as concurrent software programs and checks them for
common concurrency problems. It is advantageous since a
correct design should be free of these problems and the check
can be applied even if a functional specification is not yet
available. So far, deadlock detection [12], [13] and data race
analysis [7], [14] have been considered.

Along this line of research, the paper makes two contribu-
tions:

1) We propose to examine a new concurrency verification
problem, namely input-output determinism, for SystemC
designs. That means for each possible input, the design
must produce the same output under any valid process
schedule. Determinism verification has been considered
for concurrent software [15], [16], however, approaches
for SystemC requires special consideration of its concur-
rency semantics. In SystemC context, we also show that
determinism verification is stronger than both deadlock
detection and race analysis, and discuss the benefits of
determinism regarding enhancement of both simulative
and formal verification.

2) We propose and evaluate a first solution to demonstrate
the feasibility of determinism verification for SystemC
designs. The implemented solution executes symboli-
cally two versions of a design: a version with only one
single schedule and an encoding of all possible sched-
ules, and asserts the equivalence of produced outputs.
Hence, the verification result is complete, i.e. either
determinism is proved or a counter-example is found.

The remainder of the paper is organized as follows: Sec-
tion II summarizes SystemC semantics and its encoding for
formal verification. Section III motivates determinism verifi-
cation by an example. Section IV discusses the usefulness of



1 while (runnable count > 0) { // time loop
2 while (runnable count > 0) { // delta cycle loop
3 while (runnable count > 0) { // evaluation loop
4 choose one runnable process();
5 runnable count−−;
6 if (process 1 is chosen) process 1();
7 ...
8 if (process n is chosen) process n();
9 }

10 // delta notification
11 if (event 1 has been delta notified)
12 make all waiting processes runnable();
13 ...
14 if (event m has been delta notified)
15 make all waiting processes runnable();
16 }
17 // timed notification
18 t = get smallest notification delay();
19 advance simulation time by(t);
20 reduce {all} delays by(t);
21 if (notification delay of event 1 == 0)
22 make all waiting processes runnable();
23 ...
24 if (notification delay of event m == 0)
25 make all waiting processes runnable();
26 }

Fig. 1. Generated SystemC scheduler for n processes and m events

proven determinism in more detail. Section V presents our
preliminary study. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. SystemC Concurrency Semantics

SystemC follows a non-preemptive semantics which allows
a process to execute until it finishes or explicitly calls wait()
for synchronization. This semantics can be summarized as the
following steps [17]:

1) Initialization: Processes are set to be runnable.
2) Evaluation: A runnable process is executed or resumes

its execution. In case of immediate notification a waiting
process becomes runnable immediately. This step is
repeated until no more processes are runnable.

3) Update: Updates of signals and channels are performed.
4) Delta notification phase: If there are delta notifications,

the waiting processes are made runnable, and then it is
continued with Step 2.

5) Timed notification phase: If there are timed notifications,
the simulation time is advanced to the earliest one, the
waiting processes are made runnable, and it is continued
with Step 2. Otherwise the simulation is stopped.

B. Encoding of SystemC Semantics for Formal Verification

Existing formal verification approaches such as [8], [11]
first translate a SystemC design to C. In this section we briefly
summarize such a translation, which consists mainly of three
steps:

1) The design structure is statically resolved. Modules,
channels, and other objects are flattened into global vari-
ables and functions. At the end of this step, the design

becomes a set of SystemC processes communicating
over shared variables.

2) A static scheduler implementing the SystemC semantics
is generated. The scheduler skeleton is illustrated in
Fig. 1. Note that before the depicted scheduler loop is
entered, each process gets a global variable indicating
its status (e.g. runnable or waiting). Non-deterministic
choice of which runnable process to be executed next,
is embedded into the evaluation loop (Line 4 in Fig. 1).
This allows a model checker to explore all interleavings
implicitly.

3) The handling of events is implemented by manipulating
a set of Boolean and integer variables (e.g. notification
flag and delay). The suspension and resumption of
processes is mapped to jumping between appropriate
labels.

After the translation, a C model checker can be applied to
verify the translated model formally and relate the verification
result back to the original SystemC model. Alternatively,
such a translation can omit the encoding of the scheduler.
In this case, the concurrency semantics of SystemC must be
directly integrated into the model checking algorithms (see for
example [10], [11]).

III. MOTIVATING EXAMPLE

Fig. 2 shows a SystemC example that would benefit from
determinism verification. The example is loosely based on
the benchmark B1 from [7]. The behavior of the design
can be summarized by the following loop: it receives an
integer input and then non-deterministically selects one of two
possible computation paths. The input value is increased by
two and then by three along the first path and in reverse
order along the second. Afterwards the computed value is
outputted and the design is ready again to receive a new
input. The implementation uses three clocked processes c,
p1, and p2. The process c performs the actual computation
using a state machine, while p1 and p2 are responsible for the
non-deterministic path selection. Two computation paths are
identified by the state sequences (0, 1, 3, 5) and (0, 2, 4, 5),
respectively. The shared variable locked ensures that only one
path can be selected. Due to the presence of three concurrent
processes, there are many possible schedules. However, the
output is always equal to the input increased by five, i.e. the
input-output behavior of the design is deterministic.

Due to a bug in Line 8 (x += 2 instead of x += 3), the
first computation path actually adds only four to the input
value. This bug is detected by determinism verification without
knowing the functional specification above since the results
differ in two computation paths.

After fixing the bug, we consider the race analysis approach
proposed in [7]. This approach computes a very precise
race condition using model checking and can also refute
the dependency between two SystemC processes reported by
conventional read/write analysis. For the example, it reveals
races between each pair of processes, e.g. p1 and p2 competing
for locked or when locked is not set, the execution order c then
p1 would lead to other result than p1 then c. POR techniques



1 SC MODULE(Model) {
2 ...
3 void c() {
4 switch (state) {
5 case 0: x = input; locked = false; break;
6 case 1: x += 2; state = 3; break;
7 case 2: x += 3; state = 4; break;
8 case 3: x += 2; state = 5; break;
9 case 4: x += 2; state = 5; break;

10 case 5: output = x; state = 0; break;
11 default:
12 }
13 }
14 void p1() {
15 if (!locked) { state = 1; locked = true; }
16 }
17 void p2() {
18 if (!locked) { state = 2; locked = true; }
19 }
20 SC CTOR(Model) {
21 locked = true; state = 0;
22 SC METHOD(c); sensitive << clk;
23 SC METHOD(p1); sensitive << clk;
24 SC METHOD(p2); sensitive << clk;
25 }
26 };

Fig. 2. SystemC example

proposed in [7] based on these precise race conditions are
unable to reduce the number of process schedules to only one.
As a consequence, a simulation over many time steps would
be very expensive, while such a reduction is clearly possible
with proven determinism.

IV. BENEFITS OF PROVEN DETERMINISM

In this section, we discuss the usefulness of proving de-
terminism in more detail. First, determinism is a valuable
correctness criterion: with the exception of intended non-
deterministic outputs, a design should not produce different
results for a given input. As motivated by the example,
verifying determinism of a design can reveal errors without the
need of a functional specification. While the same claim can
be made for deadlock detection and race analysis, determinism
verification is stronger than both:

• Deadlock-freedom does not ensure determinism. On the
other hand, determinism verification can detect deadlocks
in a design. Because in deadlocked schedules, the design
will produce no output, which is considered to be differ-
ent than the output from normal schedules.

• Designs with (intended) races can nonetheless be deter-
ministic as can be observed in the SystemC example.

The second benefit is that functional verification can be
accelerated in the presence of proven determinism. As can
be seen in the example, proven determinism can reduce the
number of schedules that need to be considered to only one.
Thus, the time of each run for both simulation-based and
formal functional verification approaches can be remarkably
decreased. The gain is even more significant in consideration
of the whole verification process which consists of many runs,
since the same schedule space is not explored again and again

1 while (runnable count > 0) { // evaluation loop
2 if (process 1 is runnable) process 1();
3 ...
4 if (process n is runnable) process n();
5 }

Fig. 3. Evaluation loop for one single schedule

in each run. Moreover, if the whole design cannot be proved to
be deterministic, proving determinism for many parts of it and
combining the results can also achieve strong reduction. For
example, consider a fictive big design chaining many instances
of the SystemC example. A further application of proven de-
terminism is in equivalence checking of two SystemC designs.
With both designs being proved to be deterministic, one only
needs to check the behavioral equivalence of them under two
arbitrary schedules instead of examining the cross product of
two schedule spaces.

V. PRELIMINARY STUDY

In this section, we propose a solution for determinism
verification and describe our first experimental evaluation.

A. First Solution

Since the determinism criterion requires to consider all
possible inputs and schedules, the use of formal methods is
necessary. For the first step towards efficient solutions, we
propose to adapt existing formal verification techniques for
SystemC to perform determinism verification. The basic idea
is as follows: We calculate the output of the design (sym-
bolically because of the non-deterministic input) under one
specific schedule, then execute the design under all possible
schedules and require that the output is always equal to the
calculated one. As mentioned in Section II, there are two main
approaches for formal verification of SystemC: one integrates
the scheduler explicitly in the model checking algorithm while
the other approach encodes the scheduler (and thus all possible
schedules) into the verification instance.

In the following, we focus on adapting the second approach,
which has been implemented and evaluated in this paper. To
obtain the calculated output under one schedule, one could
manipulate the encoding of all schedules to separate that
one schedule from the rest, but there is no apparent way
to do it. Instead, we use a second encoding which includes
only one schedule. Such an encoding can be obtained by
slightly modifying the generated scheduler from Fig. 1. The
modification applies to the evaluation loop and is depicted in
Fig. 3. As can be seen, instead of non-deterministic choices, a
process is executed immediately if it is runnable. The encoding
generated using this modification is denoted as Esingle, while
the encoding with all schedules is referred to as Eall. After
their generation, the two encodings are combined to create a
harness for determinism verification shown in Fig. 4. First,
the single schedule is executed, then the input to Eall is
constrained to be equal to the input of Esingle. After the
execution of Eall, the output of both Esingle and Eall are
asserted to be equal. Recall that the encoding is given in C, the



Esingle;
assume(Iall = Isingle);
Eall;
assert(Oall = Osingle);

Fig. 4. Harness for determinism verification

harness is passed to a C model checker as a C program (here
we use CBMC [18]). CBMC executes the harness symbolically
and thus can either prove or refute the determinism of the
considered design. In the latter case, a counter-example is
returned. Then, the concrete input values, two conflicting
schedules, and the different output values can be extracted,
which helps to debug the error. The limitation of the proposed
harness is that it requires the number of input and output values
to be statically determinable and constant over all possible
schedules.

B. Experiments

The above solution has been evaluated on the example. As
mention in Section III, the example is based on the benchmark
B1 from [7], which is a difficult instance for exhaustive
simulation with POR according to this paper1. In addition,
determinism verification must also cover the whole input space
of 232 possible values (the range of an int). To test the
scalability of the solution, we also enlarge the example by
adding more inputs and more processes. The design example1
has two more inputs resulting in a input space of 296 possible
values. The design example2 has been obtained by duplicating
the example, i.e. it has six processes and two inputs. The
results obtained on an AMD Phenom 3.4 GHz Linux machine
are presented in Table I. The first three columns describe
the name of the design, the number of processes and the
number of int-inputs, respectively. Designs with the suffix bug
in their name contain the error described in Section III. The
fourth column shows the depth of the design, i.e. the number
of iterations of the evaluation loop (see Fig. 1) required to
produce an output. The last two columns present the result and
verification time, respectively. As can be seen, determinism
of the (faulty) example has been quickly proved or refuted,
respectively. The verification time increases slightly with the
tripling of the number of inputs for example1. However, the
determinism of example2 could not be proved within one hour,
indicating that the increase of the number of processes is much
more costly. Nevertheless, this design can be divided into two
independent parts, each of which is equivalent to the example.
A compositional approach for determinism verification would
be of help here.

VI. CONCLUSIONS

The paper identified input-output determinism as a new
verification problem for SystemC designs and discussed its
benefits as correctness criterion and performance enhancement
for functional verification. In the presented preliminary study,
we implemented a first determinism verification solution and

1The simulation takes nearly thirty minutes to complete fifteen steps on a
3 GHz Linux machine.

TABLE I
RESULTS OF DETERMINISM VERIFICATION

Design Process int-Input Depth Result Time
example bug 3 1 23 failed 3.36s
example 3 1 23 ok 9.54s
example1 bug 3 3 23 failed 6.71s
example1 3 3 23 ok 33.72s
example2 bug 6 2 41 failed 20.30s
example2 6 2 41 ? >3600.00s

evaluated it on several designs. Our experiments showed
that for determinism verification, adapting existing formal
verification techniques for SystemC is a feasible approach.
Our work-in-progress currently involves the adaption of the
other formal verification approaches for SystemC. Then, we
would like to evaluate these solutions more thoroughly and
quantify the discussed benefits of proven determinism on real-
life designs. To develop more efficient solutions, we also
might need to adapt determinism verification techniques for
multi-threaded software to the context of SystemC as well as
investigate compositional approaches.

ACKNOWLEDGEMENTS

This work was supported in part by the German Fed-
eral Ministry of Education and Research (BMBF) within
the project EffektiV under contract no. 01IS13022E and by
the German Research Foundation (DFG) within the Reinhart
Koselleck project DR 287/23-1. The authors would like to
thank Mathias Soeken for taking the time to review an early
version of this paper. We are also grateful for the valuable
comments and suggestions from the anonymous reviewers.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann/Elsevier, 2007.

[2] Accellera Systems Initiative. (2013) SystemC 2.3 (includes TLM). [Online].
Available: www.accellera.org

[3] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer, 2006.

[4] L. Ferro and L. Pierre, “ISIS: Runtime verification of TLM platforms,” in FDL,
2009, pp. 1–6.

[5] D. Tabakov and M. Y. Vardi, “Monitoring temporal SystemC properties,” in
MEMOCODE, 2010, pp. 123–132.

[6] S. Kundu, M. Ganai, and R. Gupta, “Partial order reduction for scalable testing
of SystemC TLM designs,” in DAC, 2008, pp. 936–941.

[7] N. Blanc and D. Kroening, “Race analysis for SystemC using model checking,”
ACM Trans. on Design Automation of Electronic Systems, vol. 15, pp. 21:1–21:32,
2010.

[8] D. Große, H. M. Le, and R. Drechsler, “Proving transaction and system-level
properties of untimed SystemC TLM designs,” in MEMOCODE, 2010, pp. 113–
122.

[9] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. R. Huang, “Symbolic model checking
on SystemC designs,” in DAC, 2012, pp. 327–333.

[10] H. M. Le, D. Große, V. Herdt, and R. Drechsler, “Verifying SystemC using an
intermediate verification language and symbolic simulation,” in DAC, 2013, pp.
116:1–6.

[11] A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking SystemC,”
IEEE Trans. on CAD, vol. 32, no. 5, pp. 774–787, 2013.

[12] A. Sen, V. Ogale, and M. S. Abadir, “Predictive runtime verification of multi-
processor SoCs in SystemC,” in DAC, 2008, pp. 948–953.

[13] C.-N. Chou, C.-H. Hsu, Y.-T. Chao, and S.-L. Huang, “Formal deadlock checking
on high-level SystemC designs,” in ICCAD, 2010, pp. 794–799.

[14] M. Moiseev, M. Glukhikh, A. Zakharov, and H. Richter, “A static analysis approach
to data race detection in systemc designs,” in DDECS, 2013, pp. 54–59.

[15] J. Burnim and K. Sen, “Asserting and checking determinism for multithreaded
programs,” in ESEC/FSE, 2009, pp. 3–12.

[16] M. Vechev, E. Yahav, R. Raman, and V. Sarkar, “Automatic verification of
determinism for structured parallel programs,” in SAS, 2010, pp. 455–471.

[17] IEEE Standard SystemC LRM, IEEE Std. 1666, 2011.
[18] CPROVER. (2013) CBMC. [Online]. Available: www.cprover.org/cbmc


