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Abstract—Recent developments in the fabrication technology
attracted the attention of optical engineers and physicists in the
area of VLSI photonics. Due to the physical nature of light-wave
systems and their usage in safety critical domains such as human
surgeries and high budget space missions, it is indispensable
to build high assurance systems. Traditionally, the analysis of
such systems has been carried out by paper-and-pencil based
proofs and numerical computations. However, these techniques
cannot provide perfectly accurate results due to the risk of human
error and inherent approximations of numerical algorithms. In
order to overcome these limitations, we propose to use higher-
order logic theorem proving to improve the analysis in the
domain of integrated optics or VLSI photonics. In particular,
this paper provides a higher-order logic formalization of optical
microresonators which are the most fundamental building blocks
of many photonic devices. In order to illustrate the practical
utilization of our work, we present the formal analysis of 2-D
microresonator lattice optical filters.

I. INTRODUCTION

In the past few decades, optics and photonics technol-
ogy has emerged as a promising solution to resolve many
bottlenecks (e.g., high capacity telecommunication links with
smaller size) in traditional semiconductor technology. As a
result, optics and photonics devices are increasingly used in
telecommunication, human surgeries, energy and environmen-
tal management systems. The main advantages of optics are
high-speed, low power, huge bandwidth, smaller size and fast
information processing. Nowadays, communication systems
are composed of both optical and electronic devices such as
long distance communication links, which are a combination
of optical fiber and electrically controlled optical switches. In
order to meet future challenges, significant research has been
done in the area of developing very large scale integrated
(VLSI) photonic circuits which are the optical counter parts
of traditional VLSI electronic chips [5]. An optical microres-
onator [12] is the most fundamental building block of VLSI
photonics and it is an integral part of many devices such as
optical filters, optical switches, optical transistors, wavelength
division multiplexing and biosensors. Optical microresonators
confine light in a closed structure by the process of total
internal reflection to achieve desired functionalities such as
light amplification and frequency selection. Due to their small
size and flexible geometry, such resonators are preferred over
Fabry-Pérot resonators [17] in the design of integrated optics.

The development of optical integrated circuits mainly in-
volves the physical modeling of some fundamental building-
blocks such as microresonators and couplers, which are used
to confine light and transfer energy between two waveguides,

respectively [19]. One of the most critical requirement is
the validation of such models and the verification of system
properties. Therefore, significant portion of time is spent to
find bugs in the design process prior to the manufacturing of
the actual system. Traditionally, the models of these building-
blocks are constructed using paper-and-pencil equations by
optical engineers and physicists. One of the primary but most
time consuming analytical approach to analyze the properties
of microresonator circuits is to explicitly write the node and
loop equations and then computing complex output wave am-
plitudes normalized by the input amplitude. The main strength
of this technique is that it provides almost all important scatter-
ing coefficients such as transfer intensity, phase and dispersion
[4]. Another approach is the use of transfer matrices to char-
acterize different types of optical circuits [18]. This method
provides an easy way to model complex optical systems and
their analysis using complex linear algebra. Although, these
analytical methods provide closed form mathematical solutions
but carrying such an analysis by-hand is human error-prone,
particularly for systems involving many optical components.
Moreover, most of the underlying assumptions are not specified
explicitly which may lead to faulty system designs. There are
many examples of erroneous analysis in optics literature, but
a recent one can be found in [3] and its identification and
correction is reported in [16].

Recently, high-speed computing resources are actively used
to perform simulation based analysis using numerical algo-
rithms. The most commonly used numerical techniques are
finite-difference time-domain (FDTD) modeling of electro-
magnetic equations [22] and the transmission line modeling
(TLM) method [2]. Both of these methods have been proven
to be very time consuming in most optics and photonics
problems such as optical waveguide structures and optical
fibres [19]. Since optical microresonators trap light for a long
time, the simulation time should be extremely large in order
to achieve reasonable results [20]. Besides the huge memory
and computational time requirements, these techniques cannot
provide perfectly accurate results due to the discritization of
continuous parameters and the involvement of unverified nu-
merical algorithms. The above mentioned inaccuracy problems
of traditional analysis techniques are impeding their usage in
designing safety-critical optical systems, where minor bugs can
lead to disastrous consequences such as the loss of human lives
or financial loss because of their use in high budget defense
and space missionss.

In order to address similar inaccuracy problems in elec-
tronic devices, many formal and semi-formal verification
techniques have been proposed. Recently, some preliminary
works for analyzing optical systems using theorem proving978-3-9815370-2-4/DATE14/ c©2014 EDAA



[9] have been reported in the open literature. For instance, in
[11], the formal analysis of optical waveguides using HOL4
theorem prover is reported. This work is primarily based on
real analysis which is insufficient to capture the dynamics of
most optical and photonic systems. For example, electric and
magnetic fields can only be modeled using complex vectors
theory, which to the best of our knowledge is not available
in the HOL4 theorem prover. In [21], the authors developed
a preliminary infrastructure in HOL Light theorem prover [8]
to formally analyze optical systems based on ray optics. The
developed infrastructure is only applicable where the size of
the optical components is much larger than the wavelength of
light (which is assumed to be very small). Note also that ray
optics can only be applied to analyze some basic properties
of optical systems such as resonators stability [17]. Despite
of the vast applications of VLSI photonics in safety and
mission critical applications, none of the above mentioned
work provides the basis (i.e., formalization of basic building-
blocks such as microresonators and interference couplers [18])
to apply formal verification in this domain.

The main focus of this paper is to bridge the above
mentioned gap and strengthen the formal reasoning support
in the area of integrated optics. Our main goal is to develop a
higher-order logic formalization of most widely used building-
blocks involved in the design of practical photonic systems.
In this paper, we build upon the rich multivariate analysis
libraries [10] of the HOL Light theorem prover along with
the complex matrices formalization which are the foremost
requirements to model the physical dynamics of such building-
blocks. As a first step towards our ultimate goal, we present
in this paper the higher-order logic formalization of optical
microresonators. We provide a set of formal definitions to
model most commonly used microresonators structures, i.e.,
resonator coupled with one waveguide and two waveguides.
We derive the transfer matrices of each resonator structure
which provides the basis to model real-world photonic circuits.
In order to reason about periodic optical structures, we present
the formal verification of Sylvester’s theorem [23]. In order
to show the practical utilization of our work, we present the
formal analysis of 2-D microresonator lattice optical filter by
decomposing into two 1-D linear cascades of coupled and
uncoupled microresonators, respectively. To the best of our
knowledge, this is the first time that formal methods has
been used in the area of VLSI photonics. Moreover, we have
been able to find some discrepancies in the paper and pencil
based proof approach [14]. The most important one is the
identification of a missing assumption in Sylvester’s theorem
which plays a central role in the analysis of optical filters.

II. OPTICAL MICRORESONATORS

Optical microresonators1, also named as microring res-
onators (MRR) [7], are optical structures made of different
reflecting surfaces to confine the light in very small volumes
to perform different operations such as light amplification
and wavelength filtering. A single microring resonator can be
characterized by its reflectivity (r), transmissivity (t), cavity
length (Lc), power attenuation (α), wavelength λ, and effective
waveguide index (neff ) as shown in Figure 1.

1Throughout this paper, microresonators refer to microring resonators [19]
which are different from Fabry-Pérot cavity [17] based microresonators.
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Fig. 1. Schematic Structure of Optical Microresonators (MRR)

In order to facilitate the formal reasoning process, we
represent a microring resonators as a new type definition in
HOL Light 2 as follows:

Definition 1 (Microring Resonator (MRR)):
new_type_abbrev "mrr =

:R × R × R × R× R × R"
Here, the type mrr is a composition of six real numbers
(r,t,Lc,α,λ,neff ) which are necessary parameters to model a
single resonator as described above.

In practice, MRRs works as either a two or a four port
configuration in integrated optics. In a two-port resonator
structure (see Figure 1(i)), the resonant cavity is coupled to
a single waveguide and hence it has only a single input a and
output b. Note that a and b are complex-valued parameters,
which essentially represent electromagnetic fields at the input
and output, whereas c and d represent fields inside the cavity.
Such resonators are suitable as a dispersive or attenuating
element and has been widely used in phase-only filters [6].
If a single ring is coupled to two bus waveguides then the
configuration is a four-port as shown in Figure 1(ii), where
a,b,c,d are the input, throughput, dropped and the added fields,
respectively. We define a resonator structure by a new type in
HOL Light as follows:

Definition 2 (Microring Resonator Structure):
define_type "mrr_structure =

two_port | four_port"

Next, we define what is the valid behavior of a MRR
in terms of the relation between resonator parameters
(r,t,Lc,α,λ,neff ) and field parameters (a,b,c,d) at the input
and the output. For the one-port MRR (Figure 1 (i)), it is
necessary to explicitly define the relation between fields inside
and outside of the resonator. On the other hand, it is sufficient
to model the physical behavior using the two input and two

2Note that throughout in this paper, we used minimal HOL Light syntax
in the presentation of definitions and theorems to improve the readability and
for the better understanding without prior experience of HOL Light.



output fields in case of four-port MRR (Figure 1 (ii)) [14].
Then the predicate is defined by case analysis on the MRR
structure:

Definition 3 (Valid Behavior in MRR Structures):
`(is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc, α, λ, neff):mrr four_port ⇔
let δ = ( 2∗πλ ) ∗ neff ∗ Lc and τ = exp(−α∗Lc

2
) in

let R = − r∗(1−τ∗exp(−j∗δ))
1−r2∗τ∗exp(−j∗δ) and

T = − t2∗
√

(τ)∗exp(− j∗δ
2

)

1−r2∗τ∗exp(−j∗δ) in

d = 1
R
∗ c − T

R
∗ a ∧ b = T

R
∗ c + R2−T2

R
∗ a)∧

(is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc, α, λ, neff):mrr two_port ⇔
c = − 1

j∗t ∗ (a+ r ∗ b) ∧ d = 1
j∗t ∗ (r ∗ a+ b))

Here, is_valid_behavior_in_mrr takes four
fields parameters (a, b, c, d ∈ C), a microring resonator
(r, t, Lc, α, λ, neff) and mrr_structure, and returns the
relation among these parameters. Note that j represents an
imaginary unit and j2 = −1. The parameter δ represents the
frequency-dependent phase shift, τ represents the waveguide
loss effect, T and R represent the output field in the backward
direction and forward direction, respectively.

The transfer matrix modeling [18] is the most widely used
approach to analytically model MRRs [2]. The main charac-
teristics of this technique are to decompose photonic circuits
in the form of series of MRRs and then analyzing different
behaviors using complex matrix algebra. Now, equipped with
the above formal definitions (Definitions 1-3), we verify the
transfer matrix relation of MRRs in case of two-port and four-
port structures [14].

Theorem 1 ( MRR Matrix for Two-Port Structure):
` ∀a b c d r t Lc α λ neff.

is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc, α, λ, neff):mrr two_port =⇒[
c
d

]
= 1

j∗t

[
−1 −r
r 1

]
**

[
a
b

]

Theorem 2 ( MRR Matrix for Four-Port Structure):
` ∀a b c d r t Lc α λ neff.

is_valid_behavior_in_mrr (a,d) (b,c)
(r, t, Lc, α, λ, neff):mrr four_port =⇒
let δ = ( 2∗πλ ) ∗ neff ∗ Lc and τ = exp(−α∗Lc

2
) in

let R = − r∗(1−τ∗exp(−j∗δ))
1−r2∗τ∗exp(−j∗δ) and

T = − t2∗
√

(τ)∗exp(− j∗δ
2

)

1−r2∗τ∗exp(−j∗δ) in[
d
b

]
= 1

R

[
1 −T
T R2 − T2

]
**

[
c
a

]
Here, ** represents the matrix-vector multiplication in HOL
Light. The verification of above theroems mainly involves the
rewriting of predicate defintions along with the properties of
complex matrices.

III. FORMAL ANALYSIS OF 2-D MICRORESONATOR
LATTICE PHOTONIC FILTERS

Photonic filters are widely used devices to selectively reject
or transmit a range of wavelengths. The main applications
of optical filters are in the area of spectroscopy, biochem-
ical analysis, wavelength division (WDM) multiplexing and
aerospace. One of the central element in such filters is resonant
structure. An optical mirroring resonator can be used as a
building-block for different optical filters [13]. In general,
there are two types of configurations to build these filters: in
the first configuration (also called Type I), the resonators are
not mutually coupled but are periodically coupled to two side
waveguides, with equal spacing between adjacent resonators.
In the second configuration (also called Type II), the rings are
mutually coupled in a linear cascade which is coupled to input
and output bus waveguides [14]. In both types, the bandpass
response of the filter is better than a single MRR, but there
are several drawbacks (for example, ripples and sidelobes).

In this paper, we consider an alternative configuration
presented in [14], that is a geometric hybrid of the Type I and
Type II configurations . The configuration is a two-dimensional
(2-D) filter that can be constructed as a periodically coupled
array of coupled ring filters. The overall structure (M × N)
consists of N independent columns of microring resonators
side-coupled to two bus waveguides, with an equal spacing
between columns and each column consisting of M coupled
resonators as shown in Figure 2.

.... 

.... 

... 

... 

a1,1 

cM,1 

b1,N 

dM,N 

coupling 

coupling 

Fig. 2. 2-D Lattice of MRRs with M rows and N columns coupled to two
parallel waveguids

One of the most important design criterion of photonic
filters is the output response in terms of transmissivity and
reflectivity, which describe the transmission and reflection
intensity of light at the output of the filter, respectively [14].
The analysis of the output response of 2-D lattice (Figure 2)
seems non-trivial at first because the number of columns N
and rows M can be very large. Intuitively, a 2-D lattice can be
decomposed into a row sublattice of uncoupled resonators and
a column sublattice of coupled resonators, as shown in Figure
3. Then it is possible to analyze the properties of the 2-D filter
in terms of the properties of the 1-D filters [14]. Next, we use
our formalization of MRRs developed in the previous section
to formally verify the response of 1-D filters consisting of an
array of N microring resonators.
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Fig. 3. Decomposition of 2-D Lattice (i) a row sublattice consisting of a
linear cascade of N uncoupled resonators between the double waveguide (ii)
a column sublattice consisting of a linear cascade of M mutually coupled
resonators between the waveguides

We consider a linear cascade of MRRs periodically coupled
to a pair of bus waveguides with constant spacing (Lb), as
shown in Figure 3 (i). Generally, each MRR can be different
from the other in terms of its parameters depending upon the
filter specifications. The first step towards the formal verifi-
cation of the given filter structure is to define the necessary
notions in HOL Light. For example, we need to define the
notion of a cascade of microring resonators and the input and
output fields associated to each resonator in a cascade. The
next step is to formally describe the physical behavior in terms
of mathematical equations relating ring resonator parameters
to the two side waveguides. This leads to the verification of
the transfer-matrix relation of the cascade of N resonators.
In order to model the cascade of identical resonators in the
form of a single complex-valued matrix, the next step is to
formally verify the Sylvester’s theorem [14]. The final step is
to formally define the notion of transmissivity and reflectivity
and verify them using the already developed definitions and
theorems.

Step 1: In order to describe the cascade of MRRs as a list,
we define a new type abbreviation to simplify the reasoning
process as follows:

Definition 4 (Cascade Microring Resonator (MRR)):
new_type_abbrev "mrr_cascade" = :(mrr)list

We describe the relation among the input and output field
parameters (a, b, c, d) in a cascade by splitting them into two
pairs: input fields (an,dn) and output fields (bn,cn). Here,
subscript n represents the field parameters of the n-th resonator.
This yields the following definition:

Definition 5 (Array of Input and Output Fields ):
new_type_abbrev ("single_array",:C × C)
new_type_abbrev ("array",

:single_array × single_array ×
(single_array × single_array) list)

The first and the second single_array represent the
pair for input and output fields, respectively. The list of
single_array pairs represents the same information for
the list of MRRs.

Step 2: Although the resonators are uncoupled in the cascade,
they are still interacting with the adjacent resonators through
the two side waveguides. This interaction is described by the
following continuity relations:
an+1 = bn ∗ exp(−j ∗ ( 2∗πλ ) ∗ neff ∗ Lb) and
cn+1 = dn ∗ exp(j ∗ ( 2∗πλ ) ∗ neff ∗ Lb)

equivalently, as a continuity matrix:[
cn+1

an+1

]
=[

exp(j( 2πλ )neff ∗ Lb) 0
0 exp(−j( 2πλ )neff ∗ Lb)

] [
dn
bn

]
Next, we define what is the valid behavior of an array within
the cascade of uncoupled MRRs periodically coupled with two
side waveguides as follows:

Definition 6 (Valid Behavior of Array in MRR Cascade):
`(valid_array_in_cas (arr:array) []

four_port ⇔ F)∧
(valid_array_in_cas ((a1,d1),(b1,c1),[])
CONS r (rs:mrr_cascade) four_port ⇔ F)∧
(valid_array_in_cas
(a1,d1),(b1,c1), CONS((a2,d2),(b2,c2)) ars
CONS r rs four_port ⇔
a2 = b1 ∗ exp(−j ∗ ( 2∗πλ ) ∗ neff ∗ Lb) ∧
c2 = d1 ∗ exp(j ∗ ( 2∗πλ ) ∗ neff ∗ Lb) ∧
is_valid_behavior_in_mrr
(a1,d1) (b1,c1) r four_port ∧
valid_array_in_cas ars rs four_port)

Here, the predicate valid_array_in_cas takes an array
(Definition 5), a cascade of MRRs (Definition 4), a type of an
MRR structure (which is four_port because of the fact that
each MRR is coupled to two side waveguides) and returns the
corresponding physical behavior. The first two cases are not
valid and hence the result is False. This is because of the fact
that both of the situations: the nonempty array with an empty
cascade of MRRs, and the less number of array parameters in
case of two or more MRRs do not describe anything physically.
Finally, the last case describes the recursive behavior within
the cascade using the continuity equations and the predicate
is_valid_behavior_in_mrr (Definition 3) as described
in Section II.

Step 3: We have seen in the previous section that each MRR
can be modeled by its corresponding transfer-matrix. In the
transfer matrix approach [18], the response of cascade of
MRRs coupled to side waveguides can be modeled by the
composition of individual matrices of MRRs and the continuity
matrix. We model the composition of the cascade of N
identical resonators as follows:

Definition 7 (Composition of Cascade of MRRs):
`cascade_comp [r1;r2;r3;....;rN] =

N∏
i=1

continuity_mat(ri) ∗ ∗ mrr_mat(ri)

The functions continuity_mat and mrr_mat takes a
microresonator r as an argument and returns the continuity
matrix and the matrix of a single MRR derived in Theorem 1,
respectively.



Next, we verify one of the most important and generic
results in the analysis of MRR based systems [14] which
describes the transfer-matrix relation of the cascade of MRRs
(Figure 3 (i)).

Theorem 3 (Transfer-Matrix of Cascade of MRRs):
`∀ arr rrs.
valid_array_in_cas arr rrs four_port =⇒
let ((a1,d1),(b1,c1),ars) = arr in
let cN, aN = last_in_out arr[
cN
aN

]
= (cascade_comp l_cas) **

[
c1
a1

]
Here, the parameters arr and rrs represent the array and
cascade of MRRs, respectively. last_in_out returns the
last input and output field parameter of array in the cascade.
The assumption in the above theorem ensures the validity of
the good behavior of array in the cascade. Next, we verify the
above relation for N identical ring resonators in the cascade
as follows:

Theorem 4 (Cascade of Identical MRRs):
`∀ arr r N.
valid_array_in_cas arr (REPLICATE N r)
four_port =⇒
let ((a1,d1),(b1,c1),ars) = arr in
let cN, aN = last_in_out arr and

let

[
m11 m12
m21 m22

]
= cont_mat(r) ∗ ∗ mrr_mat(r)[

cN
aN

]
=

[
m11 m12
m21 m22

]N
**

[
c1
a1

]
Here, the list [r; r; r; ....; r] of N identical resonators is mod-
eled using the HOL Light library function REPLICATE which
takes a natural number N and a parameter (of any type) r and
duplicates N copies of r in a list. We verify this theorem using

Theorem 3 and the lemma
N∏

i=1

[M] = [M]N.

Step 4: Finally, we provide the formal definitions and veri-
fication of transmissivity and reflectivity of a cascade of N
resonators. The transmissivity and reflectivity are described
as the ratios of output and input field amplitudes of array of
MRRs [14] The transmissivity and reflectivity of the cascade
of N resonators are c1

a1
and aN

a1
, respectively. This can be found

by the condition cN = 0, which can be defined as follows:

Definition 8 (Transmissivity and Reflectivity Condition):
` ref_trans_condition rrs ⇔ (∀ arr.
let ((a1,d1),(b1,c1),ars) = arr in
let cN, aN = last_in_out arr in
(valid_array_in_cas arr rrs four_port ∧
cN = 0)

Here, the predicate ref_trans_condition takes a cas-
cade of microresonators rrs and ensures its valid behavior
for any array of the input and the output fields arr and
impose the condition that cN = 0. Next, we verify the general
expressions for reflectivity and transmissivity for cascade of
MRRs as follows:

Theorem 5 (Transmissivity and Reflectivity Expression):
` ∀ rrs. ref_trans_condition rrs =⇒
let M = cascade_comp rrs and
reflect = c1

a1
and transm = aN

a1
in

(reflect = − M12
M11
∧ transm = 1

M11
)

where Mij represents the element at column i and row j of
the matrix. The proof of the above theorem is mainly based on
Theorem 3 and the properties of complex matrices and vectors.
Note that the result proved in Theorem 4 is very important
because it reduces the problem of finding the transmissivity
and reflectivity to only finding the equivalent transfer-matrix
of the cascade.

IV. TRANSMISSIVITY AND REFLECTIVITY FOR THE 1-D
CASCADE OF MRR FILTERS

The derivation of transmissivity and reflectivity for the
cascade of N identical MRRs is not a trivial task because of
the involvement of N-times multiplication of transfer-matrix
of a single MRR as given in Theorem 4. However, if the
determinant of a resonator matrix [m] is 1 (which is the case
in practice [14]), a matrix can be written in such a form that
∃M. (m)N = M.

This can actually be proved by using Sylvester’s Theorem
[23], [14], which states that for a matrix m such that | m |= 1,
−1 < Re(m11) < 1, m22 = m∗11 and m12 = m∗21 the following
holds:[
m11 m12

m21 m22

]N
= 1

sin(θ)[
m11 sin[Nθ]− sin[(N − 1)θ] m12 sin[Nθ]

m21 sin[Nθ] m22 sin[Nθ]− sin[(N − 1)θ]

]
where θ = Re(cos−1[ m11+m22

2
]), Re(z) represents the real part

of the complex number z and a∗ represents the conjugate of
complex number a. We prove Sylvester’s Theorem by induc-
tion on N and using the fundamental properties of complex
trigonometric functions, complex matrices and determinants.
Note that during our formal proof we have been able to
find the missing conditions: −1 < Re(m11) < 1 [14], without
which the above result cannot hold. This demonstrates the
effectiveness of theorem proving based reasoning about such
complex mathematical results. Since the further analysis is
based on Sylvester’s Theorem, such missing assumptions can
lead to erroneous expressions for transmissivity and reflectivity
and hence the faulty filter implementation.

Next, we formally verify the reflectivity of a cascade of N
identical microring resonators as follows:

Theorem 6 (Transmissivity and Reflectivity for Identical MRR):
`∀r t Lc Lb λ neff.
ref_trans_condition
REPLICATE N (r, t, Lc, α, λ, neff):mrr =⇒
let δ = ( 2∗πλ ) ∗ neff ∗ Lc in

let θ = Re(cos−1[
exp(j∗( 2∗π

λ )∗neff)
R

])

reflect =
T∗exp(−j∗ Lb

Lc
∗δ)∗sin(N∗θ)

exp(−j∗ Lb
Lc

∗δ)∗sin(N∗θ)−R∗sin((N−1)∗θ)

transm = R

exp(−j∗ Lb
Lc

∗δ)∗sin(N∗θ)−R∗sin((N−1)∗θ)

The verification of this theorem requires Theorem 4, Theorem
5, Sylvester’s theorem and the properties of complex analysis.

This completes the formal analysis of linear cascades of
uncoupled resonators periodically coupled to side waveguides.



The analysis of a cascade of coupled resonators (Figure 3(ii))
follows the similar pattern. During our formalization, we have
been able to find many discrepancies in the analysis presented
in [14], such as the missing assumption in the proof of
Sylvester’s Theorem. The main strength of theorem proving
based analysis is to identify such missing assumptions which
needs to be explicitly mentioned in order to build accurate sys-
tem models. This improved accuracy comes at the cost of the
time and efforts spent, while formalizing the underlying theory
of microring resonators. But such a developed infrastructure,
significantly reduces the time and efforts required to verify
important system properties. For example, the verification of
transmissivity and reflectivity requires less than 100 lines of
HOL code and one man-hour each.

Note that theorem proving based analysis has not been
applied in photonic industry so far due to the limited research
in this area and unfamiliarity about formal methods in the
optics and physics community. In spite of the fact that our
approach requires significant time to formalize the underlying
theories of optics and photonics, we believe that our formal
development can assist in building accurate system models and
can replace some time consuming simulations. For example,
the verification of transmissivity and reflectivity is a very time
consuming task in case of the cascade of microresonators
with a very large value of N (for example, N = 20 [14]).
On the other hand, this can be verified in a very short time
using the infrastructure developed in this research because
all the results are verified under the universal quantification
of system parameters. Mostly, the numerical algorithms are
based on such analytical models of photonic systems. Thus the
verification of such analytical models can significantly reduce
simulation runs due to the known explicit constraints on the
systems parameters. Note that the application analyzed in this
paper is not a toy example but an advanced photonic system
which has been fabricated for different applications [5].

V. CONCLUSION

In this paper, we report a novel application of formal
methods in analyzing microresoantors based photonic systems.
We provided a brief introduction of the current state-of-the-
art and highlighted their limitations. Next, we presented an
overview of microring resonators (MRR) followed by a display
of our higher-order logic formalization. We also presented the
formalization of frequently used MRR structures such as two-
port and four-port. In order to show the practical effectiveness
of our formalization, we presented the analysis of 2-D lattice
optical filters by decomposing them into two cascades of 1-D
coupled and uncoupled resonators. Finally, we developed an
infrastructure to verify the transmissivity and reflectivity of the
cascade of N identical MRRs.

The reported work opens the doors to many interesting
and novel directions of research. Some worth mentioning ones
include enriching the library of microresonators to analyze
advanced photnic systems such as fiber ring resonators based
frequency division multiplexing/demultiplexing [1], ultra com-
pact racetrack resonators [15] and pulse repetition rate shaping
for photonic signal processing applications [24]. For example,
the application of our work in frequency division multi-
plexing/demultiplexing [1] requires the formalization (which
follows the same steps as mentioned in Section II) of some

more building blocks such as directional couplers, single mode
fiber channels and fiber-loop reflectors.
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