
Partial Witnesses from
Preprocessed Quantified Boolean Formulas

Martina Seidl
Inst. for Formal Models and Verification, JKU Linz

Business Informatics Group, TU Wien
Email: martina.seidl@jku.at

Robert Könighofer
Inst. for Applied Information Processing and Communications

Graz University of Technology
Email: robert.koenighofer@iaik.tugraz.at

Abstract—For effectively solving quantified Boolean formulas
(QBFs), preprocessors have shown to be of great value. A
preprocessor rewrites a formula such that helpful information
is made explicit and irrelevant information is removed. For this
purpose, techniques, which would be too costly when repeatedly
applied during the solving process, are used. Unfortunately, most
preprocessing techniques are not model preserving and therefore
incompatible with certification frameworks. In consequence, the
application of a preprocessor prohibits the extraction of witnesses
encoding a solution or a counterexample of a formula.

In this paper, we show how to obtain partial witnesses from
preprocessed QBFs. Partial witnesses are assignments for the
variables of the outermost quantifier block and are extensible to
full witnesses, which are usually represented as functions reflect-
ing the dependencies between variables. For many applications,
however, partial witnesses are sufficient. We modified the publicly
available preprocessor bloqqer for extracting partial witnesses.
We empirically compare the effectiveness of the modified and the
original version of bloqqer. Further, we apply the new version
of bloqqer for solving hardware synthesis problems for which it
turns out to be extremely beneficial.

I. INTRODUCTION

Quantified Boolean formulas (QBFs) [7], [12] provide a
powerful framework for encoding and solving application prob-
lems located in PSPACE. Amongst others, QBFs are suitable
for various kinds of verification and reasoning problems [3].
To this end, the original problem is translated to a QBF which
is handed over to a QBF solver. The QBF solver returns a
witness certifying the (un)satisfiability of the QBF which is
then mapped back to the domain of the original problem.

Much progress has been made in realizing efficient solvers
supported by powerful preprocessors [4], [13], [22], [11], [19]
which rewrite formulas in prenex conjunctive normal form
(PCNF) such that important information is made explicit and ir-
relevant, redundant information is removed. In the QBF Gallery
2013 [17], a non-competitive, community organized evaluation
of tools for quantified Boolean formulas, it has been recently
pointed out that preprocessing strongly influences the behavior
of QBF solvers. Modern preprocessors like bloqqer [4], which
incorporates many state-of-the-art preprocessing techniques,
rewrite the formula such that it becomes easier to solve for
modern QBF solvers in many cases. Today, the majority of QBF
solvers is based on a generalization of the well-investigated

This work was supported in part by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23 and S11408-N23)
and the Vienna Science and Technology Fund (WWTF) under grant ICT10-018.
978-3-9815370-2-4/DATE14/ c©2014 EDAA

DPLL algorithm [8] for which preprocessing seems to be
of particular importance. For solvers of this kind it is easy
to return an assignment of the variables quantified in the
outermost quantifier block. If the outermost quantifier block
is existential (resp. universal) and the formula is satisfiable
(resp. unsatisfiable) then such a variable assignment represents
a partial witness of the formula, because under this assignment
Skolem (resp. Herbrand) functions can be calculated which are
full witnesses reflecting the formula’s variable dependencies.
For obtaining complete witnesses from DPLL solvers, a
resolution proof, which is potentially exponential in the formula
size, has to be analyzed [1]. The resulting witnesses are
often large and hard to handle [20]. For many applications
(e.g., [2], [6]), knowledge of the assignment of the variables
quantified in the outermost quantifier block is sufficient for the
solution of the original application problem. However, when
a preprocessor is applied, this information is lost, because
preprocessors implement simplification techniques which are
not model preserving in general. Therefore, it is not directly
possible to reconstruct assignments which satisfy the original
as well as the preprocessed QBF in the case of satisfiability,
or which represent a counterexample for the original as well
as for the preprocessed formula in the case of unsatisfiability.

In this paper, we show how to extract the (un)satisfying
assignments for the variables occurring in the outermost
quantifier block requiring only minimal modifications of the
preprocessor. For this purpose, we shortly introduce QBF
basics in Section II and modern preprocessing techniques in
Section III. Then we argue in Section IV how to modify
the application of the preprocessing techniques for getting
an (un)satisfying assignment for variables in the outermost
quantifier block. We realize the extraction of assignments in the
preprocessor bloqqer and evaluate the impact of the extraction
in Section V. Further, we evaluate how the application of our
extended preprocessor influences a learning-based hardware
synthesis algorithm which requires partial witnesses of QBFs.
We conclude this work with a discussion of future work in
Section VI.

II. PRELIMINARIES

We consider QBFs Π.ψ in prenex conjunctive normal
form (PCNF) consisting of a propositional formula ψ called
matrix and the quantifier prefix Π = Q1X1 . . . QnXn with
Qi ∈ {∀,∃} and disjoint sets of variables Xi. The matrix is
in conjunctive normal form, i.e., it is a conjunction of clauses.
A clause is a disjunction of literals and a literal l is either a
variable or a negated variable where var(l) = x if l = x or

l = ¬x. The negation of a literal l is l̄. We write l ≤ k if
var(l) ∈ Xi and var(k) ∈ Xj and i ≤ j. If convenient, we
represent a clause as a set of literals and the matrix of a QBF
as a set of sets. A QBF ∀x.φ (resp. ∃x.φ) is true iff φ[x|>] and
(resp. or) φ[x|⊥] is true where φ[x|f] denotes the replacement
of x by f and > and ⊥ are the truth constants true and false.
An assignment σ is a set of literals. A full assignment of a
QBF Π.ψ is an assignment containing all variables of Π. An
assignment σ satisfies a QBF Π.ψ iff for each clause C ∈ ψ
there exists a literal l with l ∈ C and l ∈ σ. We sometimes
use a satisfying assignment as a cube, i.e., as a conjunction of
literals. An assignment σ falsifies a QBF Π.ψ if there is a clause
C ∈ ψ such that there is no l ∈ C with l ∈ σ. Then C is called
conflicting clause or conflict. The application of an assignment
σ on a QBF φ (denoted as φσ) is the QBF obtained by removing
all clauses C with l ∈ C and all literal occurrences l forall
l ∈ σ. Given an assignment σ, then σl denotes σ\{l} ∪ {l}.
We call an assignment partial witness for a QBF φ = QXΠ.ψ
with Q = ∃ and φ is satisfiable or Q = ∀ and φ is unsatisfiable,
if (1) X = {var(l)|l ∈ σ} and (2) φ and φσ have the same
truth value. Full witnesses for QBFs are given by assignment
trees expressing QBF (counter)models, which basically show
sets of assignments relevant for justifying the (un)satisfiability
of a QBF based on the variable quantification. Details on
the construction of assignment trees and the extraction of
(counter)models as full witnesses can be found in [11], [22]. For
this work, it is sufficient to consider a full witness as a set of
assignments. For each partial witness σ, there is a full witness
Ξ such that σ ⊆ τ forall τ ∈ Ξ. If the outermost quantifier
block is existential (resp. universal) and Ξ is a full witness
for the satisfiability (resp. unsatisfiability) of the formula, then
there is a partial witness σ with σ ⊆ τ forall τ ∈ Ξ.

Example 1. The assignment {x, y} is a partial witness for the
QBF φ = ∃x∃y∀a∃z.((x∨¬y)∧(¬x∨y∨a)∧(z∨¬a)∧(¬z∨a))
and {{x, y, a, z}, {x, y,¬a,¬z}} is a full witness for φ.

III. QBF PREPROCESSING: STATE-OF-THE-ART

As the translation of the application problem in QBF often
leads to formulas not in PCNF, an additional normal form
transformation [21] step is necessary. However, this normal
form transformation step blurs information relevant for the
solver and introduces redundancies. To help the solver, special
preprocessors have been proposed which reconstruct/eliminate
parts of the lost/redundant information while still preserving
the CNF form. We now review the techniques of the powerful,
publicly available preprocessor bloqqer [4] which we will
extend to get partial witnesses.

Standard Simplifications: Preprocessors implement sim-
plification techniques also found in QBF solvers. This includes
pure literal elimination, unit literal elimination, equivalence
substitution, subsumption as well as universal reduction. These
techniques allow the removal of variable occurrences not
necessarily quantified in the outermost quantifier block. A literal
is called pure if it occurs only in one polarity. If a pure literal
is existentially (resp. universally) quantified, then all clauses
containing the literal (resp. all occurrences of the literal) may
be removed. An existential literal is called unit if it occurs in
a clause of size one. If a unit literal is detected, all clauses
containing the literal in the same polarity may be removed, and
all occurrences of the literal in the opposite polarity may be

eliminated. Obviously, if a universally quantified literal occurs
in a clause of size one, the formula automatically evaluates to
false. Given two clauses (l ∨ k) and (l ∨ k) (resp. (l ∨ k) and
(l ∨ k)) such that k ≤ l and l is existentially quantified, then
equivalence substitution replaces l by k (resp. k). A clause D
is subsumed by a clause C if C ⊆ D. Then D may be safely
omitted. Universal reduction removes a universally quantified
literal l from a clause C if there is no existentially quantified
literal k ∈ C with l < k. We denote a clause C on which
universal reduction has been applied until fixpoint by univ(C).

Variable Elimination (VE): Existentially quantified
variables of the innermost quantifier block are removable by
VE. Basically, VE is a restricted application of the algorithm
of Davis and Putnam [9]. For a variable x all resolvents are
calculated and added to the formula. All clauses containing x or
¬x are removed. In QBF, resolution is defined as follows. Let
C and D be non-tautological clauses with x ∈ C and ¬x ∈ D.
The resolvent of C and D (written as C ⊗x D) with pivot
element x is the clause univ(C)\{x} ∪ univ(D)\{¬x}. Hence,
resolution for QBFs works as resolution for propositional logic
extended by universal reduction.

Blocked Clause Elimination (QBCE): QBCE is also a
resolution-based method. It removes clauses which will never
contribute to the derivation of a conflicting clause. A blocked
clause C contains an existential literal l such that all resolvents
C ⊗var(l) Di are tautological and forall Di there is a literal
ki ∈ Di with ki ∈ C and ki ≤ l. The literal l is called blocking
literal and the literals ki are called clashing literals. If a blocked
clause is found, then it can be safely removed.

Universal Expansion (UE): With universal expansion,
universally quantified variables of the last universal quantifier
block may be eliminated. To this end, the formula has to be
copied. In one copy, the expanded variable is set to true, in
the other copy the expanded variable is set to false. The two
formulas are then connected by a conjunction. In order to
realize universal expansion in a sound manner, it is necessary
to rename the existential variables of one copy and add the
new variables to the last quantifier block.

Besides the previously discussed techniques, variants thereof
like covered clause elimination, hidden tautology addition, and
strengthening are applied for preprocessing (see [4] for details).
Techniques used for preprocessing not realized in bloqqer
include hyper-binary resolution [22], equivalence rewriting [13],
as well as failed literal probing [11]. We abstain from a detailed
discussion, because conceptually, the generation of partial
witnesses works similar as described below.

IV. PARTIAL WITNESSES FOR PREPROCESSED QBFS

A set of satisfying/falsifying assignments, i.e., a full witness,
has to be found to determine the truth value of a QBF. This
set of assignments has to fulfill the constraints imposed by the
quantification. As preprocessing techniques have been shown
to be sound for the original as well as for the preprocessed
formula such sets justifying a formula’s truth value must exist.

In this work, we aim at the reconstruction of partial
witnesses from preprocessed QBFs. Basically, there are two
possibilities to realize this. Either the preprocessor could be
equipped with the functionality to log all preprocessing steps

and especially all produced clauses from which the witness is
calculable. Then the preprocessing could be replayed in reverse
order and the partial witness returned from the QBF solver
could be adapted and extended according to the preprocessing
steps. Alternatively, a “don’t-touch” approach can be realized
as used in [15] for SAT-based bounded model checking, where
preprocessing is applied in a restricted manner such that the
values of certain variables are not affected. In the context
of solving ALLQBF problems, Becker et al. [2] propose a
similar modification of the preprocessor which is part of
the QBF solver QuBE. We follow the latter approach as it
requires less modifications of the preprocessor and hardly
any postprocessing after the solving is required. To this end,
we rigorously establish don’t touch criteria for the individual
techniques, i.e., given an assignment satisfying/falsifying the
preprocessed formula, we investigate which variables’ truth
values have to be modified and which remain untouched to get
a satisfying/falsifying assignment of the original formula. Then
we empirically evaluate the impact of our modifications on the
solving behavior of a state-of-the-art solver.

A. General Observations

After preprocessing, a variable can be in one of the
following five states: (1) it still occurs in the formula that
is handed over to the solver, (2) it is assigned either true or
false by the preprocessor, (3) it has disappeared as side effect
of the elimination of other variables, (4) it has been eliminated,
or (5) it is found to be equivalent with another variable.

In the first case, the variable is assigned a truth value by
the solver, if it is quantified in the outermost quantifier block.
We modify the preprocessor such that these assignments are
part of the partial witness. The second case refers to techniques
like unit or pure literal elimination which give a specific value
to a variable. We will argue that such a value can be kept
after preprocessing. In the third case, all occurrences of a
variable disappear although it is not directly touched by any
preprocessing technique. Then the value of the variable can
be arbitrarily chosen. If a variable (occurrence) was explicitly
eliminated, then the value can not be chosen arbitrarily, but
it is forced by the values of other variables. Here, we have
to investigate which variables may be eliminated. Finally, if a
variable is found to be equivalent with another variable, it has
to take the same value as this variable.

B. Satisfiability

For satisfiability, the techniques which remove clauses are
relevant. We show which variables must be modified in a
given satisfying assignment σ for a QBF φ′, such that it
satisfies a QBF φ which is obtained from φ′ by undoing one
preprocessing step. The aim of this investigation is not to
actually perform this a-posteriori modification of the assignment
in our implementation, because this would require to trace the
history of the elimination steps. We rather conclude that the
modification of the assignment affects only the variables that
are addressed by the respective preprocessing rule. To this end,
we reuse ideas presented in [10], [14]. Järvisalo and Biere [14]
discuss solution reconstruction for preprocessing techniques
in propositional logic. Van Gelder [10] treats full solution
reconstruction for QBFs. In both cases, the preprocessor has
to trace the history of the elimination steps for reconstructing

solutions. In contrast, we aim at a light weight reconstruction
where this tracing is not necessary and the modifications in the
preprocessor are kept minimal.

Techniques which remove clauses include blocked clause
elimination, variable expansion as well as variable elimination.
The following example illustrates that it would not be sound
to choose an assignment arbitrarily for eliminated variables.

Example 2. The satisfiability of QBF φ = ∃x∃y∀a∃z.((x ∨
¬y ∨ a ∨ z) ∧ (¬x ∨ y ∨ ¬a ∨ z) ∧ ¬z) can be shown by unit
literal elimination of z and by removing the remaining clauses
by QBCE with x as blocking literal. Obviously, an arbitrary
assignment like σ = {x,¬y} is not a partial witness.

As illustrated by the example above, the preprocessing tech-
niques impose some constraints on the values the variables may
take. In the following, we review how the different techniques
impose constraints in order to get satisfying assignments. Please
remember that we consider individual satisfying assignments
which could be assembled to a full witness. We show which
variables are touched when modifying a satisfying assignment
of a preprocessed formula such that it becomes a satisfying
assignment of the original formula. Also keep in mind that we
do not aim to construct a full certificate, but that we are only
interested in finding an assignment of the outermost variables
such that the formula evaluates to true.

Lemma 1 (Variable Elimination). Let φ = Π∃X ∪ {x}.ψ be
a QBF where Π is an arbitrary prefix and let φ′ = Π∃X.ψ′

be the equivalent QBF obtained by removing x from φ by
variable elimination. If σ is a variable assignment satisfying
φ′, then there exists an l such that var(l) = x and the variable
assignment σ ∪ {l} satisfies φ.

Proof: Assume there is a clause C in φ which is not
satisfied by σ. Since C obviously does not occur in φ′, it
contains a literal l with var(l) = x. Let σ′ = σ ∪ {l}. Then σ′

satisfies C. To show that σ′ also satisfies φ, we have to show
that there is no clause D with l ∈ D which is not satisfied
by σ. If such a clause exists, there would be the resolvent
C ⊗var(l) D in φ′. However, this clause is not satisfiable by σ,
which contradicts the assumption that σ satisfies φ′.

For reconstructing a satisfying assignment from VE, it is
only necessary to chose the value of the eliminated variable.
Hence, if we do not apply VE on the variables of the outermost
quantifier block, the partial witnesses are not affected. Next,
we consider QBCE.

Lemma 2 (Blocked Clause Elimination). Let C be a clause
eliminated by QBCE from QBF Π.ψ with blocking literal l and
clashing literals k1, . . . , kn. If there is an assignment σ such
that Π.ψ\{C} is satisfiable, but such that Π.ψ is unsatisfiable
then there is an assignment σl satisfying Π.ψ.

Proof: If the blocked clause C with {l, k1, . . . , kn} ⊆ C
is false under σ, then all clauses Di with {l} ∈ Di are not
only satisfied because of l, but also because of some clashing
literal ki. Therefore, σl satisfies not only C, but all clauses Di

with l ∈ Di.

According to the lemma above, the value of the blocking
literal is determined by its polarity. Furthermore, the values

of the clashing literals do not have to be changed. Next, we
consider universal expansion. Although this technique removes
universal literals, it eliminates clauses at the same time.

Lemma 3 (Universal Expansion). Assume that universal
expansion creates QBF φ′ = Π∃X∃X ′.(ψ[x|⊥]∧ψ′[x|>]∧χ)
from φ = Π∀x∃X.(ψ ∧ χ) by expanding x where χ contains
no variables from X ∪ {x} and ψ′ is ψ, but each variable
v′ ∈ X ′ replaces exactly one variable v ∈ X . If assignment σ
satisfies φ′, then there exists an assignment τ satisfying φ such
that for all variables v of φ with v 6∈ {x} ∪X either v ∈ σ
and v ∈ τ or ¬v ∈ σ and ¬v ∈ τ .

Proof: The clauses of χ are satisfied by σ as well as by
τ . Assume that x shall be true in τ . Then τ = σ\(X ∪X ′) ∪
{x}∪{v|v′ ∈ σ}∪{¬v|¬v′ ∈ σ}, which satisfies ψ. Otherwise,
τ = σ\X ′ ∪ {¬x} which also satisfies ψ.

For the calculation of assignments of the first quantifier
block, the application of universal expansion is hence irrelevant,
because only the values of the existential variables behind the
expanded universal variable have to be modified.

Furthermore, we have to consider the standard simplification
techniques. It is easy to show that the value determined by unit
literal elimination or by pure literal elimination is part of a
valid partial witness under the assumption that no occurrence of
the eliminated variable has been a blocking literal during some
application of QBCE. For subsumption and tautology detection
it is not necessary to modify an assignment. Equivalence
replacement naturally imposes constraints on the values the
replaced variables may take.

Example 3. Given QBF ∃x∃y.((x∨¬y)∧ (¬x∨ y)∧ (x∨ y)),
then equivalence substitution replaces y by x resulting in ∃x.(x)
forcing the value of x. The only partial witness is {x, y}.

Järvisalo and Biere [14] show how to integrate solution
reconstruction with QBCE for propositional logic. This ar-
gument may be directly generalized for QBFs. It is straight
forward to show that the different techniques may be arbitrarily
interleaved. Finally, we are able to formulate the following
proposition which allows us to extend a QBF preprocessor to
generate partial witnesses.

Proposition 1. Let φ = ∃XΠ.ψ be a QBF and let φ′ be
the QBF obtained from φ after application of the previously
discussed preprocessing rules with the restriction that no
variable x ∈ X is removed either by variable elimination
or by blocked clause elimination. If τ ′ is the assignment of
variables of X determined by pure and unit elimination during
preprocessing, if τ ′′ is the assignment of the variables of X
removed by equivalence substitution such that the equivalences
are preserved, and if σ is a partial witness of φ′ if the outermost
quantifier block is existential, or the empty set otherwise, and
if τ ′′′ is an arbitrary assignment of the remaining variables of
X not in τ ′, τ ′′, σ, then τ ′ ∪ τ ′′ ∪ τ ′′′ ∪ σ is a partial witness
for φ.

Example 4. The QBF ∃x1, x2, x3, x4∀a∃y∃z.{{x1, a}, {¬x1,
x2}, {x1,¬x2}, {x3, z}, {x4,¬z}, {¬x3, x4}, {¬x4,¬x3}}
could be preprocessed as follows. x1 and x2 are equivalent,
so we replace x2 by x1. In the first clause, literal a is
removable by universal reduction, what makes the clause unit.
Hence, x1 is set to true. Due to the equivalent substitution,

also x2 is true. Next, z is eliminated resulting in the matrix
{{x3, x4}, {¬x3, x4}, {¬x4,¬x3}}. One partial witness for
this formula is {¬x3, x4} which can be found by a QBF
solver. Then a partial witness for the original formula is
{x1, x2,¬x3, x4}.

C. Unsatisfiability

In case a formula is unsatisfiable, a variable assignment is
of interest if the outermost quantifier block is universal. Then
such an assignment is the basis for a witness falsifying the
formula no matter how innermore variables are assigned. As
before, we review how the different techniques contribute to
the evaluation of the formula. Due to space limitations, we give
only an informal discussion in the following. When considering
formulas in CNF, then a formula is falsified by an assignment if
there is a clause which is unsatisfiable under this assignment. In
propositional logic, not much attention is given to this situation,
because if a formula is unsatisfiable there is no assignment.
To parallelize SAT solvers [18], it has been investigated how
conflicts can be learned when in-processing is enabled. In-
processing refers to the controlled application as preprocessing
techniques during solving. To the best of our knowledge, no
work related to QBF solving has been presented.

Tautology removal and subsumption as well as existential
pure literal elimination reduce the number of clauses but do
not change the size of a clause. Therefore, these techniques
never contribute in producing a conflict. Unit literal elimination
also reduces the size of clauses, but it only sets the values of
existential variables. Also equivalent reasoning induces only
the value of existentially quantified variables. Therefore, none
of these techniques is relevant for getting the values of the
universal variables in the outermost quantifier block. If a clause
produced by variable elimination is conflicting, then obviously
one of the antecedent clauses is conflicting. As the pivot element
is existentially quantified, its value is not of interest for our
purposes.

The only remaining techniques are universal reduction,
universal expansion, and universal pure literal elimination.
If a variable of the outermost quantifier block is eliminated
by universal reduction, this immediately results in a conflict,
because this means that the clause does not contain any
existential variables. Then the variable is set to true if it is
negated in the clause, otherwise it is set to false. For universal
expansion, we have argued in the previous section that in
the case of satisfiability only the truth values of the universal
variable as well as the following existential variables have
to be adopted in order to get a satisfying assignment. The
same line of argumentation may be applied in the case of
unsatisfiability. Also here, only the values of the expanded
variable as well as the values of the existential variables
following the expanded variable in the prefix have to be
modified. That such a modification exists is implied by the
soundness of universal expansion. In consequence, it can be
easily shown that if we restrict the application of universal
expansion on variables not quantified in the outermost quantifier
block, already established variable values can be kept. Due to
these restrictions, universal pure literal elimination sets truth
values for the partial witnesses.

1 10 100 1000

1

10

100

1000

bloqqer + DepQBF without partial witnesses [sec]

b
lo

q
q

e
r

+
D

e
p

Q
B

F
w

it
h

 p
ar

ti
al

w

it
n

e
ss

e
s

[s
e

c]

Benchmarks of QBF Eval 2010 (568 formulas)

1 10 100 1000

1

10

100

1000

bloqqer + DepQBF without partial witnesses [sec]

b
lo

q
q

e
r

+
D

e
p

Q
B

F
w

it
h

 p
ar

ti
al

w

it
n

e
ss

e
s

[s
e

c]

Benchmarks of QBF Eval 2012 (435 formulas)

Fig. 1. Comparison of bloqqer Versions

V. EXPERIMENTAL EVALUATION

We extended the preprocessor bloqqer1 with an option to
provide values for the variables of the outermost quantifier
block. For getting the partial witness of the preprocessed
formula, we integrated the QBF solver DepQBF [16] which
provides an API function for getting partial witnesses and
which has very good synergies with bloqqer [17], [4]. Our
experiments first evaluate the impact of our modifications on
the solving performance. Then we present experimental results
of using preprocessing in synthesis. Without our extension
bloqqer would not be applicable as this approach requires
partial witnesses of the QBFs.

A. Benchmarks from the QBF Evaluations

In our first experiment, we test the impact of the modifica-
tion of bloqqer on the preprocessing and solving performance.
We evaluated the benchmark sets used in the QBF Eval 2010
and QBF Eval 2012 [17] with and without the generation of
partial witnesses. The experiments were run on a cluster of
equal machines with Intel Core 2 Quad CPUs having 2.83 GHz
and 8 GB main memory. Time limits were set to 900 seconds
for solving and preprocessing time and memory was restricted
to 7 GB. The outcome of our experiments is shown in the
scatter plots of Fig. 1. In general, the solving behavior is not
much affected by our modification as we find most runtimes
close to the diagonal for both benchmark sets. In the case of the
benchmark set from 2010, DepQBF solves 6 more formulas
with the partial witness producing version of bloqqer. This
is because our modifications affect the internal behavior of
bloqqer such that different techniques might be applied. This
can be beneficial for certain kinds of formulas. It is the biu
family which is very strongly present in the benchmark set and
which benefits from our modifications. In contrast, only 3 less
formulas are solved in the benchmark set of 2012. Although
bloqqer is applied in a more restrictive way, there is hardly
any negative impact.

B. Benchmarks from Game-Based Synthesis

The importance of preprocessing becomes evident in the
practical application of QBF. As case study, we consider synthe-
sis of reactive hardware systems from safety specifications, i.e.,
the problem of synthesizing a system that will never visit an

1http://fmv.jku.at/bloqqer

unsafe state. Synthesis problems can be seen as a game between
two players: the system trying to satisfy the specification, and
the environment trying to violate it. This competitive aspect can
be handled by using different quantifiers for the two players,
which gives a natural reduction to QBF. We use a learning-based
approach as presented in [6]. It computes a winning region, i.e.,
the states from which the specification is fullfillable. For the
details we kindly refer to [6]. Initially, the winning region F
is set to the safe states P . In every iteration, we first compute
a state from which the environment can enforce to leave the
winning region (and, hence, reach an unsafe state eventually).
Such a state is computed as satisfying assignment for the QBF
∃X∃J∀C∃X ′.(F ∧T ∧¬F ′). In this formula, the variables X
(resp. X ′) model the current (resp. the successor) state, J are
the variables controlled by the environment, C are the variables
controlled by the system, and T denotes the transition relation.
If such a state exists, it is removed from the winning region F
(after generalizing it into a larger region of states that can be
removed). This is repeated until the QBF becomes unsatisfiable
(which means that there are no more states from which the
environment can visit an unsafe state), or an initial state is
removed (which means that the problem is unrealizable).

The learning-based synthesis algorithm strongly relies
on a QBF solver for calculating problematic moves of the
environment. To this end, the QBF solver has to provide partial
witnesses for true QBFs. We also experimented with a second
synthesis algorithm, which is based on templates [6]. Here,
the search for a winning region is reduced to one single QBF-
solver call. A satisfying assignment for the variables quantified
existentially on the outermost level gives the solution. As in
the previous section, we use the QBF solver DepQBF. The
experiments were run on an Intel Xeon E5430 CPU with 4
cores (only one was used) running at 2.66 GHz, and a 64 bit
Linux. We set a timeout of 10 000 seconds. We evaluated the
approach on 207 specifications including specifications of an
arbiter for ARMs AMBA AHB bus [5], parameterized on the
number of masters it can handle, as well as specifications of a
generalized buffer [5] connecting different numbers of senders
to two receivers, as well as i-bit adders, i-bit multipliers, i-bit
counters, and i-bit barrel shifters.

Figure 2 compares the runtimes for the two synthesis
algorithms, with and without preprocessing. The blue crosses
show the results of the learning-based synthesis approach, the
red crosses show the results from the template-based approach.

Fig. 2. Synthesis with QBF

For the learning-based synthesis approach, the number of solved
instances increased from 98 to 110. The average synthesis time
(counting only cases were both versions terminate) decreased
from 308 to 187 seconds. For the template-based synthesis
approach, the results are even more impressive. The number of
solved instances increased from 73 to 113, while the average
synthesis time decreased from 214 seconds to only 1 second.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed how to equip a modern QBF
preprocessor with the capability of providing variable assign-
ments for the outermost quantifier block. We used this approach
in the context of game-based synthesis where the outermost,
existentially quantified variables help to find a winning strategy
to synthesize safe programs. Furthermore, we compared the
modified version of bloqqer with the publicly available version
in order to find out if the calculation is imposing restrictions
on the preprocessing and solving performance. It turned out
that the necessary modifications only have moderate effects.

In future work, we plan to extend our approach to get
full certificates for the QBF formulas in form of Skolem and
Herbrand functions. For this purpose stronger modifications
of the preprocessor will be required in terms of tracking the
history of performed preprocessing steps. For the calculation
of full certificates a complete Q-resolution proof has to be
reconstructed whose leaves contain only formulas of the input
formula. In the case of an unsatisfiable QBF this is directly
possible as the clause elimination techniques are basically reso-
lution based. The challenging case are the satisfiable formulas
for which a cube resolution proof has to be provided. Here,
first ideas have been presented in [10] but no implementation
has been provided so far.

Overall, the possibility to extract solutions from a prepro-
cessor provides a tighter integration of the different components
of the QBF tool chain which is extremely valuable for solving
application problems with QBF.

REFERENCES

[1] V. Balabanov and J. R. Jiang. Unified QBF certification and its
applications. Formal Meth. in Syst. Design, 41(1):45–65, 2012.

[2] B. Becker, R. Ehlers, M. Lewis, and P. Marin. ALLQBF Solving by
Computational Learning. In Proc. of the Int. Symp. of Aut. Tech. for
Verification and Analysis, pages 370–384. Springer, 2012.

[3] M. Benedetti and H. Mangassarian. QBF-based formal verification:
Experience and perspectives. JSAT, 5(1-4):133–191, 2008.

[4] A. Biere, F. Lonsing, and M. Seidl. Blocked Clause Elimination for
QBF. In Proc. 23rd Int. Conf. on Automated Deduction (CADE), volume
6803 of LNCS, pages 101–115. Springer, 2011.

[5] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, Compile, Run: Hardware from PSL. Electr.
Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[6] R. Bloem, R. Könighofer, and M. Seidl. Sat-based synthesis methods
for safety specs. CoRR, abs/1311.3530, 2013.

[7] H. Kleine Büning and U. Bubeck. Theory of Quantified Boolean
Formulas. In HB of Sat., pages 735–760. IOS Press, 2009.

[8] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 4:394–397, 1962.

[9] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[10] A. Van Gelder. Certificate Extraction from Variable-Elimination
QBF Preprocessors. In Proc. of the 1st Int. Workshop
on Quantified Boolean Formulas (QBF 2013), pages 35–39.
http://fmv.jku.at/qbf2013/reportQBFWS13.pdf, 2013.

[11] A. Van Gelder, S. B. Wood, and F. Lonsing. Extended Failed-Literal
Preprocessing for Quantified Boolean Formulas. In Proc. of the 15th Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT 2012),
volume 7317 of LNCS, pages 86–99. Springer, 2012.

[12] E. Giunchiglia, P. Marin, and M. Narizzano. Reasoning with Quantified
Boolean Formulas. In HB of Sat., pages 761–780. IOS Press, 2009.

[13] E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning. In Proc. of
the 13th Int. Conf. on Theory and Applications of Sat. Testing (SAT
2010), pages 85–98. Springer, 2010.

[14] M. Järvisalo and A. Biere. Reconstructing Solutions after Blocked Clause
Elimination. In Proc. of th 13th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT 2010), volume 6175 of Lecture Notes in
Computer Science, pages 340–345. Springer, 2010.

[15] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker. Incremental
preprocessing methods for use in BMC. Formal Meth. in Syst. Design,
39(2):185–204, 2011.

[16] F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver.
JSAT, 7(2-3):71–76, 2010.

[17] F. Lonsing, M. Seidl, and A. Van Gelder. The QBF Gallery 2013. URL:
http://kr.tuwien.ac.at/qbfgallery13, 2013.

[18] N. Manthey, T. Philipp, and C. Wernhard. Soundness of Inprocessing in
Clause Sharing SAT Solvers. In Proc. of the 16th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT 2013), volume 7962 of
LNCS, pages 22–39. Springer, 2013.

[19] P. Marin, C. Miller, and B. Becker. Incremental QBF Preprocessing for
Partial Design Verification . In Proc. of the 15th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT 2012), volume 7317 of
LNCS, pages 473–474. Springer, 2012.

[20] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere. Resolution-
Based Certificate Extraction for QBF. In Proc. of the 15th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2012), volume
7317 of LNCS, pages 430–435. Springer, 2012.

[21] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form
Translation. Journal of Symb. Computation, 2(3):293–304, 1986.

[22] H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. In
Proc. of the 12th Int. Conf. on Principles and Practice of Constraint
Programming (CP 2006), pages 514–529. Springer, 2006.

