
Using MaxBMC for Pareto-Optimal Circuit Initialization

Sven Reimer Matthias Sauer Tobias Schubert Bernd Becker

Institute for Computer Science
Albert-Ludwigs-Universität Freiburg

79110 Freiburg, Germany
{ reimer ∣ sauerm ∣ schubert ∣ becker }@informatik.uni-freiburg.de

Abstract—In this paper we present MaxBMC, a novel formal-
ism for solving optimization problems in sequential systems.
Our approach combines techniques from symbolic SAT-based
Bounded Model Checking (BMC) and incremental MaxSAT,
leading to the first MaxBMC solver.

In traditional BMC safety and liveness properties are vali-
dated. We extend this formalism: in case the required property
is satisfied, an optimization problem is defined to maximize
the quality of the reached witnesses. Further, we compare its
qualities in different depths of the system, leading to Pareto-
optimal solutions.

We state a sound and complete algorithm that not only tack-
les the optimization problem but moreover verifies whether a
global optimum has been identified by using a complete BMC
solver as back-end.

As a first reference application we present the problem of
circuit initialization. Additionally, we give pointers to other
tasks which can be covered by our formalism quite naturally
and further demonstrate the efficiency and effectiveness of our
approach.

I. Introduction

In recent years, Bounded Model Checking (BMC) has become a
more and more popular technique in the area of formal verification.
Unlike traditional Model Checking, in which an entire system gets
validated, BMC considers a certain number of temporal steps,
starting from a given set of initial states: The implementation
is bounded to a given length k, validating whether the property
under consideration (i. e., the specification) is satisfied for length k
or a counterexample is computed. The length k is incremented
until either the system has been unrolled up to a user-defined
bound or a witness (i. e., trace) for reaching the negated property
under consideration has been found.

Today’s symbolic BMC is predominantly based on SAT solvers
as first introduced in [1]. Concerning SAT-based BMC, many
accelerating techniques like incremental SAT solving [2] have
been developed to speed up the search process and hence the
practicability. In that particular case, the basic idea is to reuse
already learned information from former SAT solver calls in
following similar SAT instances. Likewise, there are several other
methods dedicated to the BMC framework [3], [4].

A drawback of the bounded concept in BMC is its incomplete-
ness: Without modifications classical BMC is not able to prove the
absence of a witness. Hence, methods have been developed in order
to prove the unreachability of the property under consideration.
Examples for such approaches are k-induction [5] and Craig
interpolation [6].

BMC has a range of applications [7], [8], [9], that in particular
includes checking liveness and safety properties. Safety properties
tackle the question, whether it is possible to reach a bad state,
whereas liveness properties deal with the question whether a good
state can always be reached in the system (starting from a set of
initial states in both scenarios). However, classical BMC does not
allow to specify the quality of traces in the context of a general
application. Instead, any trace that requires the least number of
unrollings may be returned.
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We tackle this question by applying an optimization problem,
leading to a novel application-oriented perception of maximization
problems in sequential circuits, which we call MaxBMC. Going
beyond classical properties, MaxBMC incorporates a user-given
symbolically defined metric that labels each witness with a quality
value, representing its grade in the context of a broader general
application. In MaxBMC we are not only interested in the
reachability (or unreachability) of a target property, but moreover
we want to determine whether the quality of a solution can be
improved further. Either within the same depth, or by applying
additional time steps of the sequential system. Therefore, we do
not stop unrolling the sequential system once we reached the
good/bad state, as better witnesses may require a higher depth.
This results in Pareto-optimal qualities wrt. the sequence length.

Depending on the application, the qualities of the witnesses do
not necessarily in-/decrease monotonically with the number of
time steps to the maximal possible solution. Instead, they may
vary within some bounds that depend on the problem formulation
and the depth of the trace. Hence, we prove whether the found
upper and lower bounds represent local optima that can be
improved further in order to localize solution bounds. To do so,
we apply techniques for early fix-point computation from BMC.
In particular, in our implementation we use Craig interpolants [6]
to identify these bounds as early as possible.

In this paper we formalize MaxBMC and state a sound and
complete algorithm using symbolic representations. In particular,
we present the first incremental MaxSAT solver and combine it
with techniques known from symbolic BMC to solve the encoded
representation of the combination of implementation, specification,
and optimization efficiently. Additionally, we demonstrate the
applicability of MaxBMC by solving the problem of initializing
(or synchronizing) a given sequential circuit [10], [11]. Solving
this problem requires to find a maximal set of flip-flops that can
be functionally set to a known value, starting from a completely
unknown circuit state. Furthermore, we give pointers to additional
applications.

The reminder of the paper is structured as follows. First, we give
a brief overview of SAT, the related MaxSAT problem, and BMC
in Section II. Our formalism of MaxBMC as well as an algorithm
to handle this formalism is highlighted in Section III, while the
implementation details of our reference solver are presented in
Section IV. Finally, we introduce some applications in Section V
and discuss experimental results in Section VI. Section VII
concludes the paper.

II. Preliminaries

In this section we briefly introduce the satisfiability prob-
lem (SAT), the related optimization problem MaxSAT, and
Bounded Model Checking (BMC). The interested reader is referred
to [12] for further details.

A. Satisfiability and MaxSAT

Given a propositional formula ϕ, SAT seeks an assignment A
of the Boolean variables V occurring in ϕ such that ϕ evaluates
to logic 1. An assignment A is a function A ∶ V → {0,1}. We call
A a model of ϕ iff ϕ(A) = 1 holds. In that case we also call ϕ
satisfiable. Otherwise, if there is no A for which ϕ(A) = 1 holds,
the formula is said to be unsatisfiable. Propositional formulae
are typically given in conjunctive normal form (CNF), which is a
conjunction of clauses. A clause is a disjunction of literals, and



a literal is a variable v ∈ V or its negation ¬v. Therefore ϕ is
satisfied iff all clauses are satisfied, and a clause is satisfied iff at
least one literal of the clause is assigned to 1.

Today’s state-of-the-art SAT solvers [13], [14] are based on
the DPLL algorithm [15], which decides assignments to the
variables and deduces resulting assignments (also referred to as
implications). A key feature is the concept of conflict driven
clause learning (CDCL): in case a clause is unsatisfied due to
the assignments (also called conflict), the solver creates a reason
in form of a clause for this conflict. We say such a clause is
derived from ϕ. The solver resolves the conflict by withdrawing
the conflicting assignments and by adding the derived clause
to ϕ, which prevents the solver from choosing the same conflicting
assignment again.

Many SAT-related formalisms have been introduced in recent
decades. One prominent example is the Maximum Satisfiability
problem (MaxSAT). Intuitively, in a MaxSAT problem we try to
satisfy as many clauses as possible in ϕ. In this context the clauses
are also called soft clauses. There are several natural extensions
of MaxSAT like Weighted MaxSAT and Partial MaxSAT. In the
former extension the clauses are labeled with non-negative weights
and the goal is to maximize the sum of the weights of the satisfied
clauses. In the latter extension there are additional so-called hard
clauses, which must be satisfied, whereas the soft clauses are
treated as in MaxSAT. Likewise SAT, one obtains a model which
indicates the MaxSAT objective: the number of soft clauses (or
the sum of the clause weights) which are satisfied simultaneously.
In the following we always refer to MaxSAT within the meaning
of MaxSAT or one of its extensions.

Modern MaxSAT solvers use different techniques for handling
the optimization constraints. In general, one can distinguish
between three main approaches: branch-and-bound [16], core-
guided [17] and iterative [18] algorithms. Common iterative
methods for example encode the maximization property of the
soft clauses as cardinality constraints and add them to the
original formula via adder-, counter-, or sorter-networks [19]. The
underlying SAT solver is called iteratively, updating the bounds
for the number of satisfied soft clauses with each step. In this
paper, we utilize the MaxSAT solver antom [20], applying this
iterative approach.

B. Bounded Model Checking

Bounded Model Checking (BMC) is a technique which validates
a sequential system by a given exploration limit up to a predefined
number of time steps. In particular, BMC considers safety and
liveness properties. A common application is to obtain error traces
in sequential circuits which are required to falsify a certain safety
property.

Intuitively, BMC starts from a fixed initial position (i. e., the
set of initial states) and tries to attain a goal within a predefined
maximum number of steps. First, it is validated whether the set
of initial states already contains the goal. If this is not the case,
BMC then checks whether the goal is reachable in one step, in
two steps, etc. until either the goal is reached or the exploration
limit is exceeded.

The structure of the system and the requested property are
encoded as a propositional formula of the form:

BMCk = I0 ∧ T0,1 ∧ . . . ∧ Tk−1,k ∧ Pk (1)

I0 encodes the initial states. The terms Ti,i+1 represent the so-
called transfer function, which is the combinational part of the
system. The transfer function defines one sequential step from
time frame i to i + 1 in the sequential system (e. g. a circuit )
under consideration. The predicate Pk represents the goal, i. e., a
property whose reachability after k steps has to be checked.

If there exists a path in the unfolded system starting at I0
and reaching a state satisfying Pk in k time frames, BMCk is
satisfiable. In that case BMC returns a shortest witness satisfying
the property. If the property never holds the BMC problem is
unsatisfiable.

It can not be proven whether the property is never reachable
unless the system is unfolded up to its diameter, and hence
the procedure is not complete for all k less than the diameter
(typically, the maximum bound for k is set far less then the
system’s diameter). In recent years some approaches have been
presented which are able to show the unreachability of the property
and therefore make BMC complete, namely k-induction [5] and
Craig interpolation [6].

Craig interpolation uses the theorem of Craig interpolants [21],
which represents an over-approximation of a particular set. Start-
ing with the set of initial states, Craig interpolants are calculated
for each transition step in order to obtain an over-approximation of
the reachable state set. If the reachable state set does not change
in two consecutive time steps a fix-point is reached and if the
property is not part of the over-approximation it is proven that it
is never reachable, and hence the BMC problem is unsatisfiable.
If the property is part of the over-approximation, either the
approximation was too coarse and the procedure is restarted
excluding this spurious trace or we have shown that the goal is
reachable. For more details of this procedure the interested reader
is referred to [6]. In this paper, we make use of the complete BMC
solver CIP [22] using Craig interpolants for proving whether the
intermediate solution bounds represents a global optimum.

III. MaxBMC

In this section we formalize MaxBMC as an extension of BMC
and state an algorithm to solve such kind of problem instances.

A. Definition

The MaxBMC problem is based on the BMC concept, i. e., it
also asks whether a safety or liveness property in a sequential
system holds within a predefined number of time steps. Addi-
tionally, if a witness is found, MaxBMC asks for the quality q of
this witness. In particular, the witness with the highest quality
for each transition step is identified, and therefore, MaxBMC
determines the Pareto-optimal qualities for the sequence lengths
until a bound k.

As in BMC, one can encode the structure of MaxBMC as CNF,
including soft clauses:

MaxBMCk = I0 ∧ T0,1 ∧ . . . ∧ Tk−1,k ∧ Pk ∧Ok (2)

The parts I0, Ti,i+1 and Pk are defined as in Eq. 1. In extension
to classical BMC we consider two properties for each unrolling
depth. The first one is a property Pk describing requirements
that need to hold in order to form a valid solution. The second
objective Ok is a symbolic representation of any optimization
problem which can be translated to MaxSAT. Ok consists of
clauses that describe the quality of a witness (i. e., the soft clauses
of the encoded MaxSAT problem) and provides the soft clause
interface. Hence, the number of satisfied soft clauses are directly
mapped to the quality.

Intuitively, we ask whether a property is reachable within a
given bound k and if it is reachable we determine its quality. The
quality is given by the MaxSAT objective of MaxBMCk, i. e.,
the sum of the satisfied soft clauses in Ok. We denote the result
of the optimization problem and therefore the quality of the best
witness with sequence length k as qk. The quality of witnesses with
different lengths indicate solution bounds. Therefore we define a
lower (qlow) and upper (qhigh) bound of the optimization results qi
with 0 ≤ i ≤ k.

As in BMC one can prove the reachability of the property in the
same manner as described in Sec. II-B. Additionally, in MaxBMC
we have to consider the case that for some depth i the property is
reachable, but for a depth larger i it is not. This case is omitted
in BMC, since one is only interested in the shortest trace to
the good/bad state. This proof can be done quite similar to the
standard reachability check by adding an additional constraint
forcing a trace with at least depth i + 1.

Furthermore, we extend the concept of proving reachability of
a property to the question whether the solution bounds of the
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Figure 1. Algorithmic flow

secondary objectives can be extended. Therefore one has to apply a
solution bound proof, demanding an optimization result q∗ which is
not within the solution bounds of qlow and qhigh. If such a solution
does not exist, we have shown the unreachability of a property,
demanding an optimization quality q∗ and hence obtained a proof
that the solution bounds can not be improved. In the following
sections we state more details of the composition of such a proof.

B. Algorithm

In this section we state the MaxBMC algorithm, which 1)
computes the optimization results for each iteration and 2) proves
the optimality of the solution bounds.

Fig. 1 shows the algorithmic flow, where the blue parts indicate
steps involving a complete BMC solver, and the orange parts show
the integration of a MaxSAT solver. An illustrating example is
given in Fig. 2.

Validating MaxBMCk requires that the property Pk holds,
which is always checked, before we can tackle the optimization
problem. Starting with a depth of i = 0, it is checked whether Pi

holds (in the initial states). In the example, the property P0 is
already satisfied, but in the general case it may not hold. In such
situations we validate whether the property is (still) reachable
beyond the current depth using a complete BMC solver. If the
property does not hold the currently identified solution bounds
are returned as no better solution can exist. Otherwise, a trace
of minimal length to the next depth larger i where the property
holds is generated. Hence, we update the depth i and continue
with the corresponding time step.

At this point, a depth i is identified, where the property Pi

holds and we determine the optimization objective for this depth
using an iterative MaxSAT approach (c.f. II-A). We commit
the BMC part of Eq. 2 as hard clauses and add the symbolic
representation Oi to a MaxSAT solver. The solver returns the
model from which we obtain a best witness for the current
sequence length and its quality qi. We compare the quality with
the current lower and upper quality bounds [qlow, qhigh]. In our
example the quality of the first iteration is 4 and therefore the
bounds are set to [4,4].

In case the bounds improved (as in the example from [4,4] to
[2, 4]) the flow continues with incrementing the time step i, adding
the next transition relation and checking the property. If there
is no improvement for the solution bounds within a user-given
number of time steps, we apply again a complete BMC solver to
check the global optimality of the bounds. In the example, the
quality does not change in the third iteration (q2 = 3) and hence
the solution bound proof is called (as the user-given threshold for
non-improving time steps is set to 1 for this example).

To do so, we commit MaxBMCi as in Eq. 2 to the BMC
solver, by adding the symbolic representation of Oi as part of the
property Pi. In particular, the soft clauses are added together with
encoding of the cardinality constraints, allowing to (de-)activate
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Figure 2. Illustrating MaxBMC example

soft clauses as to be satisfied. Additionally, the constraint (q∗ <
qlow ∨q

∗
> qhigh) is encoded and added in order to trigger a larger

solution bound q∗.
We call this new combined property OPi. If the BMC solver

returns that OPi is unreachable we can guarantee that qlow
and qhigh describe the maximum solution bounds and the flow
terminates. Otherwise the solution bound proof returns a witness
at a depth larger i which points to an improvement of the bounds.
Consequently, i is updated and we continue with the check of Pi.

In the example the solution bound proof at depth 2 identifies a
witness at depth 4 and the flow continues with checking P4. When
the proof is executed again at depth 16 (some steps are skipped
in the example), the optimal bounds can be shown and the final
solution bounds qlow = 2 and qhigh = 12 are returned.

The algorithm is sound in the sense that 1) for every unrolling
depth i ≤ k the optimization result qi is calculated in case the
property Pi holds and 2) the maximum solution bounds are given
by qlow and qhigh, if the optimality of the bounds could be proven.

The first part is easy to see: Ok is the representation of the qual-
ity as soft clauses. These clauses are added to a MaxSAT solver,
whereas the remaining symbolic representation of MaxBMCk is
added as hard clauses to the MaxSAT solver. Therefore the hard
clauses are satisfied iff the property Pk holds. In that case the
MaxSAT solver determines the number of satisfied soft clauses,
which can be directly interpreted as the quality.

For the second part we need to validate that our solution bound
proof is sound. Since we use an iterative MaxSAT approach for
the optimization constraint, Ok is encoded as clauses which are
added to the combined property. An accordant iterative MaxSAT
solver would encode an additional network for the cardinality
constraints for the soft clauses and iteratively add constraints
bounding the optimization result via the network. Here, we add the
network encoding as part of the property and bound the quality
(i. e., the number of satisfied soft clauses) by triggering < qlow or
> qhigh implicitly as part of the combined property OPk. Therefore,
OPk defines a safety property asking whether we reach a certain
property (Pk) at which the optimization result is below < qlow or
above > qhigh. The BMC solver will return such a witness with the
shortest sequence length if it exists. Otherwise the BMC problem
is classified as unsatisfiable.

The algorithm is complete in the sense that 1) it detects whether
Pk is reachable and 2) returns the optimal solution bounds.

Again, the first part is clear, since a complete BMC solver checks
whether Pk is reachable and therefore our algorithm is complete,
too. This also holds in the case the property is reachable only
until a time step i by forcing a solution with more than i time
steps.



If the user-given bound k is large enough also the second part of
the completeness holds. Since the solution bound proof is sound
and the underlying procedure to check these bounds is complete,
also the optimality of the solution bounds can be guaranteed.

C. Extensions

Based on the basic MaxBMC formalism defined in Eq. 2 one
can define several natural extensions, depending on the specific
requirements of an application.

One may extend the number of optimization objectives checked
per time frame, i. e., there are possibly multiple Ok’s in Eq. 2
that can be optimized together or separately. In the former case
we obtain one combined quality qk per sequence length k, in the
latter case one has to solve multiple optimization problems per
time step and consequently observe and prove multiple solution
bounds.

Another straightforward extension is the definition of weights
associated with each soft clause leading to Weighted MaxBMC
likewise Weighted MaxSAT. In this case, the quality of a Weighted
MaxBMC instance is given by the sum of the weights of the
satisfied soft clauses in Ok.

IV. Implementation details

In this section we describe the underlying solver technologies
we used and the modifications we made in order to solve the
MaxBMC more efficiently.

A. Incremental MaxSAT

As shown in Section III, solving MaxBMC instances necessi-
tates solving a series of similar MaxSAT problems. After each
iteration, additional transition relations and further optimization
constraints are added. Parts of earlier iterations are removed, but
some stay unchanged and may still contain useful information.
Likewise classical BMC with incremental SAT solving, MaxBMC
may also benefit from an incremental MaxSAT solver which allows
re-usage of information gained while solving previous MaxSAT
instances. Incremental MaxSAT allows to change optimization
constraints which necessitates adaptations to the solving process
that go beyond classical incremental SAT.

The core of our incremental MaxSAT implementation is our
in-house SAT solver antom [20], which supports incremental
SAT solving and provides a MaxSAT interface. Internally, the
maximization problem is expressed by a sorting network [23].

We modified the solver to include the following techniques
known from the BMC context: Constraint Sharing [3] and
Constraint Replication [4]. The reader is referred to the related
references for more details of the methods.

Constraint Sharing and Constraint Replication are techniques
for reusing learned clauses from former SAT solver calls. Using
incremental solving in BMC, only one SAT instance, which
changes with every call of the solver, is used for all calculations. In
particular, parts of the formula are removed (e. g. by adding the
transition relation Ti,i+1 and related property Pi+1, the property
Pi has to be removed), and thus derived clauses originating from
removed parts are invalid in later solver calls. In general, derived
clauses from former solver calls are more beneficial for the BMC
approach than using a single SAT instance for each transition step
separately. In BMC the issues with invalid clauses in incremental
solving are handled by adding trigger literals to the clauses which
define the property.

The trigger literals allow to (de-)activate parts of the formula,
which have to be removed in a later solver call. We call the clauses
of these parts the temporary clauses of ϕ. Assume a trigger vari-
able ti for time frame i. Then each temporary clausec = (l1∨. . .∨ln)
from time frame i is extended to c = (l1 ∨ . . . ∨ ln ∨ ti). Thanks
to the concept of assumption-based solving and the learning
mechanism in modern SAT solvers all clauses which are derived
by at least one temporary clause will also contain the trigger
literal and hence are also marked as temporary clause. As an
example in BMC consider a SAT solver call for transition step i.
Adding the assumption ¬ti activates the temporary clauses (i. e.

clauses describing the property Pi) of step i. At the same time the
temporary clauses of the former transition step i−1 are deactivated
by adding a clause containing only the trigger literal ti−1. This
will satisfy all temporary clauses with this trigger literal, and
hence the property Pi−1 is not constraining anymore.

The concept of trigger literals can be adapted likewise to
incremental MaxSAT: the clauses of the properties Pk are
(de-)activated as in BMC. Furthermore we have to consider clauses
which are used for the encoding of the optimization constraints.
We have to deactivate this encoding after each transition step,
since the MaxSAT instance is only valid for the current one. Thus,
the optimization constraints of transition step i have to be treated
as temporary clauses for i. The trigger literal is added for these
clauses in order to (de-)activate them.

Moreover, we have to take care of the constraints defining
the optimization bounds added during a single MaxSAT solver
call. If a classical iterative MaxSAT solver finds a bound for
the optimization result, a new hard clause is added to the
underlying SAT solver constraining this bound. Adding this
bounding constriction is not sound anymore in an incremental
approach since the bounds and any derived clauses originating
from this constraint are only sound for the current transition
step. Hence, instead of bounding the result by adding a clause,
in incremental MaxSAT we add the bounds as assumption to the
problem. This ensures that the constraint only holds for this time
step and that any derived clause resulting from this constraint will
contain the assumption literal, i. e., it is marked as a temporary
clause and therefore we are able to deactivate these clauses.

In case qk increases monotonically, i. e., the optimization result
of a transition step is either equal or better than the result of the
former ones, one can reuse these bounds. In particular, if we have
determined an optimization result qi in transition step i we can
commit qi as a minimum bound for all following transition steps to
the MaxSAT solver. This can be done accordingly with monotonic
decreasing qk. In our experiments (c. f. Sec. VI) we observed that
this extension is very beneficial for the MaxSAT solver. Typically,
the optimization goal describes a mandatory part of the whole
MaxSAT instance as the encoding of the cardinality constraints
are quite expensive. This encoding can be largely simplified by
adding the additional bounding constraints.

To the best of our knowledge, these extensions lead to the first
incremental MaxSAT solver. The authors of [24] propose that
the usage of incremental MaxSAT would be beneficial for their
purpose, but it is presumably not implemented. By applying this
solver, our algorithm is able utilize an incremental core algorithm
as in BMC with incremental SAT solving and therefore profits
from learned information to speed up the solving process.

B. Solution bound proof

We use the in-house BMC solver CIP [22], which supports
unreachability proofs by Craig interpolation, as a back-end solver
in order to derive on the one hand the proof whether the
property Pk is reachable and on the other hand whether the
solution bounds for the optimization problem can be improved.
As described in Sec. III-B we have to encode the cardinality
constraints of the MaxSAT problem. An additional constraint
is added, demanding q∗ original soft clauses to be satisfied, where
q∗ is either below qlow or above qhigh. For example, consider the
situation that we are currently applying time step i and qhigh was
not improved for a user defined threshold of time steps. Now, we
call CIP, encoding the safety property: Pi holds and the quality
of the optimization objective is higher than qhigh. If there exists
such a solution, CIP will return the witness with its sequential
depth where the safety property is violated. Then we can update
our result for qhigh and proceed with our main MaxBMC loop.
Otherwise, the BMC solver was able to prove that the quality is
not above qhigh for any sequential depth. Hence, we are able to
fix qhigh as the maximum optimization solution. This procedure
is done analogously for qlow. If both qlow and qhigh are fixed our
algorithm terminates.



V. Applications

In this section we present applications that can be formalized
as MaxBMC problems. First, we briefly introduce the problem of
circuit initialization which also serves as a reference problem in
the experimental results section. Second, we give some pointers to
further applications which can be translated into our formalism.

A. Circuit initialization

The problem of initializing (or synchronizing) a given circuit is
a well considered problem in the area of testing [10], [11] and is
closely related to state reachability problems known from classical
BMC. The problem handles the question whether a sequential
circuit is initializable, i. e., all flip-flops can be set to a known
value, starting from the completely unknown state. Since many
circuits are not completely initializable due to their internal circuit
function, there is a high interest in finding the maximal subset of
flip-flops that can be initialized.

This problem can be formalized as a MaxBMC problem, where
the number of initialized flip-flops can be seen as the quality of a
trace, i. e., the optimization goal. To represent unknown values,
the transfer function Ti,i+1 is encoded using 01X logic [25]. The
maximization goal qk is given by the number of flip-flops which can
be initialized simultaneously. Hence, a maximization over these
literals leads to the sequence that initializes as many flip-flops as
possible. Note that the property Pk is always trivially true, since
each solution to the underlying BMC instance represents a valid
sequence even if no flip-flop gets initialized.

B. Further applications

A related problem to initialization sequence is the resetability
of a sequential circuit, used for example in partial scan [26]. Since
most circuits are not fully initializable, one may be interested in
the minimum number of controlling flip-flops (i. e., flip-flops whose
values must be controlled externally), leading to a fully initialized
state. This objective can be applied naturally to MaxBMC by
defining the number of non-controllable flip-flops as quality.

Another application area is the optimization of the dynamic
power consumption of a sequential circuit [27] which can be
estimated by the switching activity of circuit lines, i. e., the amount
of times a certain line switches its logic value from 0 to 1 and
vice versa. This switching activity can be defined as quality for
MaxBMC. The resulting instance is able to identify traces in the
system with minimum/maximum power consumption in order to
optimize the design of the system.

Apart from the circuit domain there are extensions of the well-
known planning problem: the question of cost-optimal planning
or preference-based planning. In contrast to classical planning one
seeks for secondary criteria for a plan (e. g., minimal sequence
length, minimal action costs, or maximal state rewards). In [28],
[29] methods are proposed to find such plans using Weighted
MaxSAT in order to tackle the optimization criteria. The authors
consider the construction of the plan detached from solving the
MaxSAT problem and no incremental usage of a MaxSAT solver is
applied. The plan construction can be formalized as satisfiability
problem [30] and we suppose that these problems can be naturally
translated into MaxBMC. A plan computation can be seen as
traversing transition relations Ti,i+1, where the planning goal is a
property Pk and the optimization criteria can be represented by
different qualities qk, translated into Ok.

In general our formalism covers problems containing a tran-
sition system together with cost functions, where the goal is to
find a trace within the system with minimum/maximum costs.
Additionally, we allow constricting properties, which have to hold
independently from the cost-optimization goal.

VI. Experimental results

We considered the circuit initialization problem as described in
Sec. V-A. Therefore we used sequential versions of commonly used
academical and industrial benchmark circuits. All measurements
were performed on a single core of a 3.3 GHz Intel Xeon processor
with a time out of 4 CPU hours per circuit.
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Figure 3. Method comparison for NXP benchmark circuit p45k-s

We implemented three versions for solving the MaxBMC
problem to show the applicability of our incremental approach.
The first one is a näıve implementation using only a complete BMC
solver [31] (“Baseline”). We encode the optimization problem in
CNF as part of the property demanding a successively increasing
quality of the result until the complete BMC solver was able
to prove that the result could not be increased. The second
approach uses a MaxSAT solver and a complete BMC solver as
described in Sec. III-B but without incremental MaxSAT solving
(“Non-incremental MaxBMC”). The third implementation utilizes
additionally the incremental techniques described in Sec. IV-A
(“Incremental MaxBMC”).

The exemplary comparison results are shown in detail in Fig. 3
for the NXP benchmark circuit “p45k-s”. The figure shows the
run time needed in relation to the number of initialized flip-flops
for each method. As can be seen, the quality increases within time
for each of the methods. However, the steepness of the individual
curves differs greatly.

Although all methods were alloted the same timeout, the
baseline method could only initialize 1848 flip-flops in 15 clock
cycles (i. e. sequence length) while in the same time both MaxBMC
approaches perform significantly better and could initialize the
complete circuit (all 2331 flip-flops) within 49 clock cycles. How-
ever, the incremental approach reached the optimal results earlier.
This general trend shown in the example can also be found for
other circuits where the straightforward baseline approach yields
only limited results due to the redundant calls to the BMC solver
which can be avoided by our MaxBMC approaches. Moreover, the
utilization of the incremental MaxSAT solver leads generally to
further performance improvements.

Hence, we focus on the incremental MaxBMC variant in Table I.
It shows the results for a broader range of challenging circuits
which provide noteworthy results originating from the ISCAS 89
(named s*), ITC99 (named b*) and industrial NXP (named p*k-s)
benchmark series. The first three columns list the name of the
circuit followed by the number of gates and flip-flop elements. The
number of clock cycles of the best found sequence and the number
of initialized flip-flops is given next. The column “Opt” indicates
whether the result has been proven to be a global optimum. The
last two columns show the run time, distinguished between the
MaxSAT solver antom and the BMC solver CIP.

As can be seen, the MaxBMC algorithm is able to detect the
initialization of a significant part of the circuits or prove that
the number of initialized flip-flops can not be improved further.
Exceptionally most benchmarks of the ITC 99 series can not be
initialized at all, which is in general quickly detected by our
reachability check. Whereas there are such sequences for ISCAS89
and NXP circuits, which are either rather long and hence hard
to derive (e. g. s38584, p78k-s) or the circuit structure is more
complex and the solution bounds are therefore hard to prove (e. g.
s38417, p267k-s). In the latter case we presume that the found
bounds are already optimal but the BMC-solver is not able to



Table I
Circuit initialization of ISCAS 89, ITC 99 and NXP benchmarks

Best sequence Run time in [s]

Circuit Gates FF Cycles Init Opt antom CIP

s05378 3221 179 10 179 1 0.73 0.00
s09234 6094 211 4 154 1 0.56 0.76
s13207 9441 638 19 303 0 9.94 >14390.06
s15850 11067 534 19 467 0 14.32 >14385.68
s35932 19876 1728 1 1728 1 0.39 0.00
s38417 25585 1636 9 372 0 44.33 >14516.70
s38584 22447 1426 36 1425 0 10831.60 >3568.40

b12 1127 121 77 48 1 45.06 138.08
b14 5923 245 0 0 1 0.05 1.84
b15 8026 449 0 0 1 0.08 5.50
b17 25719 1414 0 0 1 0.33 18.19
b18 76513 3270 0 0 1 1.05 176.03
b20 12991 490 0 0 1 0.11 4.60
b21 13168 490 0 0 1 0.12 5.47
b22 18789 703 0 0 1 0.17 3.82

p35k-s 48927 2173 3 2173 1 12.85 0.00
p45k-s 46075 2331 49 2331 1 3566.79 0.00
p77k-s 75033 3386 11 3386 1 77.57 0.00
p78k-s 80875 2977 32 2080 0 >14400 –
p100k-s 102443 5735 13 5020 0 >14400 –
p267k-s 296404 16528 8 1062 0 633.64 >13766.36
p330k-s 365492 16775 5 6596 0 >14400 –
p378k-s 404367 14885 11 3575 0 >14400 –
p469k-s 49771 332 1 3 1 2.86 3.05

derive the respective proof within the given time. But even if no
optimal result was obtained, we were able to generate Pareto-
optimal results for each depth up to the reached best sequence
length, even for larger industrial circuits. Hence, our presented
MaxBMC approach outperforms previous methods (e.g., [32], [33])
both in terms of scalability and quality.

VII. Conclusion

We presented MaxBMC, a formalism for defining optimization
problems in sequential systems, optimizing secondary objectives.
We state a sound and complete algorithm which is also able to
yield the best possible solution bounds for each possible time step.
Additionally, we developed an incremental MaxSAT approach by
leveraging techniques from incremental SAT for BMC.

We express the problem of finding initialization sequences as
MaxBMC and give some pointers to further applications. Experi-
mental results demonstrate the effectiveness and applicability of
our MaxBMC solver.

As future work we plan to investigate the usage of alternative
incremental approaches for solving MaxSAT such as branch-and-
bound and methods based on ILP solvers. This is of particular
interest for solving Weighted MaxBMC where ILP formulations
tends to be more beneficial than iterative MaxSAT approaches.
Furthermore, we want to investigate in applying other techniques
for providing the solution bound proofs.
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