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Abstract—A Cellular Neural Network (CNN) is a highly-
parallel, analog processor that can significantly outperform von
Neumann architectures for certain classes of problems. Here,
we show how emerging, beyond-CMOS devices could help to
further enhance the capabilities of CNNs, particularly for solving
problems with non-binary outputs. We show how CNNs based on
devices such as graphene transistors – with multiple steep current
growth regions separated by negative differential resistance
(NDR) in their I-V characteristics – could be used to recognize
multiple patterns simultaneously. (This would require multiple
steps given a conventional, binary CNN.) Also, we demonstrate
how tunneling field effect transistors (TFETs) can be used to form
circuits capable of performing similar tasks. With this approach,
more “exotic” device I-V characteristics are not required – which
should be an asset when considering issues such as cell-to-cell
mismatch, etc. As a case study, we present a CNN-cell design that
employs TFET-based circuitry to realize ternary outputs. We then
illustrate how this hardware could be employed to efficiently solve
a tactile sensing problem. The total number of computation steps
as well as the required hardware could be reduced significantly
when compared to an approach based on a conventional CNN.

I. INTRODUCTION

Historically, most information processing hardware
essentially implements a von Neumann (i.e., stored program)
architecture which is based on Boolean logic, and operates at
discrete time on discrete, binary coded data. This paradigm
has obviously and deservedly continued to enjoy exponential
growth due to Moore’s Law scaling. However, issues such
as device-to-device variation, power density requirements,
limited parallelism in many applications, etc. could all
impact future scalability of this approach [1]. To continue
performance scaling trends associated with Moore’s Law,
solutions are sought at both the device and architectural levels.
In this paper we explore the possibilities of utilizing emerging
devices to process information with non-binary/non-von
Neumann Cellular Neural Networks (CNNs).

A CNN is a powerful analog array processor architecture
[2], [3]. Previous efforts suggest that for computation-
intensive information processing applications, such as image
processing, pattern recognition, etc. (e.g., [4]–[8]), CNNs can
significantly improve both power and performance. In a CNN,
the interconnections between the processing units – called
cells – are local, and space-invariant, which makes CNNs
very suitable for VLSI implementation. The continuous-time
processing of analog signals in a highly concurrent manner by
the cells allows for massive real-time, fast signal processing
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with low energy dissipation. Previous research efforts have
considered using non-linear devices, including Resonant
Tunneling Diodes (RTD), Tunneling Field Effect Transistors
(TFET), etc. to improve various aspects of the conventional
CNN (e.g., [9], [10], [11]), and results suggest that positive
impacts on power, performance, and area are indeed possible.
However, the functionality of a CNN is demonstrated in the
context of binary classifications only. More specifically, while
RTD-based CNNs exhibit multiple equilibrium points [9], [12],
device realizations have been challenging in practice [13].

In this work, we show how devices such as graphene
transistors [14] – with multiple steep current growth regions
separated by negative differential resistance (NDR) in their
I-V characteristics – could be used successfully in CNN
architectures to solve quaternary classification problems.
Alternative solution through a binary CNN requires multiple
iterations – costing longer time and higher energy. Also, while
“single device solutions” (e.g., via graphene transistors) for
multi-valued problems are obviously attractive, it should also
be noted that the likelihood of device-to-device, etc. mismatch
would likely increase, which would in turn result in varying
cell-to-cell behavior. Given this, we have designed TFET-
based circuits that exhibit useful properties (for multi-valued
problems) in their output transfer characteristics.

To determine the utility of these approaches, as a case
study, we consider a tactile sensing problem from [15] where
the goal is to detect and identify slippage of an object from a
robotic arm. Architectural level simulations for this problem
demonstrate that TFET circuit-based CNNs are capable of
efficiently solving ternary classification problems. When com-
pared to the conventional CNN, a TFET-based ternary CNN
requires fewer computational steps and obviates the necessity
of a complete datapath – thus reducing hardware by half.

II. BACKGROUND

The conventional single-layer, spatially invariant CNN
architecture proposed in [2] is an M×N array of identical cells
(Fig. 1a). Each cell, Cij , (i, j) ∈ {1, ...,M}× {1, ..., N}, has
identical synaptic connections with all the adjacent cells in a
predefined neighborhood, Nr(i, j) of radius r. The size of the
neighborhood, m, depends on the distance between the central

cell, Cij , and its adjacent cells, where m = (2r + 1)
2
, and r

is a positive integer. The conventional design of Cij consists
of one resistor, one capacitor, 2m linear voltage controlled
current sources (VCCSs), one fixed current source, and one
non-linear voltage controlled voltage source (Fig. 1b). The
node voltages ui,j , xi,j , and yi,j correspond to the input, state,



(a) (b)

Fig. 1. (a) CNN topology; (b) Circuit layout for a conventional CNN cell.

and output of Ci,j , respectively. The input and output voltages
of the m neighbors contribute m feedback and m control
currents, respectively, to Ci,j through the linear VCCSs.

The dynamics of the CNN can be expressed by a system of
M ×N ordinary differential equations (ODEs), each of which
is simply the Kirchhoff’s Current Law (KCL) at the state nodes
of the corresponding cells as shown in Eq. 1. At any given
time, each cell in the network would have a net current, Ieff ,
flowing into its state node x, from various VCCSs, as well as
the fixed bias.

C
dxij (t)

dt
= −

xij (t)

R
+

∑

Ckl∈Nr(i,j)

aij,klykl (t)

+
∑

Ckl∈Nr(i,j)

bij,klukl + Z (1)

Here, aij,kl and bij,kl act as weighting parameters for the
feedback and control currents from cell Ckl to cell Cij . As
the synaptic connections between cells are space invariant,
these parameters are denoted by two 3 × 3 matrices (for
r = 1), and are referred to as the feedback template A and
the control template B. The parameter Z represents a fixed
bias current, and provides a means to adjust the total current
flowing into the cell. By carefully programming the values of
the A and B templates as well as Z , it is possible to solve a
wide range of binary classification problems.

A conventional CNN cell also employs a non-linear
sigmoid-like output transfer function f (xij (t)) specified by
Eq. 2 to make the output state to saturate at either a high or
low voltage (e.g., +1 V or −1 V ).

yij (t) =
1

2
(| xij (t) + 1 | − | xij (t)− 1 |) (2)

To perform binary classification it is essential to have some
form of non-linear relationship between Ieff and the output
voltage, which is provided by the output transfer function
defined above. It is also possible to introduce non-linearity to
the state node’s behavior by replacing the linear resistor with
a non-linear resistive component or device. When employed
in a CNN architecture, non-linear devices like Resonant
Tunneling Diodes (RTD) [9], [10], Tunneling Field Effect
Transistors (TFET) [11], etc. are shown to be capable of
solving binary classification problems.

Among the potential non-linear devices, devices with
steep slopes and that operates at low voltages are especially
interesting. Devices with steep current growth regions in their
I-V characteristics can accommodate a wide range of currents
within a very narrow window of voltages. As such, a number
of different values of Ieff corresponding to a specific output

class would result in stable voltages within a very close range.
The given output class can be represented by this narrow
voltage window, and the steep-slope of the device itself ensures
saturating state voltages. Therefore, the non-linear output
transfer function is no longer required; i.e., the state voltage
and output becomes equivalent to each other. Furthermore,
to compensate for device mismatch issues associated with
current CMOS scaling, implementations of the output transfer
function could require a large amount of area [10]. Hence,
by employing steep-slope devices in the CNN cell design, it
should be possible to reduce the area of each cell. The low
voltage operability of the devices improves power dissipation.

III. MULTI-VALUED CNN WITH EMERGING DEVICES

Multi-valued CNNs provide a powerful alternative to solve
general classification problems [16]. Though it is possible
to decompose a multi-valued problem with n classes into a
series of n− 1 binary classification steps, both operation time
and energy dissipation would obviously increase with this
approach. Also, reprogramming hardware between iterations
(for different template operations) would introduce additional
overheads. Therefore, a CNN cell capable of classifying
multiple classes in a single step would be useful. Existing
CNNs achieve multi-value functionality either by using output
function that has several saturated levels [16] or by the
discrete time version of CNN (DT-CNN) [17].

A. Desired Characteristics

We first discuss how a CNN architecture can be used to
solve multi-valued problems in a single step by enforcing
some characteristics in a non-linear device’s I-V. An example
of a desirable device I-V characteristic is shown in Fig. 2a.
More specifically, a device (or equivalent circuit) should
exhibit more than two current growth regions as each growth
region can represent an output level. Furthermore, very steep
current growth regions are desired as this ensures that stable
state voltages would be bounded within very narrow windows,
and this would further eliminate the need for analog to digital
conversion at the output. Also, it is desirable that the growth
regions of a device are reasonably well separated, as this
should lead to more robust operation in the presence of noise.
Ideally, the slopes of the I-V characteristics in the separation
regions should not be positive, as this could effectively merge
two neighboring output windows. Interestingly, recent work
on double-layer graphene transistors [14] suggests that a
single device (Fig. 2b) might be able to deliver desired I-V
characteristics (like those illustrated in Fig. 2a).

B. Example Multi-valued CNN

Assuming a piece-wise linear approximation (Fig. 2b) of
the graphene transistor (for simplicity), we now demonstrate
how CNN cells based on such characteristics can perform qua-
ternary classifications. First, we explain the operation principle
of a quaternary CNN cell through the concept of driving point
(DP) plots [18]. To this end, the cell equation is rewritten as:

C
dxij (t)

dt
= −h (xij (t)) + aij,ijxij (t)

+
∑

Ckl∈Nr(i,j)∧kl 6=ij

aij,klxkl (t)+
∑

Ckl∈Nr(i,j)

bij,klukl+Z

(3)
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Fig. 2. (a) Example characteristics of a CNN device for multi-valued
problems; (b) I-V characteristics of the double-layer graphene device at room
temperature [14], and its Piece-wise linear (PWL) approximation.

where h (xij) represents the graphene transistor’s I-V charac-
teristics. In a DP plot, Eq. 3 is plotted as a function of the state
voltage, xij . The shape of the plot can be modulated by the first
two right hand side terms (together called the DP component),
whereas the last three terms’ summation provides an offset to
shift the plot vertically. As such, the equilibrium states of a cell
can be identified at points where the plot intersects the x-axis
with a negative slope. Physically it means that at equilibrium,
the current through the capacitor is zero – i.e., the capacitor has
completely charged or discharged to the equilibrium voltage.

Below, we use an example problem to further illustrate
quaternary CNN functionality. Given an image of an object
as input (see Fig. 4a), the problem is to identify four distinct
features, e.g., outliers, corners, edges, and cores. Each cell
processes a single pixel of the input image. The input nodes of
the cells are provided with the corresponding input image pixel
(−1 V or +1 V for a white or black pixel, respectively). The
cell states can be initialized with any random values. While a
detailed discussion of template design is beyond the scope of
this paper, the template values are:

A =

[

0 0 0
0 0 0
0 0 0

]

, B = k

[

−1 −1 −1
−1 8 −1
−1 −1 −1

]

, Z = −8k + ε

As the values in the feedback template are equal to zero,
the DP component becomes the negated version of the
device’s I-V. From Fig. 3, we see that each steep-slope current
growth region of the device is responsible for identifying
one particular feature of the problem. For a given feature,
the programmed templates offset the DP component by the
proper amount of current such that the responsible steep-slope
(negated in DP) intersects with the x-axis and results in an
equilibrium state voltage. The ranges of stable voltages for
the features are always finite, and mutually exclusive. Thus,
with proper template design graphene transistor based cells
can reach desired output states.

To verify the cell array dynamics, we augmented a
MATLAB based simulator [19] that solves a system of
ODEs numerically by using the Runge-Kutta method. For an
M × N CNN array, the system of ODEs consists of MN
equations each defined for a given cell. Each cell in the array
requires an initial value for the state voltage which defines the
initial condition for the cell’s equation. Fig. 4 illustrates the
simulation results of the quaternary problem solved by both
the graphene transistor based CNN (in a single computational
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Fig. 3. DP plots for the representative cases of the four classes with k =

7 × 10−9 and ε = 3× 10−9. The state equilibrium points are marked with
open circles.

Input

10 20 30

5

10

15

20

25

30

Initial State

10 20 30

5

10

15

20

25

30

Final State/Output

10 20 30

5

10

15

20

25

30

(a) Single step of graphene transistor based CNN
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(b) Step 1 of conventional CNN
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(c) Step 2 of conventional CNN
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(d) Step 3 of conventional CNN

Fig. 4. Simulation results for quaternary classification.

step, Fig. 4a), and the conventional CNN (requires three
computational steps, Fig. 4b-d). The resistor value in the
conventional CNN is set to 36 MΩ such that the settling time
for a binary step is similar to that of graphene transistor based
CNN. During each step, the conventional approach eliminates
one particular feature, and passes the remaining features to
the succeeding step. Moreover, step 1 requires pre-processing
to initialize the state nodes with the input image. Altogether,
simulation suggest that the conventional CNN takes 59 ns to
complete the quaternary classification whereas the graphene
transistor based CNN needs only 16 ns.



Fig. 5. I-V characteristic of a TFET and a MOSFET. The drain current
is given per width of the transistor. The length of the NMOS is 24 nm, the
minimum in the 22 nm technology.

IV. CIRCUITS FOR MULTI-VALUED PROBLEMS

While the previous section illustrates their utility, devices
such as graphene transistors are still in the early stages
of development and additional studies and experiments are
required before these devices can be used in complex systems
such as CNNs. In this section, we show that multi-valued
characteristics can be realized via circuits based on a more
mature beyond-CMOS technology. An InAs TFET technology
[20] is considered in this work. The transistors have a channel
length of 20 nm, channel thickness of 7 nm and oxide
thickness of 2.5 nm. A verilog-A model is built from T-CAD
device simulations using the method explained in [21]. The
DC characteristic of an N-type TFET is shown in Fig. 5,
where the source terminal of the transistor is grounded and
the drain terminal is changed from -0.5 V to 0.5 V. Compared
to a 22 nm MOSFET [22] [23], TFET shows a higher output
resistance when operating in the saturation region (at a large
positive VDS), and negative differential resistance (NDR) at
negative drain-source voltages [11].

The key component in building a ternary cell is a nonlinear
resistance that can be used to replace the nonlinear term in
Eq. 3. Such a resistance can be created using an NTFET and
PTFET as shown in Fig. 6a. The I-V characteristic of the
resulting element (shown in Fig. 6b) has three low resistance
regions: one low-resistance region around 0 V, where the
two TFETs are in ohmic (linear) region, and two other
low-resistance regions where the p-i-n diode of one of the two
TFETs is turned on. In between these regions, the resistance
is high (and sometimes negative) because one TFET is in the
saturation, and the other in the NDR region. The I-V curve in
Fig. 6b is sufficient for a ternary CNN cell. However, the two
non-linear regions at the beginning and the end of the curve
are determined by the turn-on voltage of the p-i-n diodes
(VON ) and hence are not programmable. Furthermore, the
large value of VON mandates a large peak-to-peak voltage
swing of about 1 V over the nonlinear component. For TFETs
based on a technology with a bandgap voltage higher than
that of InAs (e.g. a Si-based TFET), VON will be even larger,
resulting in a voltage swing and supply voltages well beyond
the breakdown voltages of other transistors in the cell.

To add to the programmability of the cell and make it
compatible with low supply voltages, the nonlinear element
in Fig. 7a is proposed. It combines the idea of Fig. 6a with
a clamp circuit consisting of transistors T3 and T4. For
small values of |Vin|, both T3 and T4 are off and the I-V

Fig. 6. (a) Nonlinear element. (b) Characteristic of the nonlinear element.
The width of the TFETs is 1 µm.

Fig. 7. (a) Proposed nonlinear element for a ternary cell. (b) Its DC
characteristic when VB1 = VB4 = 0.1V , VB2 = VB3 = −0.1V ,
VDD = −VSS = 0.25V and the width of all TFETs is 1 µm.

Fig. 8. (a) Sweeping VB1 and −VB2 from 50 mV to 150 mV, whereas other
parameters are similar to those of Fig. 7b. (b) Sweeping VB4 from 50 mV to
150 mV, while other parameters are similar to those of Fig. 7b.

characteristic of the cell (shown in Fig. 7b) is similar to that of
Fig. 6b. When Vin is smaller than VB3 − VTH (where VTH is
the threshold voltage of the TFET) such that T3 is turned on, a
large current will be conducted by the transistor. Similarly for
large positive values of Vin, T4 will conduct a large current.
Using the four bias voltages VB1−4, it is possible to tune the
characteristic of the element. Fig. 8 illustrates two examples
of such tunings. This feature adds to the versatility of a CNN
to handle different applications. Moreover, the small voltage
swing of the nonlinear element allows the difference between
the positive and negative supply rails to be as low as 0.5 V.

It is instructive to compare the TFET-based nonlinear
element with a CMOS design shown in Fig. 9a. Here, the
diode-connected transistors T5 and T6 are added to make
the current passing through T1 and T2 asymmetric. A major
difference between Fig. 7b and Fig. 9b is that in the two



Fig. 9. (a) CMOS nonlinear element. Note to the increase of transistor length
(L) which is done to improve the output resistance of the MOSFETs. (b) The
I-V characteristic of the CMOS nonlinear element.

Fig. 10. Impact of threshold voltage variations on the characteristic of the
nonlinear elements.

regions that a high resistance is expected, the resistance of
the CMOS-based design is significantly lower than that of the
TFET-based design. This is a consequence of the higher output
resistance of TFETs shown in Fig. 5, and degrades the noise
margin when the ternary cell is used in classification tasks. The
robustness of the cells can be evaluated using Monte-Carlo
simulation. Since the mismatch properties of the transistors are
not yet available, the threshold voltage of the transistors was
varied by adding random errors to the gate voltages. The errors
have a Gaussian distribution with a zero mean and a standard
deviation of 10 mV. Fig. 10 shows the result of 100 runs. The
dashed areas show the target input/outputs of the cell assuming
that a given classification task results in cell currents in three
range of (-∞,2mA), (-0.5mA, 0.5mA), and (2mA,∞). Clearly,
the TFET-based design demonstrates a higher noise margin.

V. CASE STUDY

As a case study, we consider how CNNs that employ
ternary classification circuitry can be used to solve a tactile
sensing problem. Initially described in [15], CNNs can be
used to process vertical sheer stress – which is an indicator of
slippage of an object grasped by a two-fingered robotic hand.
Fig. 11 (from [15]) describes the time-evolution of the vertical
sheer stress (denoted as Ty) and its gradient when an object
starts to slip out of the robotic grasp as a result of increased
weight. Here, the task of the CNN system is to measure the du-
ration of region ‘b’, and ‘c’ locally, which conveys information
about how much weight is applied to the object and how fast
it is slipping. Based on this data, the next level of computation
(which may not be located with sensors) can make a decision
about exactly how much grasping force should be applied to
stop the slippage without causing any harm to the object.
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Fig. 11. (a) Profile of the vertical component of sheer stress, Ty from [15].
In region ‘a’, nothing is grasped. Ty increases proportionally with the weight,
in region ‘b’. During ‘c’ the object starts to slip out of the robot’s grasp. In
‘d’, Ty becomes stable as it equal with the kinetic friction force; (b) The
gradient profile of Ty .

Employing the TFET circuit-based ternary CNN, we can
solve the slippage detection problem in 3 steps as shown
in Fig. 12. The input to the system is a 64 × 64 gray scale
image, where each column corresponds to a given sensor, and
the image data reflect the normalized Ty profile over time (as
in Fig. 11a). To account for the 64 sensors in the system, data
for each time step (i.e., a row in the input image) is generated
by a normal distribution with the value from Fig. 11a (for
the given time step) as the mean, and 10% of the value as
variance. The first step calculates the gradient of Ty with
respect to time (similar to the data in Fig. 11b). The output of
the gradient function shows the positive and negative bulges
in the gradient profile (i.e., region ‘b’ and ‘c’) as black and
white horizontal strips, respectively.

The next step, referred to as thresholding, classifies the
output data of Step 1 into three distinct classes: positive
(black) and negative (white) bulges, and no-change (gray)
(see Fig. 12). The I-V characteristic of the TFET based-
circuit (Fig. 7b) represents a black, white, and gray pixel
by (0.20, 0.25) V , (−0.25,−0.20) V , and (−0.05, 0.05) V ,
respectively. The functionality of this step is explained in
Fig. 13a, where the three stable state voltages (marked with
open circles) are separated by the two meta-stable points p and
q. Any initial state voltage in the ranges of (−∞, p), (p, q),
and (q,∞) would eventually settle to one of the three stable
voltages that reside in that range. Thus, the output of the
threshold function contains pixels of only three distinct values.

The final step is the connected component detection (CCD)
function that projects the presence of a black/white pixel in
a horizontal line, to the leftmost column by the same colored
pixel. As a result, by counting the number of black and white
pixels in the first column, the lengths of region ‘b’ and ‘c’ are
obtained. The information is processed by the next level for
making further decisions. Note that, CCD requires its input
pixels to be strictly stratified to one of the class levels for its
correct functionality. This is why the threshold step is required.

As a comparison, a solution of the same problem based
on a conventional binary CNN requires 5 steps and 2 sets
of hardware (see [15] for more detail). This additional cost
in both hardware and time is due to the fact that a binary
classifier would only be able to retain information about
one bulge in an image as one of the two stable output
levels needs to be reserved for representing the empty space.



Fig. 12. The Universal Machines on Flows (UMF) [24] description of the
TFET circuit-based CNN for detecting slippage.
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Fig. 13. DP components for (a) TFET circuit-based CNN with the center
matrix element of the feedback template, a00 = 7× 10−6; (b) Conventional
CNN with 1 Ω resistance.

This fact becomes evident also from Fig. 13b, where we
can find at most two stable output levels for any of the
curves. Consequently, the solution of the problem through
conventional CNN requires two different sets of hardware.
Thus, TFET circuit-based CNN requires fewer computational
steps (3 vs. 5), and reduces hardware by half.

VI. CONCLUSION

Apart from overcoming the challenges in digital
computation, emerging devices have a great promise for
enabling new and enhanced functions for non-von Neumann
computing paradigms. Moreover, circuits built from emerging
device technologies could also bring clear benefits over
existing approaches. Initial study shows that at the cell level,
multi-valued classifications improve the energy dissipation by
an order of magnitude. Detail analysis of the energy, power,
and performance – considering other system components (e.g.,
the current multipliers) – would be considered in future work.
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