
An effective Approach to Automatic Functional
Processor Test Generation for Small-Delay Faults

Andreas Riefert ∗ Lyl Ciganda � Matthias Sauer ∗ Paolo Bernardi � Matteo Sonza Reorda � Bernd Becker ∗

∗ Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ riefert ∣ sauerm ∣ becker }@informatik.uni-freiburg.de

� Politecnico di Torino
Corso Duca degli Abruzzi 24

10129 Torino, Italy
{ lyl.ciganda ∣ paolo.bernardi ∣ matteo.sonzareorda }@polito.it

Abstract— Functional microprocessor test methods
provide several advantages compared to DFT ap-
proaches, like reduced chip cost and at-speed execution.
However, the automatic generation of functional test
patterns is an open issue.

In this work we present an approach for the automatic
generation of functional microprocessor test sequences
for small-delay faults based on Bounded Model Check-
ing. We utilize an ATPG framework for small-delay
faults in sequential, non-scan circuits and propose a
method for constraining the input space for generating
functional test sequences (i.e., test programs). We verify
our approach by evaluating the miniMIPS micropro-
cessor. In our experiments we were able to reach over
97 % fault efficiency.

To the best of our knowledge, this is the first fully
automated approach to functional microprocessor test
for small-delay faults.

I. Introduction

Test of processor devices and cores is a major challenge,
whose economical importance is growing due to the increas-
ing role that processor-based systems play in many ap-
plications. Technical requirements, economical constraints,
regulations and standards (especially when the system
is used in safety-critical applications) force companies to
develop solutions allowing to effectively identify faulty
components before they are deployed in the field.

In the past years, the processor test challenge was mostly
faced resorting to Design for Testability (DfT) solutions,
including scan and BIST. However, there are scenarios
where these solutions need to be substituted by a functional
approach, which only acts on functional inputs and only
monitors functional outputs, without any usage of DfT
structures. In particular, the functional approach may be
used in those cases when at-speed testing is crucial, or when
DfT cannot be used (e.g., because the existing core does not
support it and cannot be modified), or when the test must
be performed during the operational phase. Moreover, some
researchers have shown that different faults are detected
by these two strategies [1]. When the Circuit Under Test
(or CUT) is a processor, the functional approach requires
a proper test program to be executed and the behavior
of the processor to be observed (e.g., by looking at the
processor outputs, or at the results produced by the program
in memory). This approach is often referred to as Software-
Based Self-Test (or SBST) [2].

A major issue when applying SBST lies in the method
to generate test programs. Although the first guidelines to
manually perform this task go back to several decades ago
[3], techniques to automate are still not developed enough
and several research efforts are on-going, targeting both
stuck-at [4] and delay faults [5]. In [6] a technique was
recently introduced to generate test patterns for small-delay
faults, whose importance to achieve high defect coverage
has been largely recognized in industry [7]. The method was
developed resorting to Bounded Model Checking (BMC) and
its effectiveness was validated on the ITC 99 benchmark
circuits [8].

When targeting functional test, traditional ATPG tech-
niques must be adapted by adding new constraints: the
test is performed by forcing the processor to execute legal
instructions that must preliminary be fetched from memory
complying with the bus protocol, and the usage of some
input signals (e.g., the reset and the interrupt ones) must
be suitably limited. Hence, the ATPG must generate a
sequence of input values allowing the processor to fetch and
execute legal instructions, and faults are detected when they
reach the functional output signals. Moreover, a number of
faults that can be tested using DfT techniques turn into
untestable; this phenomenon becomes even more relevant
when the functional test is performed during the operational
phase, since even stricter constraints exist in that case [9].

In this work we extend the approach of [6] to the case
of functionally tested processors and propose a method to
effectively generate functional test programs. This means
introducing constraints on the possible inputs used during
test: only functional inputs are used and functional outputs
are observed and the test is performed by forcing the
processor to execute a proper test program.

The contribution of this paper lies in the implementation
of a functional ATPG for processors targeting small-delay
faults. To the best of our knowledge, this is the first
method able to succesfully automate the generation of
test programs for small-delay faults for a whole processor.
We provide the infrastructure to utilize a Validity Checker
Module (VCM), similar to the concept of Virtual Constraint
Circuits (VCC) [10]. The VCM allows a user to easily specify
requirements for the generated test pattern sequences, which
enables the restriction of the patterns to functional inputs.
Furthermore, it enables the proof of untestability under the
specified requirements. Finally we implemented a guided978-3-9815370-2-4/DATE14/©2014 EDAA

search in the ATPG process, which enables a high fault
efficiency.

We demonstrate the applicability of our approach by eval-
uating the complete miniMIPS processor [11]. A VCM with
several requirements was specified in VHDL and applied.
In our experiments we were able to reach a fault efficiency
of over 97 % with reasonable CPU time requirements.

The remainder of the paper is organized as follows.
Section II gives an overview over related work. Section III
details the framework used to perform the test generation
procedure. In Section IV the Validity Checker Module is
explained and an extended classification of faults is presen-
ted. Finally, in Section V the case study and experimental
results obtained are described. Conclusions are drawn in
Section VI.

II. Related Work

The principle of SBST is to run functional test patterns,
based on the processor instruction set, i.e., exploiting
processor resources to test the processor itself [2]. It consists
in forcing the processor to execute a sequence of instructions
deliberately designed to thoroughly excite all possible faults
and propagate the fault effects to the primary outputs
of the circuit. This sequence of instructions is the so-
called test program. Functional tests do not require circuit
modifications and may offer good defect coverage, since they
are executed at speed. Moreover, they can be performed
both at the end of the production process, and during the
operational phase (e.g., for periodical on-line testing).

Several approaches can be found in the literature resorting
to manual, random, evolutionary algorithms, and hybrid
techniques to generate test programs suitable for SBST. A
conclusive summary of recent work on software-based self-
testing of microprocessors is given in [2]. Also formal meth-
ods, particularly suitable for automation, were proposed to
this end. In [4] a method is introduced, which generates
test sequences at module level. Then, the Cadence SMV
model checker is used to map these sequences to instruction
sequences, which propagate the fault to a primary output.
In [12] precomputed test patterns for modules are used. The
circuit is abstracted to RT level and a SAT solver is used
to justify and propagate the test patterns. A graph model
for the behavior of a pipelined processor is proposed in [13],
which constrains the test pattern generation for path delay
faults. In [14] an automatic test program generation method
is proposed with executing-trace-based constraint extraction
for embedded processors, which facilitate structural test
generation with constraints at gate level, and automatic
test instruction generation (ATIG) also for hidden control
logic.

Even if they all provide valid and usable test programs,
none of them targets small delay defects (SDDs). Formerly,
a SDD on a circuit would not necessarily cause the circuit
to fail, because of the low operating frequencies. However,
with operating frequencies getting always higher, the once
negligible delay can become significant and cause failures.
In the past few years tests targeting SDDs have gained
importance. Mainly, they use the structural approach,
resorting to automatic test pattern generation methods.

Commercial tools already offer interesting options [15] [16]
[17]. Different approaches can be found in the literature,
for example [18], targeting industrial benchmarks, and
the one in [19], selecting the most efficient patterns from
timing-unaware ATPG tools and working on IWLS 2005
benchmarks circuits. Approaches for the identification of
the longest paths through a fault site, which are crucial for
SDD tests, are proposed in [20] and [21].

Nevertheless, at speed functional test, i.e., using func-
tional patterns to test the chips at the target operating
frequency, has the desired advantage of avoiding the over-
testing problem (classifying defect-free chips as failing ones),
thus raising the yield.

The aim of this work is the automatic generation of func-
tional tests targeting small-delay faults in microprocessors.
Our approach directly works on the gate-level model of the
circuit, i.e., it does not require abstraction of the circuit.
Additionally, it only requires a minor manual effort to model
the processor’s functional constraints. It forces the ATPG
engine to produce valid test programs, taking into account
the special constraints on the sequence of values to be
applied to the input signals of the processor.

III. ATPG framework

In this section we describe an ATPG framework for
small-delay faults in sequential, non-scan circuits [6]. Other
fault models like stuck-at and transition faults are also
implemented, but are not the focus of this work. The
framework utilizes a bounded model checker with Craig
interpolation [22] to generate a test sequence for a given
small-delay fault or to prove that no such sequence exists.
We also introduce a new step in the original ATPG flow in
order to increase the number of detectable faults.

A. Bounded Model Checking with Craig Interpolation

In general, BMC is employed to calculate a trace of length
k from an initial state I0 with a transition relation Ti,i+1 to
a target property Pk

BMCk = I0 ∧ T0,1 ∧ ... ∧ Tk−1,k ∧ Pk (1)

Ti,i+1 defines the progress of the system from timeframe i
to i + 1, whereas Pk specifies the property to be verified. A
classical BMC approach starts from k = 0 and checks the
satisfiability of BMCk for each value of k. The algorithm
terminates when BMCk is satisfied or k reaches a user-
defined bound. In order to prove that a property P is not
satisfiable for all k, k has to be increased until no more new
states can be reached. In general, this requires impractical
values for k and therefore leads to long runtimes.

One approach for a more efficient fix point compu-
tation was proposed by McMillan [23], which utilizes
Craig interpolants [24]. The interpolants facilitate an over-
approximation of the reachable system states and thereby
significantly reduce the number of iterations required to
prove the unsatisfiability of the target property.

B. ATPG framework - Preliminaries

In order to find a test pattern sequence for a small-
delay fault, the necessary constraints for the sensitization
and propagtion of the fault have to be specified as a

BMC problem instance. This instance is then passed to
the employed BMC solver. If the solver returns a solution,
the found test pattern sequence can be extracted. In case
of unsatisfiability it has been proven that the fault is
untestable.

The framework requires a circuit given as a gate-level
netlist and a fault list as inputs. Before starting the test
pattern generation, the circuit has to be in a defined state,
i.e., all flip-flop values have to be known. Therefore, an
initialization sequence is computed by creating a BMC
problem instance with an initial all-X state of the flip-
flops. The Tseitin-Encoding [25] of the circuit constitutes
the transition relation. As the target property we require
all flip-flops to be ’0’ or ’1’. The state after applying the
initialization sequence is used as the starting point for the
test pattern generation. It is possible that no initialization
sequence exists, for example because a register is assumed
to be in a certain state after the power-up of the circuit.
The solver may also abort with a timeout, if a solution
exists but requires a high unrolling depth of the circuit.
If no initialization sequence could be found, a functional
circuit state is additionally required as an input.

In the first step of the test pattern generation the
ATPG framework determines for each fault whether its
sensitization and propagation are structurally possible. In
order to check the untestability it assumes that all flip-flops
are fully controllable and observable and tries to find a test
pattern pair which sensitizes the fault and propagates the
fault effect to a primary output or a flip-flop. This problem
is denoted as a SAT formula and computed by a SAT solver.
In case of unsatisfiability the fault is not considered anymore,
as it also will not be possible to sensitize or propagate it
from any functional circuit state.

The second step of the test pattern generation comprises
the sensitization of the fault and the propagation of the
fault effect to a primary output or a flip-flop. A BMC
problem instance is generated, which uses the state after the
application of the initialization sequence as the initial state
and the Tseitin-Encoding of the circuit as the transition
relation. The target property is specified by the SAT formula
from the first step of the pattern generation. Consequently,
the BMC solver tries to reach a circuit state where two
consecutive test patterns can be applied, which sensitize
the fault and propagate it to a primary or secondary
output. We denote the resulting pattern sequence as the
path sensitization sequence. Note that the sensitized paths
are not precomputed, but directly extracted from the solver
solution. By executing a binary search over the length of all
paths through a target gate, the longest sensitizable path
can be determined. If the described problem is unsatisfiable,
it has been proven that it is not possible to test the fault
from a functional circuit state.

If the sensitized path ends at a primary output, a test
pattern sequence for the examined fault has been found. If
the path ends at a secondary output (i.e., an input of a flip-
flop) the fault effect still has to become visible at an output
of the circuit. The third step of the test pattern generation
is then required to compute a fault propagation sequence. A
BMC problem instance is generated, which utilizes the last

state of the path sensitization sequence as the initial state.
In this state the fault effect is stored in one flip-flop of the
circuit. The target property requires that this fault effect
has to become visible at least at one primary output.

C. Propagation-aware path sensitization

The described ATPG process allows to generate a test
sequence for a high percentage of faults, but it comprises
one weakness: the path sensitization step does not consider
the further propagation of the fault. This can lead to
system states, in which a fault effect is latched, but cannot
be propagated any further. For that reason we introduce
an intermediate step, which realizes a propagation-aware
path sensitization. After the computation of a path by
the path sensitization step, we generate a BMC instance
whose initial state is the state after the application of the
initialization sequence. In the transition relation we require
the sensitization of the computed sensitized path. Then all
flip-flops which are reachable from the path end node are
determined. Based on a precomputed heuristic, the flip-flops
are chosen, which have the highest probability to propagate
a fault effect to a primary output. In the target property
we then require to not sensitize the computed path only,
but to propagate its fault effect further to one or more of
the selected flip-flops. If the solver finds a solution, the final
state is passed to the fault propagation step. The intuition
is that this final state is better suited for the propagation of
the fault to a primary output. If the fault propagation step
fails, the propagation-aware path sensitization is repeated.
Now, not only the flip-flops which are reachable from the
path end node are considered for the target property, but
also the flip-flops reachable from the flip-flops sensitized in
the previous propagation-aware path sensitization step. This
procedure is repeated until a fault propagation sequence
is found, the fault cannot be propagated further or a user-
definded upper bound is reached.

IV. Constraining the inputs

The framework described in Section III allows to generate
a test pattern sequence for a given circuit and fault or
to prove that no such sequence exists. But the generated
patterns can span over the complete input space, i.e., each
possible sequence of input combinations can be applied
to the primary inputs. In order to generate only functional
input patterns, constraints have to be added, which prohibit
invalid solutions. In the following we present our approach
for the specification of constraints corresponding to valid
functional input sequences.

A. Validity Checker

In order to forbid certain input values explicitly the
SAT formulas and BMC problem instances from Section
III-B could be modified accordingly. However, specifying the
desired constraints with SAT clauses is tedious and coun-
terintuitive, particularly for complex constraints. Moreover,
the ATPG framework would have to be extended for each
circuit so as to generate problem instances with the specified
constraints.

Therefore, we propose the use of a Validity Checker
Module (VCM). This VCM can be specified in a hardware

description language like VHDL or Verilog. Its purpose is to
formalize the valid input space for a circuit, i.e., to model
the environment the circuit is embedded in. In this work we
will focus on a VCM for a microprocessor, but the general
approach is applicable for other circuit types as well.

The usual inputs of a microprocessor encompass a reset
signal, interrupt signals, data busses and several signals
for communication with memories and other components.
A reset signal is typically activated only once after power-
up and is then required to stay inactive. Interrupt signals
usually appear with a certain distance of time. Finally,
when loading an instruction, only valid instructions can
be applied to the corresponding input bus of a processor. If
these requirements are not considered during the generation
of the test patterns, patterns will be produced, which cannot
be applied in the functional test scenario.

A VCM is basically a circuit itself, which is located in
parallel with the circuit under test (CUT). Its inputs are all
the primary inputs and internal signals of the CUT, which
are required to specify the desired constraints. For each
constraint a validity output is added to the VCM, which is
set to ’1’, if the constraint is satisfied and otherwise to ’0’.
Consequently, each output of the VCM corresponds to the
validity of one constraint.

The specification of the constraints requires some
engineering knowledge about the microprocessor and the
system it is embedded in. For example, the complete
instruction set has to be defined in the VCM in order to
produce a validity signal for correct instructions. The use of
internal signals of the microprocessor enables us to specify
constraints, which also consider the internal state of the
circuit. For instance, in a Von-Neumann-based processor
architecture it is not possible to distinguish the load of
an instruction from the load of a data word without the
knowledge about the current internal state. Consequently,
the required signals are transformed into primary outputs
and are therefore accessible for the VCM.

VCM CUT...
.

.........

.........

.........

.........

Internal Signals

Validity Outputs

Primary Inputs

Primary Outputs

Figure 1. Concept of the Validity Checker Module

After the VCM has been specified it is synthesized to a
gate-level netlist. Then, the VCM and the CUT netlists are
combined properly (Figure 1) to form the final input netlist
for the ATPG framework. The BMC problem instance
generation, described in Section III-B, has to be modified
in order to produce correct test pattern sequences. The
transition relation now encompasses the Tseitin-Encoding
of the CUT and the VCM. For each validity output of
the VCM we add a clause to the transition relation, which
forces the output to be always ’1’. This requires the BMC
solver to produce only test sequences, where all specified
constraints are satisfied in each timeframe. In general,
a satisfiable problem instance can become unsatisfiable
through the addition of constraints. For that reason we
propose the use of a VCM with several validity outputs.
By removing the corresponding clauses from the transition
relation we can disable one or several constraints in each
step of the test pattern generation. This enables a user to
adapt the constraints to the individual requirements of the
test infrastructure of the CUT.

It is important to note that the VCM and the addition
of primary outputs to the CUT are only required for the
transformation of the constraints from VHDL code to
clauses, which enables the functional test pattern generation.
The final circuit does not have to be changed in any way.

B. Fault classification

The described approach facilitates the classification of
faults into several categories.

The described ATPG framework can identify structurally
untestable and sequentially untestable faults. The former
comprises faults, for which no test pattern pair exists. For
the latter faults there is at least one test pattern pair, but
its application requires a system state, which cannot be
reached starting from a functional initial state.

The utilization of the VCM introduces functionally un-
testable faults. For these faults there exists no test sequence
which complies with all constraints specified in the VCM.
However, they could be tested by removing one or more of
the constraints.

V. Experimental Results

A. Experimental Setup

In our experiments we investigated all modules of the
miniMIPS processor [11]. The processor was synthesized to
a 18,279 gates netlist with Synopsys Design Vision using
an in-house developed library. A small-delay fault for each
gate was added to the fault list.

The primary inputs of the miniMIPS include a reset signal,
a hardware interrupt signal, a memory acknowledgement
signal and a 32 bit data bus. All of them are necessary
inputs for the VCM. Additionally, we require the value of
a register currentState, whose value reveals whether the
processor is fetching an instruction or loading a data word.
We then specify the following four constraints in the VCM.

The reset signal definitely needs to be set in order to
initialize the processor, but we do not want it to be set
afterwards, as setting the reset signal at a certain clock cycle
would be hard to control in a functional test environment.

Table I
Detailed fault classification for coprocessor

struc./seq. unt. func. unt. func. test. abort
NoCon 200 0 872 8
Inst 200 3 863 14
Mem 200 3 852 25
Irt 200 39 821 20
All 200 39 819 22

Therefore, we allow the reset signal to be active immediately
after power-up for an arbitrary amount of time and then
require it to stay inactive. For similar reasons we force
the hardware interrupt signal to be always inactive. The
memory acknowledgement signal is required to be always
active, which corresponds to a memory with a response time
of one clock cycle.

Finally, we want the processor to load only valid instruc-
tions or abitrary data words. Thus we specify the complete
instruction set of the miniMIPS in the VCM and utilize the
register currentState for distinguishing between the load of
an instruction or a data word.

These constraints have been defined with the purpose
of validating the effectiveness of the approach. Other con-
straints could be used depending on the required character-
istics of the generated test patterns.

The test pattern generation with the described constraints
yields a functional test pattern sequence consisting only of
valid instructions or data words. Based on this a real test
program may be easily obtained with limited additional
effort. To do so, each instruction and data word has to be
mapped to a memory address. In particular, load and branch
instructions have to be taken care of, as they could target
arbitrary memory addresses. We are currently extending the
VCM to generate a test sequence, which directly corresponds
to a correct memory mapping. Moreover, constraints will be
added which require the fault effects not only to be visible
on a primary output, but to be written in the memory.

B. Experimental Evaluation

In the experiments we targeted a small-delay test for the
longest non-robustly sensitizable path through each gate.
First we evaluated the coprocessor (syscop, 1080 gates) in
detail by adding the described constraints one after the
other. This way we could determine which constraint intro-
duced functionally untestable faults. Then we performed the
test pattern generation process for all 18,279 gates of the
miniMIPS processor. We executed a run with unconstrained
inputs and a run with all of the described constraints. All
experiments were performed on an Intel Xenon processor
running at 3.3 GHz. The synthesized VCM consists of 1 flip-
flop and 97 gates. It requires all inputs of the miniMIPS and
the value of currentState as inputs and has four outputs for
the described four constraints. The same VCM was used for
all experiments. In general the size of a VCM is determined
only by the complexity of the specified constraints.

Table I shows the detailed evaluation of the coprocessor.
The first column encompasses all structurally and sequen-
tially untestable faults. First no constraints are applied
(NoCon) and thus no functionally untestable faults are

present. Then the described constraints are added one by
one in the following order: valid instructions (Inst), valid
memory acknowledgement (Mem), valid interrupt (Irt) and
valid reset (All). The last row (All) presents the results
when considering all constraints. It can be seen that the
majority of functionally untestable faults is introduced by
forcing the interrupt signal to be always inactive. This is
reasonable, as the coprocessor is responsible for the interrupt
handling.

Table II shows the obtained results for all miniMIPS
modules. Column untestable includes the number of all
provably untestable faults. Column func. testable gives the
number of faults for which a functional test sequence could
be generated.

The column abort in Table II lists the faults which could
not be classified. We executed a binary search by length
through all sensitizable paths and aborted the current fault
after an user-defined upper bound in each step of the search,
if no solution was found. For all of these aborted faults we
were able to sensitize a path and propagate the fault effect
to a flip-flop, but could not find an input sequence, which
propagated the fault effect to a primary output. Moreover
the applied solver was not able to prove the unsatisfiability
of the propagation of these faults.

Column avg. cycles lists the average length of the test
sequences for one fault expressed in number of clock cycles
(cc). The sequences range from 2 to 25 clock cycles. The
initialization sequence for the miniMIPS required 7 clock
cycles. Note that in general the number of pipeline stages
is not a sufficient upper bound for the number of required
circuit unrollings until a fault is proven to be untestable. For
example, testing a gate in the branch prediction unit may
require several branch instructions until a proper system
state is reached.

The runtime for generating a test sequence for one fault
ranges from several seconds up to over an hour. The second
last column presents the average runtime for one fault in
minutes (m). These runtimes seems high, but can be justified
by the complexity of sequential ATPG and the small-delay
fault model, whose combination requires a thorough search
through a large search space. Furthermore, the utilized
ATPG framework is, to the best of our knowledge, the only
ATPG for small-delay faults able to generate functional test
programs for a real-sized processor. Finally, as all faults are
processed one by one, the ATPG procedure can be easily
parallelized.

The last column indicates the Fault Efficiency (FE) in
percent (i.e., the ratio between detected and testable faults).
It can be seen that our approach performs very well on
the miniMIPS, as the numbers are comparable to stuck-
at ATPG [26] and we reach an overall fault efficiency of
97.33 %. In particular, we would like to point out the
results concerning the data forwarding unit (renvoi) and
the branch prediction unit (predict). Both of these modules
require very specific instruction sequences in order to trigger
their functionality and are therefore considered hard to test
because they imply hidden control logic.

Without the application of the propagation-aware path
sensitization 2103 aborts occurred for the whole miniMIPS.

Table II
Test generation results for miniMIPS

gates untestable func. testable abort avg. cycles [cc] avg. runtime [m] FE [%]
pf 348 0 348 0 10.01 0.66 100
ei 268 0 263 5 11.25 13.55 98.1
di 1180 74 1066 40 9.54 15.63 96.4
ex 3812 144 3490 178 11.93 3.18 95.2
mem 468 124 304 40 12.92 2.78 88.4
renvoi 551 40 507 4 11.73 6.41 99.2
banc 6805 0 6642 163 10.90 1.34 97.6
syscop 1080 239 819 22 13.19 0.37 97.4
bus ctrl 346 46 296 4 8.19 5.68 98.7
predict 3421 9 3398 14 15.00 3.64 99.6

total 18279 676 17133 470 11.95 3.46 97.3

This number could be reduced down to 470 aborts with the
method introduced in Section III-C. The overall number of
faults for which a functional test sequence could be found
increased by 9.53 % from 15500 to 17133.

Finally, the experimental results show that 3.61 % of the
faults are either structurally, sequentially or functionally
untestable. For all of these faults it has been formally proven
that they cannot be tested under the specified constraints,
which enabled the computation of a fault efficiency ratio
for the circuit.

VI. Conclusions

We presented the first fully automated approach to
functional microprocessor test generation for small-delay
faults. Our framework allows the specification of constraints
related to functional requirements and the proof of untest-
ability under these constraints. We verified our approach
by evaluating a pipelined microprocessor and provided
experimental results, which demonstrate the feasibility and
relevance of our work.

In the future we will investigate extensions of the de-
scribed VCM, which shall enable the automated generation
of test programs suitable for the on-line software-based self-
test of a microprocessor. This implies taking into account the
memory mapping and including some constraints regarding
the observability methods. Furthermore, we will explore
other formal verification techniques in order to classify a
higher number of faults.

Acknowledgements

Parts of this work were supported by the German Re-
search Foundation (DFG) under grant GRK 1103.

References

[1] P. C. Maxwell, R. C. Aitken, K. R. Kollitz, and A. C. Brown,
“IDDQ and AC scan: The war against unmodelled defects,” in
International Test Conference, pp. 250–258, 1996.

[2] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda,
“Microprocessor software-based self-testing,” IEEE Design and
Test of Computers, pp. 4–19, 2010.

[3] S. M. Thatte and J. A. Abraham, “Test generation for micropro-
cessors,” IEEE Transactions on Computers, pp. 429–441, 1980.

[4] S. Gurumurthy, S. Vasudevan, and J. A. Abraham, “Auto-
matic generation of instruction sequences targeting hard-to-detect
structural faults in a processor,” in IEEE International Test
Conference (ITC), pp. 1–9, 2006.

[5] S. Gurumurthy, R. Vemu, J. A. Abraham, and D. G. Saab,
“Automatic generation of instructions to robustly test delay defects
in processors,” in IEEE European Test Symposium, pp. 173–178,
2007.

[6] M. Sauer, S. Kupferschmid, A. Czutro, I. Polian, S. Reddy,
and B. Becker, “Functional test of small-delay faults using SAT
and craig interpolation,” in IEEE International Test Conference
(ITC), pp. 1–8, 2012.

[7] R. Mattiuzzo, D. Appello, and C. Allsup, “Small-delay-defect
testing,” Test & Measurement World, pp. 37–41, 2009.

[8] F. Corno, M. Sonza Reorda, and G. Squillero, “RT-level ITC’99
benchmarks and first ATPG results,” IEEE Design & Test of
Computers, Vol. 17, Issue 3, pp. 4–53, 2010.

[9] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and
O. Ballan, “On-line functionally untestable fault identification
in embedded processor cores,” in Design, Automation & Test in
Europe, pp. 1462–1467, 2013.

[10] R. S. Tupuri and J. A. Abraham, “A novel functional test
generation method for processors using commercial ATPG,” in
IEEE International Test Conference (ITC), pp. 743–752, 1997.

[11] miniMIPS. http://opencores.org/project,minimips.
[12] L. Lingappan and N. K. Jha, “Satisfiability-based automatic test

program generation and design for testability for microprocessors,”
in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 518–530, 2007.

[13] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-
based self-testing of delay faults in pipelined processors,” in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 1203–1215, 2006.

[14] Y. Zhang, H. Li, and X. Li, “Automatic test program generation
using executing-trace-based constraint extraction for embedded
processors,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1220–1233, 2013.

[15] M. Graphics, “At-speed and advanced fault models for achieving
high quality test.” White Paper, December 2009.

[16] Cadence, “Encounter True-Time ATPG data sheet.”
[17] Synopsys, “TetraMAX ATPG data sheet.”
[18] S. K. Goel, N. Devta-Prasanna, and R. P. Turakhia, “Effective

and efficient test pattern generation for small delay defect,” in
IEEE VLSI Test Symposium, pp. 111–116, 2009.

[19] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern
selection for screening small-delay defects in very-deep submicro-
meter integrated circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 760–773,
2010.

[20] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi, “Longest
path selection for delay test under process variation,” 2004.

[21] M. Sauer, J. Jiang, A. Czutro, I. Polian, and B. Becker, “Efficient
sat-based search for longest sensitisable paths,” in Asian Test
Symposium (ATS), pp. 108–113, 2011.

[22] S. Kupferschmid, M. Lewis, T. Schubert, and B. Becker, “Incre-
mental preprocessing methods for use in BMC,” Formal Methods
in System Design, pp. 1–20, 2011.

[23] K. L. McMillan, “Interpolation and SAT-based model checking,”
in Intl Conference Computer Aided Verification, pp. 1–13, 2003.

[24] W. Craig, “Linear reasoning: A new form of the Herbrand-Gentzen
theorem,” Journal of Symbolic Logic, pp. 250–268, 1957.

[25] G. S. Tseitin, “On the complexity of derivation in propositional
calculus,” Studies in Constructive Mathematics and Mathematical
Logics, 1968.

[26] M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis, “A
methodology for detecting performance faults in microprocessors
via performance monitoring hardware,” in IEEE International
Test Conference (ITC), pp. 1–10, 2007.

