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Abstract—Three-dimensional stacked IC (3D-SIC) technology
based on Through-Silicon Vias (TSVs) provides numerous advan-
tages as compared to traditional 2D-ICs. A potential application
is memory stacked on logic, providing enhanced throughput,
and reduced latency and power consumption. However, testing
the TSV interconnects between the two dies is challenging, as
both the memory and the logic die might come from different
manufacturers. Currently, no standard exists and the proposed
solutions fail to address dynamic and time-critical faults (at speed
testing). In addition, memory vendors have not been in favor to
put additional DfT structures such as JTAG for interconnect
testing on their memory devices. This paper proposes a new
Memory Based Interconnect Test (MBIT) approach for 3D
stacked memories. Our test patterns are applied by read and
write instructions to the memory and are validated by a case
study where a 3D memory is assumed to be stacked on a MIPS64
processor. The main benefits of the MBIT approach are: (1) zero
area overhead, (2) the ability to detect both static and dynamic
faults and perform at speed testing, (3) flexibility in applying any
test pattern, as this can be executed by the CPU on the logic die
and (4) extreme short test execution time.
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I. INTRODUCTION

The popularity of 3D Stacked ICs (3D-SICs) is rising

among industry and research groups [1]. 3D-SICs based

on Through Silicon Vias (TSVs) are emerging as one of

the main competitors to continue the trend of Moore’s

Law [2]. Stacking dies with vertical interconnects possess

many benefits [1], such as (a) low latency between adjacent

dies, (b) reduced power consumption, (c) high bandwidth

communication, (d) improved form factor and package

volume density, and (e) heterogeneous integration.

One of the main applications that utilizes the mentioned

benefits is the stacking of memory (DRAM) on logic (CPU).

After stacking, a post-bond interconnect test is required to

test interconnects (TSVs + µ-bumps) between the memory

and logic dies. This is not straightforward as (1) stacked

dies may come from different providers (IP confidentiality),

(2) memory providers are reluctant to integrate DfT such as

JTAG for interconnect testing, and (3) even with DfT support,

obtaining high coverage for dynamic faults is still challenging.

Currently, no standard exists to test interconnects in memories

stacked on logic. However, some test approaches are being

under development. IEEE P1838 [3] is currently an ongoing

standard that develops DfT for general stacked ICs; it is based

on the presence of Boundary Scan (BS) cells in all dies.

Wide I/O [4] also supports interconnect testing using BS.

However, (DRAM) memory vendors are not always in favor

of integrating JTAG on their devices [5]. Other approaches

such as the IEEE P1581 [5], originally for 2D ICs, can be

extended in the third dimension. In test mode, the memory

is bypassed and interconnects are tested by creating a direct

logic function between the inputs and outputs of the memory.

IEEE P1581 prefers a JTAG compliant logic chip, i.e., the

test logic on the memory chip can function with a logic chip

that supports JTAG. This standard can be mapped to 3D-SICs

by having the bottom die (logic) JTAG compliant and where

the test logic has to reside on the top die (memory). This

approach, referred to as Test Logic (TL) based interconnect

testing, also requires additional DfT test logic on the memory

die. In addition to the undesired DfT on the memory die,

both the BS and TL based test methods are unable to

provide at speed testing required to target dynamic faults.

Testing for dynamic faults is crucial, as 3D interconnects are

expected to suffer from speed and timing related faults [6–11].

In [12] and [13] authors present hardwired BISTs with at-

speed testing capability for crosstalk faults. Both methods are

not flexible in altering test patterns and require additional DfT

area. In [13] its reported that the area overhead of the method

in [12] approximates 9.8% while their own equals 7%. They

evaluate this in 90 nm technology using 15 µm TSV diameters.

This paper proposes a post-bond Memory Based Interconnect

Test (MBIT) methodology being able to test interconnects

between memory and logic dies by performing read and write

operations from the logic die (CPU) to the memory dies.

A similar approach is taken in [14], but it is inapplicable

for TSV arrays. This paper also provides a classification of

interconnect defects, and compiles them into fault models.

In addition, it discusses the test pattern generation for these

faults and uses the proposed MBIST to implement them.

MBIT does not require any DfT area as it reuses existing

components in the stack. It supports at-speed testing and

detects static and dynamic faults. Moreover, it is very

flexible in altering test patterns simply by modifying software

instructions and has a extreme short test execution time.

The remainder of the paper is organized as follows. Section II

presents defects, fault models and detection conditions for 3D

interconnects. Section III describes thereafter the test pattern

generation for the targeted fault models. Section IV provides

the simulation results and compares our methodology with the

state-of-the-art. Finally, Section V concludes this paper.
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Fig. 1. Fault Model Classification for interconnects

II. DEFECT, FAULT MODELS AND DETECTION

A. Defects in Interconnects

Interconnects in 3D-stacking are a potential source of

defects inherent to the manufacturing steps such as TSV

fabrication/filling, bonding etc. Defects transpire both in TSVs

and micro-bumps and examples of defects are given next.

Defects related to Through-Silicon-Via (TSV):

D1 Pinhole defects occur along TSV walls and cause a short

(low resistance path) between TSVs and the substrate;

This may cause degradation of the signal quality in terms

of strength and speed [6,7,9,15].

D2 An incomplete fill of TSVs (voids) may originate from

insufficient wetting during plating. Voids cause partial

opens and lead to higher TSV resistance [6,7,9,15].

D3 Coefficient of thermal expansion (CTE) mismatch be-

tween TSV metal (most likely copper) and substrate may

lead to TSV cracks and sidewall delamination. Both lead

to increased path resistance [9,15–18].

D4 Pinch-off of TSVs during plating could lead to increased

TSV resistance or partial opens [7].

D5 Missing contacts between TSVs and the transistors or

metal layer cause opens [7,8].

D6 TSV misalignment with µ-bumps increases the resistance

and causes (partial) opens [7,9,15].

D7 Crosstalk between different TSVs [9,10].

Defects related to µ-bumps:

D8 Damage in underlying BEOL [19].

D9 Weak bonding due to buckled thinned Si chip [19].

D10 Variation in TSV heights may cause tin to be squeezed out

from µ-bump causing shorts between µ-bumps [19,20].

D11 Electromigration may cause voids and cracks in the joints,

resulting in higher resistive µ-bumps, or opens [21].

D12 µ-bump cracks due to CTE mismatch between copper,

silicon, and silicon-oxide [7].

B. Faults and Fault Models

Interconnect fault models can be classified into static and

dynamic faults. Fig. 1 shows a classification of the faults. A

defect can cause a single line or a multi line fault. Each fault is

depicted in Figure 2 and explained next. Static faults include:

• Stuck-at-Fault (SAF). There are two types of SAF faults:

stuck-at-0 (SA0) and stuck-at-1 (SA1) as depicted in

Fig. 2(b). A SAF fault can be caused by defect D1.

• Bridge fault. Simple bridge faults include wired-AND

(Fig. 2(c)) and wired-OR (Fig. 2(d)) faults. Complex
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Fig. 2. Static and dynamic faults

bridge faults also exists, such as A dominate-AND B in

which wire A is fault-free and where B takes the value

A ∩ B. A bridge fault can be caused by defect D10.

Dynamic faults include:

• Path Delay Fault (PDF): A partial open line defect

increases the line delay (Fig. 2(e)). It can affect both

rising or falling delay time. PDF faults can be caused

by defects D2, D3, D6, D8, D11, D12.

• Stuck Open Fault (SOF): This is caused by a complete

open line defect (Fig. 2(f)). SOFs can be caused by

defects D5, D6, D8, D9, D11, D12.

• Crosstalk Fault: Faults on victim lines are caused by

crosstalk from aggressive neighbors (Fig. 2(g)). Several

crosstalk faults exists as described by the Maximum

Aggressor (MA) fault model [22] such as (1) glitch-up,

(2) glitch-down, (3) falling delay, and (4) rising delay.

Each fault has a specific behavior, while it represents the

same phenomena. Defect D7 may cause crosstalk faults.

• PDF with Crosstalk: Faults due to partial resistive

opens (victims) are affected by crosstalk from neighbors

(Fig. 2(h)). PDF with Crosstalk faults can be caused by

combinations of crosstalk and PDF faults.

• SOF with Crosstalk: Faults due to complete open

lines (victims) are affected by crosstalk from neighbors

(Fig. 2(i)). SOF with Crosstalk faults can be caused by

combinations of crosstalk and SOF faults.

The dynamic faults embody most of the defects and therefore

it is essential to test for them.

C. Detection Conditions

The detection conditions of each fault are described next. In

general, the detection process adheres to the following steps:

1) Fault sensitization (activation): create a different behavior

between the faulty and fault-free circuit.

2) Fault propagation: make the fault visible at the outputs.

3) Line justification: backtrack the values to the input of the

circuit, such that the inputs sensitize the fault.

Fault propagation and line justification for address and

data lines are dissimilar. Data lines can be controlled and

observed directly through writing and reading. Therefore,

fault propagation and line justification are straightforward.

However, address lines are uni-directional and fault

propagation must be performed indirectly by utilizing

data lines (e.g., by writing and reading different values

to different addresses). Control lines, such as write or

read signals, are tested implicitly. For fault sensitization,

special sequences and/or transitions are required for each fault.



TABLE I
SAF TEST PATTERNS FOR DATA LINES

OP Op. Address Data

OP1 W Addrx F F F F

OP2 R Addrx F F F F

OP Op. Address Data

OP1 W Addry 0 0 0 0

OP2 R Addry 0 0 0 0

SAF (SA0/SA1): A stuck-at-fault forces a wire to a specific

value; either 0 (SA0) or 1 (SA1). Therefore, to sensitize a SAF

fault an opposite value must be applied to the wire.

Bridge fault (Wired-AND/Wired-OR): To sensitize a bridge

fault, two opposite values must be specified on each pair

of lines. Simple bridge faults such as the ones depicted in

Fig. 2(c) and (d) require at least one of the two patterns 0-1

or 1-0 as inputs. More complex bridges such as A dominate-

AND B require both 0-1 and 1-0 inputs on each pair of wires

for fault sensitization.

PDF: We assume that the path delay fault consists of a low to

moderate resistance value, violating the normal operation with

at most one additional clock cycle. Faults that lead to larger

delays, i.e., more than one extra cycle, can be considered as

SOFs. To sensitize PDF faults, both 0→1 and 1→0 transitions

should be applied on each line.

SOF: For SOFs we assume that during short time intervals

the non-driven part of the floats remain stable. Therefore, to

sensitize SOF either a 0→1 or 1→0 transition is needed.

Crosstalk: We consider only the most relevant crosstalk faults.

To sensitize a rising crosstalk fault, a victim must undergo a

0→1 transition, while the aggressors simultaneously make a

1→0 transition. The reverse applies for falling delay faults.

PDF with Crosstalk: The fault sensitization for PDF faults

with crosstalk is the same as falling and rising delay faults, as

this maximizes the applied stress from the aggressors.

SOF with Crosstalk: The fault sensitization for this fault

requires both a 0→1 transition on the victim while keeping the

aggressors stable at 0 and a 1→0 transition on the victim while

keeping the aggressors stable at 1. Keeping the aggressors

stable reduces the coupling with the floating part of the SOF,

hence it minimizes the contribution of the aggressors to the

transition on the floating part of the victim.

III. TEST PATTERN GENERATION

Due to space limitation, we discuss only a subset of fault mod-

els. We restrict ourselves to static faults and one dynamic fault

(SOF with Crosstalk). Nevertheless, the experiment results in

Section IV will be presented for all faults. Next, a single fault

is assumed to occur at a time. In addition, during explanation

we assume Ld=16 bit data lines (presented in hexadecimal

value) and La=16 bit address lines (presented in binary value).

A. Static Faults

In this section we will present the test patterns of static

faults. A SAF fault may happen in data lines or address

lines. A bridge fault may happen: (1) between data lines, (2)

between address lines, and (3) between data and address lines.

SAF at data lines: Table I shows the memory operations

required to detect SA0 (left table) and SA1 faults (right

table) on data lines. The tables consist of four columns; the

TABLE II
SAF TEST PATTERNS FOR ADDRESS LINES

OP Op. Address Data

OP1 W 0000 0000 0000 0000 Init Data

OP2 W 0000 0000 0000 0001 Data1
OP3 W 0000 0000 0000 0010 Data2
. . . . . . . . . . . .

OP16 W 0100 0000 0000 0000 Data15
OP17 W 1000 0000 0000 0000 Data16
OP18 R 0000 0000 0000 0000 Init Data

OP Op. Address Data

OP1 W 1111 1111 1111 1111 Init Data

OP2 W 1111 1111 1111 1110 Data1
OP3 W 1111 1111 1111 1101 Data2
. . . . . . . . . . . .

OP16 W 1011 1111 1111 1111 Data15
OP17 W 0111 1111 1111 1111 Data16
OP18 R 1111 1111 1111 1111 Init Data

first column shows the index of the operation; the second

column the type of operation, i.e., read (R) or write (W);

the third and fourth columns show the address and data

values, respectively. Both tables contain a write followed by

a read operation. SAF faults will be detected during read OP2.

SAF at address lines: Table II shows the test patterns to

detect both SA0 (left table) and SA1 faults (right table)

in address lines. Detecting SA0/SA1 faults at address

lines is more complex as they affect the memory address.

For example, writing a value to the address all 1’s and

subsequently reading from this address will not detect any

SA0 fault in the address lines; this is because both the

write and read operation are affected in the same way and

the fault is not sensitized. To test memory address lines,

each address line should be tested separately. For example,

by using a walking-1 sequence for SA0 as depicted in the

left table. Address 0 of the memory is first initialized to

Init Data during OP1. During write operation OP2 to OP17

(with different data than Init Data), any SA0 in the address

lines will overwrite Init Data of address 0. Therefore, read

operation OP18 is able to detect any SA0 fault. The same

applies for SA1 faults, but with complement addresses.

Bridges between data lines: The detection of wired-AND

or wired-OR bridges between data lines requires that each

pair of data lines must fulfill at least the combination 0-1

or 1-0. Modified Counting Sequence (MCS) satisfies this

requirement at a cost of log2(Ld + 2) test patterns [23]. The

total number of memory operations required to execute such

test patterns equals 2 · log2(Ld + 2) memory operations;

for each pattern there is a write and read operation (to any

address). The effectiveness of these patterns is proven in

literature [23]. Complex bridge faults, such as A-dominant

AND B, require both 0-1 and 1-0 inputs on each pair of

wires. The True/Complement Algorithm [24] can be used for

this; it consists of 2 · log2(Ld + 2) test patterns resulting into

4 · log2(Ld + 2) memory operations.

Bridges between address lines: Wired-And and wired-OR

faults between address lines must be considered separately.

Wired-AND bridge fault: Wired-AND bridge faults can be

detected by a walking-1 pattern, similar to the detection of

SA0 faults in address lines (left side of Table II); due to

wired-AND fault operations OP2 till OP17 will overwrite

Init Data of OP1. This is detected by OP18.

Wired-OR bridge fault: Wired-OR bridge faults can be

detected by a walking-0 pattern, similar to the detection

of SA1 faults in address lines (right side of Table II). The

walking-1 sequence for wired-AND faults and walking-0 for

wired-OR detect both simple and complex bridge faults.



TABLE III
BRIDGE FAULTS TEST PATTERNS THAT FLIP DATA LINES

OP Op. Address Data

OP1 W 0000 0000 0000 0000 F F F F

OP2 R 0000 0000 0000 0000 F F F F

OP Op. Address Data

OP1 W 1111 1111 1111 1111 0 0 0 0

OP2 R 1111 1111 1111 1111 0 0 0 0

TABLE IV
BRIDGE FAULTS TEST PATTERNS THAT FLIP ADDRESS LINES

OP Op. Address Data

OP1 W 0000 0000 0000 0000 F F F F

OP2 W 0000 0000 0000 0001 0 0 0 0

OP3 W 0000 0000 0000 0010 0 0 0 0

. . . . . . . . . . . .

OP16 W 0100 0000 0000 0000 0 0 0 0

OP17 W 1000 0000 0000 0000 0 0 0 0

OP18 R 0000 0000 0000 0000 F F F F

OP Op. Address Data

OP1 W 1111 1111 1111 1111 0 0 0 0

OP2 W 1111 1111 1111 1110 F F F F

OP3 W 1111 1111 1111 1101 F F F F

. . . . . . . . . . . .

OP16 W 1011 1111 1111 1111 F F F F

OP17 W 0111 1111 1111 1111 F F F F

OP18 R 1111 1111 1111 1111 0 0 0 0

Bridges between data and address lines: Bridge faults

behave as wired-AND or wired-OR, and may cause data or

address lines to flip.

Bridge faults that flip data lines: The left side of Table III

provides the memory operations that detect wired-AND bridge

faults that lead to faulty data lines. Any data line that suffers

from a wired-AND with an address line will cause the data

line to flip to zero (on the data side), which is easily detectable.

These test patterns are similar to those of SA0 in data lines

when Addr x of Table I is set to value 0. The right side of

Table III provides the test patterns that detect wired-OR bridge

faults that lead to faulty data lines. Here, the operations take

the complement values of those of wired-AND. Any data line

suffering from a wired-OR with an address line will cause

the data line to flip to one, which is easily detectable. These

test patterns are similar to those of SA1 in data lines when

Addr y of Table I is set to a value of all 1’s.

Bridges that flip address lines: The left part of Table IV pro-

vides the test patterns needed for the detection of wired-AND

bridges that cause address lines to flip. A walking-1 pattern

on the address lines ensures the detection of these types of

faults. In OP1, the address consisting of all 0’s is initialized

with all 1’s data (FFFF in hex). Note that for the initialization

pattern (OP1) the address is not impacted in the presence of

wired-AND faults. Any address line that suffers from a wired-

AND with a data line will cause the address line to flip to

zero during the walking-1 sequence (OP2 up to OP17). This

will overwrite the original initialization. Therefore, the last

read (OP18) results in a data value of FFFF for non-faulty

interconnects and 0000 in case a fault is present. These test

patterns are similar to those in the left side of Table II used

to detect SA0 faults in address lines when Init Data = FFFF

and Datax = 0000. The right part of Table IV provides the

test patterns needed to detect wired-OR bridges that cause

address lines to flip. Here, all address and data values are

the complements of the wired-AND patterns. The memory

operations are the same as to test for SA1 faults in address

lines (right part of Table II) under the condition that Init Data

= 0000 and Datax = FFFF.

B. Dynamic Faults

Dynamic faults consist of single and multi line faults. For

single line faults the same general approach as static faults

can be used in which data lines are tested in parallel and

address lines individually. However, for multi-line faults the

1

1 1
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2 2

3 3

3 3

4 4

4 4

Fig. 3. TSV groups

TABLE V
SOF WITH CROSSTALK TEST

PATTERNS FOR DATA LINES

OP Operation Address Data

OP1 W Addr1 0000 0000 0000 0000
OP2 W Addr2 1010 0000 1010 0000
OP3 R Addr1 0000 0000 0000 0000
OP4 R Addr2 1010 0000 1010 0000

OP5 W Addr1 1111 1111 1111 1111
OP6 W Addr2 0101 1111 0101 1111
OP7 R Addr1 1111 1111 1111 1111
OP8 R Addr2 0101 1111 0101 1111

TABLE VI
SOF WITH CROSSTALK TEST PATTERNS FOR ADDRESS LINES

OP Operation Address Data

OP1 W 00000000 0 0000000 Init Data
OP2 W 00000000 1 0000000 Data1
OP3 R 00000000 0 0000000 Init Data

OP4 W 11111111 1 1111111 Init Data
OP5 W 11111111 0 1111111 Data1
OP6 R 11111111 1 1111111 Init Data

layout of the address and data lines becomes important.

For simplicity, we assume a regular TSV array of size

4×4 to demonstrate how to generate test patterns for SOF

with Crosstalk. Furthermore, we assume a 1st aggressor

model, i.e., victims can only be affected by closest neighbor

aggressors. Grouping the 4×4 matrix in four groups as shown

in Fig. 3 allows us to test each group simultaneously. For

example, when TSVs of group 1 are tested as victims it is

assumed that the remaining TSVs act as aggressors. The same

applies for the other three TSV groups. In general any kth

aggressor model can be used, where k the maximum TSV

distance between victims and aggressors. Results reported

in [25] show that restricting to k=1 is sufficient.

SOF with Crosstalk at data lines: Table V shows the

memory operations required to detect SOF with Crosstalk for

TSV group 1. To sensitize such a fault, a transition must be

created on the victim while keeping the aggressors stable.

OP1-OP2 create a 0→1 transition from master to slave on the

victim data lines, while keeping aggressors stable at 0. OP3

and OP4 make a similar transition, but from slave to master.

In case the transition fails (during write or read) it will be

detected during reading (OP3-OP4). In a similar manner, but

with all data lines complemented, OP5-OP8 can be applied

to detect the 1→0 transition fault on the victim. Similar

patterns can be developed for the other remaining three groups.

SOF with Crosstalk at address lines: Table VI shows the test

pattern to detect SOF with crosstalk for a single address line.

OP1 initializes the memory by writing Init Data to address 0.

OP1 and OP2 create a 0→1 transition on the victim address

line while the aggressors are kept stable at 0. OP3 expects

Init Data in case fault-free, and Data1 if the victim line

failed to make the 0→1 transition. Similarly, OP4-OP6 detect

the reverse transition. These group of test patterns have to be

repeated for each address line individually.

It is worth noting that the minimum set required to detect all

static and dynamic faults targeted in this paper consist of only

two test: (1) PDF with Crosstalk and (2) SOF with Crosstalk.



TABLE VII
TEST COST FOR STATIC FAULTS

Fault (set) #mem ops. # MIPS instr. #MIPS cycles

Optimized SAF 32 45 57

Optimized static / Optimized Bridge (simple bridge) 48 109 137

Optimized static / Optimized Bridge (complex bridge) 62 137 179

TABLE VIII
TEST COST FOR DYNAMIC FAULTS

Fault (set) #mem ops. # MIPS instr. #MIPS cycles

PDF at data lines 6 16 21
PDF at address lines 10 15 23

SOF at data lines 4 14 19
SOF at address lines 48 75 91

Crosstalk / (PDF + crosstalk) at data lines 24 58 66
Crosstalk / (PDF + crosstalk) at address lines 96 123 175

Stuck open fault (SOF) with Crosstalk at data lines 32 61 73
Stuck open fault (SOF) with Crosstalk at address lines 72 92 104

IV. EXPERIMENTAL RESULTS

A. Case Study

We simulate memory test patterns, for a memory die stacked

on a logic die that consists of a MIPS64 processor, by using

the MIPS64 simulator in [26]. The simulator can handle a

maximum of Ld=64-bit data lines and La=12-bit address

lines (lowest 3 bits are byte offset). The simulator supports

three types of instructions: (1) ALU instructions such as add,

subtract and shift, (2) Branch instructions such as branch if

equal, and (3) Memory instructions such as load, store, etc; a

complete reference can be found in [27].

The memory operations, which represent the test patterns, need

to be translated into real MIPS instructions. An example for

the SAF at data lines is provided in the code fragment below.

1. ori r1,r0,0xFFFF 8. SD R1, 0xFF8(R0)

2. dsll r1,r1,16 9. LD R10,0XFF8(R0)

3. ori r1,r1,0xFFFF 10. BNE R1,R10,SA0_DATA

4. dsll r1,r1,16 11. HALT

5. ori r1,r1,0xFFFF

6. dsll r1,r1,16 SA0_DATA:

7. ori r1,r1,0xFFFF ;handle fault here

The test consists of 11 instructions. The first 7 instructions

create the desired pattern FFFF FFFF FFFF FFFF in register

R1 (similarly as in the left side of Table II). Instructions 8

and 9 contain the two memory operations in which R1 is

written (SD) and read (LD) from memory. In case a stuck

at fault is present a branch will be taken (instruction 10) to

SA0 DATA.

Tables VII and VIII summarize the number of memory opera-

tions and clock cycles for all static and dynamic faults respec-

tively. The tables provide for each fault the required number

of memory operations, the number of MIPS instructions to

execute those memory operations and finally, the number of

MIPS cycles. For example, to test for all static faults requires

only 179 MIPS cycles. The memory latency is 1 clock cycle.

B. Comparison with Prior Related Work

We compare our MBIT approach with BS, TL and the BIST

methods [12,13] for several DfT requirements related to test

quality (T1) and cost (T2).

T1 Test quality: The test methodology must support full

controllability and observability and test for static and dy-

namic faults. In addition, diagnosis should identify faulty

TABLE IX
COMPARISON BETWEEN INTERCONNECT TEST APPROACHES

Test Requirement Boundary Scan Test Logic BIST [12] BIST [13] MBIT

T1 controllabil-
ity/observability

Both Memory outputs
are only observ-
able

both both Address lines are
tested indirectly

T1 static/dynamic Only static Only static crosstalk only crosstalk only Static + Dynamic

T1 detec-
tion/diagnosis

Support for both Support for both Support for both Support for both Support for both

T1 flexible test pat-
terns

yes yes, limited out-
put controllabil-
ity

no no yes

T2 area overhead 2 · (La + Lc +
2 · Ld) BS cells
(bottom/top die)
+ JTAG (top die)

La+Lc+2 ·Ld

BS cells (bottom
die) and test logic
(top die)

9.8% with
respect to TSV
array

7% with respect
to TSV array

No area overhead

T2 test cost (simple
bridges)

2 · (La+Lc+2 ·
Ld) · log2(La +
Lc+Ld+2) test
clock cycles

(La + Lc + 2 ·

Ld) · log2(La +
Lc+Ld+2) test
clock cycles

not applicable not applicable 2 · log2(Ld +
2) + 2 · La + 8
at speed memory
operations

T2b test cost (com-
plex bridges)

4 · (La+Lc+2 ·
Ld) · log2(La +
Lc+Ld+2) test
clock cycles

2 · (La+Lc+2 ·
Ld) · log2(La +
Lc+Ld+2) test
clock cycles

not applicable not applicable 4 · log2(Ld +
2) + 2 · La + 8
at speed memory
operations

locations. Modifying test patterns for extra diagnosis or

to target different faults is needed.

T2 Test cost: The DfT overhead should be as low as possible

and preferably without DfT on the memory die. The test

time should be cost-effective; i.e., the test time should be

reasonable and scalable with the number of TSVs.

Test quality comparison

Table IX summarizes the comparison between the five test

methods. All approaches are in general able to control and

observe the interconnects. TL has a limited controllability

of memory outputs and MBIT propagates faults in address

lines indirectly. BS and TL can be used for static faults

only, while the approaches in [12] and [13] perform testing

by hardwired state machines and target crosstalk faults only.

MBIT is flexible enough to test for any fault. BS and TL

can be modified for dynamic fault testing, but require extra

hardware or complete cell modification [28,29]. BS intercon-

nect testing has an additional limitation for the case where

drivers and receiver cells cannot be tested simultaneously; in

this case, approximately 75% of the drivers and receivers can

be covered [4]. A similar problem exists in [12] and [13] as

both solutions only can handle uni-directional lines. MBIT is

able to test for both TSV drivers and receivers as patterns

are applied in both directions. Diagnosis is possible for all

cases, however, the schemes in [12,13] cannot apply flexible

patterns as the BISTs are hardwired, while in TL some test

patterns might not be applicable due to memory input output

dependancy during test.

Test cost comparison

For a fair area overhead comparison, we assume a bottom die

with default JTAG. In that case, the overhead for each method

will be the following:

• BS: the overhead consists of the additional BS cells

on both the bottom die and top die assigned to the

interconnects, in total equal to 2 · (La+Lc+2 · Ld). Here

La presents the number of address line, Lc the number of

control lines, Ld the number of data lines. Control and

address lines require a single BS cell per wire, while

bi-directional data lines are assumed to have two BS

cells [30]. In addition to BS cells, the JTAG infrastructure

on the top die is also part of the overhead.



• TL: the overhead includes the BS-cells on the bottom die

of length La+Lc+2 · Ld and the test logic on top die.

• BIST [12,13]: the overhead consists in both methods of

a state-machine, several flip-flops and other control logic

such as muxes. In [13] its reported that the area overhead

of the method in [12] approximates 9.8%, while their own

equals 7%; both are measured with respect to the total

TSV area. It is evaluated in 90 nm technology using 15

µm TSV diameters using a 64×16 TSV matrix.

• MBIT: no area overhead.

The test time for each of the approaches is as follows:

• BS: the total test time for BS depends on the number

of test patterns and the length of the BS cells. For the

True/Complement Algorithm, the number of test patterns

equal 2 · ⌈log2(La + Lc + Ld + 2)⌉ to detect all static

faults. The length of the BS cells equals 2 · (La + Lc +
2 ·Ld). Therefore, the test time equals 4 · (La +Lc + 2 ·
Ld) · ⌈log2(La + Lc + Ld + 2)⌉ test clock cycles.

• TL: The test time reduces by a factor of two when

compared to BS, due to half the number of BS cells.

• BIST [12,13]: The test time of the hardwired BISTs

in [12,13] is much lower than other approaches. For ex-

ample, the method in [13] requires 122 cycles (assuming

1 cycle per TSV row pattern) to detect all targeted faults

in this paper (i.e., the test set PDF with crosstalk and

SOF with crosstalk faults).

• MBIT: To detect all static faults 179 MIPS cycles are

required (assuming complex bridges). To detect all static

and dynamic faults (PDF with crosstalk and SOF with

crosstalk faults), MBIT requires 66+175+73+104=418 at

speed cycles (see Table VIII).

In conclusion, with respect to the area overhead MBIT per-

forms best followed by BIST [12], BIST [13], TL and BS.

If we compare MBIT with BS and TL with respect to test

time considering the same MIPS memory (La=12, Ld=64 and

for simplicity ignore control lines Lc=0), BS based testing

would require 3920 test clock cycles and Test Logic based

testing 1960 test clock cycles for True/Complement Algorithm.

Moreover, if we assume an operational clock frequency of

500 MHz and test clock speed of 100 MHz the differences

between the methods becomes more apparent. The total test

time would be 0.36µs, 39.20µs and 19.6µs for MBIT, BS

and TL respectively. If we compare MBIT with the hardwired

BIST solutions for both dynamic and static faults, we see that

MBIT is slower in test time (418 cycles for MBIT versus

122 cycles for BIST [13]), but has the flexibility of applying

different test patterns and does not require additional DfT.

V. CONCLUSION

This paper proposed a new Memory Based Interconnect Test

(MBIT) approach for 3D-SICs where memory is stacked on

logic by testing interconnects through memory read and write

operations. Our MBIT solution is able to perform at-speed

testing and detect all static and dynamic faults. It has zero area

overhead and allows flexible patterns to be applied. In addition,

the required test time is much lower than traditional based

solutions such as Boundary Scan, but is three times slower

than hardwired BIST solutions. However BIST solutions have

a large area overhead and cannot apply flexible patterns.
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