
Efficient SMT-based ATPG for Interconnect Open Defects
Dominik Erb, Karsten Scheibler, Matthias Sauer, Bernd Becker

University of Freiburg, Georges-Köhler-Allee 51, 79110 Freiburg, Germany

Abstract—Interconnect opens are known to be one of the pre-
dominant defects in nanoscale technologies. However, automatic test
pattern generation for open faults is challenging, because of their
rather unstable behaviour and the numerous electric parameters
which need to be considered. Thus, most approaches try to avoid
accurate modeling of all constraints and use simplified fault models
in order to detect as many faults as possible or make assumptions
which decrease both complexity and accuracy.

This paper presents a new SMT-based approach which for the
first time supports the Robust Enhanced Aggressor Victim model
without restrictions and handles oscillations. It is combined with the
first open fault simulator fully supporting the Robust Enhanced Ag-
gressor Victim model and thereby accurately considering unknown
values. Experimental results show the high efficiency of the new
method outperforming previous approaches by up to two orders of
magnitude.

Index Terms—Interconnect opens, test generation, ATPG, un-
known values, SMT

I. INTRODUCTION

Especially since the transition to copper-interconnect technol-
ogy [1] interconnect opens are known to be one of the predom-
inant defects within nanoscale technologies [2, 3]. Commonly,
such defects are caused by missing conducting material within
the interconnect and may occur between metal layers (Inter-
layer-opens or VIA-opens) as well as within a particular layer
(Intra-layer-opens). An interconnect affected by an open defect
is divided into two parts: a stable part connected to the driver
and a disconnected floating part whose value is hard to predict
because of its dependency upon several electric parameters [4, 5].
Likewise, the non-trivial electric modeling of the floating part,
which is dominated by coupling capacitances between neigh-
boring interconnects (aggressors) [6], makes interconnect opens
hard to handle for ATPG tools. This leads to the existence of
several different fault models describing the behaviour of open
defects on the basis of an underlying electric modeling. Only a
few approaches target interconnect opens directly with the use
of layout information [2, 7–10].

In [7] only a subset of aggressors is used with the requirement
that all of them are set to the opposite fault free value. The
approach presented in [8] utilizes a branch&bound method to
generate test patterns for interconnect opens considering the
fault model by Sato [2], while [9] uses constrained stuck-
at fault tests in case no circuit parameters are available or
voltage based tests which tolerate circuit parameter uncertainty.
In [10] the branch&bound method of [8] was combined with
a segment stuck-at test generation algorithm and an untestability
analysis based on the Nonrobust and Robust Enhanced Aggressor
Victim model with restricted propagation conditions decreasing
accuracy.

In addition there are also approaches which do not consider
layout information [11, 12]. In [11] interconnect diagnosis is done
by constructing a superset of possible faulty behaviours utilizing
a net-model and path tracing in order to determine all possible
fault locations, while [12] proposed the usage of multiple stuck-
at faults in order to generate tests for open defects in circuits
with large fanouts.

In this paper we present to the best of our knowledge the first
approach which
• supports the Robust Enhanced Aggressor Victim model

without making any propagation restrictions and therefore
considers unknown values at the inputs of an affected gate
if necessary,

• allows to explicitly generate static test patterns, i.e. test
patterns showing no oscillating behaviour and being robust
against process variations,

• is able to model thousands of aggressors within a single
fault instance,

• is scalable to larger circuits with over 500k of non equivalent
faults,

• includes an accurate simulator (extending [13, 14]) for open
faults to allow accurate consideration of unknown values.

Our method utilizes the SAT Modulo Theory (SMT) solver
iSAT3 [15–17] based on Interval Constraint Propagation (ICP) for
modeling the fault behaviour as arithmetic constraints. Therefore,
we are able to represent coupling capacitances precisely by large
integers as they are generated by layout parameter extraction
(PEX) tools. In principle such constraints could also be translated
into a pure propositional formula being examined by a SAT
solver. However, this would require to map the integers to rather
small values and therefore would lead to a loss of accuracy.
Furthermore, a high number of aggressors leads to very large
encodings of the constraints, rendering a SAT-based approach
even less feasible.

Our experimental results show that most of the faults are
statically detectable and compared to previous approaches [8, 10]
our approach is up to two orders of magnitude faster while being
more accurate.

The remainder of this paper is organized as follows. We
introduce the terminology and the fault model used in Section II.
The proposed framework and our approach is described in detail
in Section III. Section IV discusses the experimental results and
Section V concludes the paper.

II. TERMINOLOGY AND PROBLEM STATEMENT

An interconnect consists of one source, several segments and
one or multiple sinks as shown in Figure 1. A segment (also
called RC-element) is a combination of a resistor r and zero or
more capacitances CC. The capacitances represent the influence
of other interconnect lines on the output of a segment. According
to [8], all open defects on a given piece of an interconnect are
mapped to an open fault at the output of the corresponding RC-
element and break the interconnect in two parts: the first part
starting from the source is the stable part and fault free; the
second part is disconnected from the source and affected by
numerous electric parameters. This part is also called the floating
part. Several models exist in order to describe open defects
with the use of layout information. Sato et al. [2] introduced
the Aggressor Victim model and stated, that the floating part
is mainly influenced by aggressors. The value of the coupling
capacitance (CCi) determines the influence of the aggressor i
on the floating part. VDD and VSS can occur as aggressors,978-3-9815370-2-4/DATE14/©2014 EDAA



but in contrast to normal signals their logic value cannot be
changed by a test pattern. Therefore, the induced parasitic
coupling capacitance of these aggressors is constant. In [2] a
fault is testable, if one or several aggressors induce a non zero
parasitic coupling capacitance to at least one RC-element of the
floating part. C0 represents the cumulative coupling capacitance
of all aggressors showing logic 0. C1 represents the cumulative
coupling capacitance of all aggressors showing logic 1.

The voltage of the floating part (Vf ) is assumed to be
Vf = C1

C0+C1
VDD. If the cumulative coupling capacitance C1

exceeds C0 and therefore Vf > 0.5VDD, all gates driven by the
floating part interpret the value as logic 1 and logic 0 otherwise.
Accordingly, Sato set the threshold of each gate to VDD/2.

Fig. 1: Example of an interconnect represented as a tree of RC-
elements with all possible open faults.

Figure 1 shows an interconnect with source G1, two sinks
G2 and G3 and five RC-elements. In total five open faults
F1, . . . , F5 are possible, which can be divided into two cate-
gories: Intra-layer opens only occur at VIAs, inter-layer opens
can occur at each element of the RC-Tree. Depending on the
fault location it may happen that not all gates connected by
the interconnect are affected by the fault. Regarding Figure 1,
Fault F4 only affects G2 and has no influencing capacitances
at all, while Fault F5 only affects G3, but being victim of the
aggressors VDD and VSS with the coupling capacitances CCV DD

and CCV SS . Therefore, Fault F4 is untestable because there is
no possibility to influence the floating part with any aggressor,
while there may exist a valid test pattern for Fault F5.

A. Robust Enhanced Aggressor Victim model
In extension to [2], the authors of [10] tried to increase the

accuracy of Sato’s model by the use of two thresholds VthL(G)
and VthH(G) for each gate G with VthL(G) ≤ VthH(G). Further-
more, different thresholds are allowed per gate type. As in [2], the
voltage of the floating part is assumed to be Vf = C1

C0+C1
VDD,

however, two additional models are introduced: Robust Enhanced
Aggressor Victim (REAV) and Nonrobust Enhanced Aggressor
Victim (NREAV). Under the REAV model all voltages below
VthL(G) are interpreted as logic 0 and all voltages above
VthG(G) are interpreted as logic 1. A voltage between VthL(G)
and VthH(G) may be interpreted as either logic 0 or logic 1 but
the actually interpreted value is unknown.

To handle such behaviour [10] restricts the REAV model and
assumes the interpreted value corresponds to the fault-free value
if the voltage is between VthL(G) and VthH(G) i.e. it restricts
the propagation conditions. We refer to this REAV with restricted
conditions as simplified REAV. In contrast, we make no such
restrictions and define these values as X-values. We refer to
this new REAV model as X-tolerant REAV. Notice that a test
pattern for simplified REAV might classify a fault as detectable,
whereas a classification for X-tolerant REAV shows that the fault
is actually not detected.

Fig. 2: Open fault at source of interconnect.

Figure 2 shows a circuit with a fault located at the source of
the interconnect influenced by three aggressors I1, VDD and O1.
Let’s assume the following thresholds are given for the inputs of
the affected gates:

G1 with VthL(G1) = 0.42VDD, VthH(G1) = 0.47VDD

G2 with VthL(G2) = 0.43VDD, VthH(G2) = 0.50VDD

Considering simplified REAV, the test pattern I1 = 1, I2 = 0
would detect the fault – which is invalid regarding X-tolerant
REAV. In detail, this pattern results in an induced voltage
Vf = CC2+CC3

CC2+CC3+CC1
VDD = 39+10

39+10+51VDD = 0.49VDD on
the floating part. With the above thresholds, G1 interprets the
affected value to be logic 1 and G2 assumes the fault-free value
to be still present (i.e. logic 0) yielding an observable difference
at output O1. On the contrary, an approach for X-tolerant REAV
interprets the value of G2 as X-value resulting in no observable
difference for all possible values of X.

Because O1 itself depends on the fault site, an oscillating
behaviour might be observed additionally [6]1. A fault shows
no oscillating behaviour, if the output values of all gates on
the propagation path stay unchanged, i.e. the output values of
all gates on a path starting at an affected gate and leading to
at least one output used for fault detection do not change –
irrespective of the aggressors being affected by a fault or not.
If a test pattern is found, a fault is called statically detected in
case no oscillation occurs on the propagation path – otherwise it
is called dynamically detected as the values of all outputs used
for fault detection may oscillate and therefore the fault effect
might not be visible all the time. Hence, a fault marked as
dynamically detected may lead to oscillation while a statically
detected fault shows no oscillating behaviour on the propagation
path. For the example stated above and the X-tolerant REAV
model no test pattern which detects the fault statically exists.
Instead, the pattern I1 = 0, I2 = 1 allows to mark the fault as
dynamically detected2.

For an input i of an affected gate G and the voltage of the
floating part of a fault f computed by Vf = C1

C0+C1
VDD, the

interpreted value i depending on the voltage of the floating part
Vf is summarized in Table I.

Voltage of floating part interpreted value i

Vf < VthL(G) 0
VthL(G) ≤ Vf ≤ VthH(G) X

Vf > VthH(G) 1

TABLE I: INTERPRETED VALUES ACCORDING TO REAV

Our approach explained in Section III mainly focuses on the
X-tolerant REAV model. However, it is also applicable to the
simplified REAV, NREAV or Sato model.

1For example O1 may quickly toggle between logic 0 and 1 in the presence
of an open fault, because if O1 is 1 it induces a corresponding voltage to the
fault site, thus the affected gate interprets the induced voltage differently leading
to O1 = 0; with O1 set to 0 the induced voltage and the interpreted value would
again change, leading to O1 = 1.

2Because the induced voltage depends on the value of aggressor O1 and
different values lead to different interpretations of the voltage at gate G2



III. PROPOSED ATPG FRAMEWORK

As seen in Figure 3, our proposed ATPG framework consists
of three steps: (A) a preprocessing step identifies untestable and
equivalent faults. (B) a fast accurate random pattern simulator
could be used to reduce the number of faults which need to
be considered by the next step. (C) the SMT-based explicit test
pattern generation method either classifies all remaining faults
as untestable (using three-valued logic) or returns a test pattern
which is directly simulated to implement fault dropping.

Fig. 3: Proposed ATPG Framework

A. Preprocessing

As stated in Section II, an interconnect open fault is located at
the output of an RC-element. The preprocessing tries to identify
both equivalent and untestable faults. A fault F is equivalent to
another fault, if (1) the corresponding RC-element has no own
capacitances and (2) there is at least one subsequent RC-element
influenced by one or several aggressors between F ’s RC-element
and the sink (e.g. Fault F1 in Figure 1 is equivalent to Fault
F2). A fault is untestable, if up to the sink no aggressor lines
influence at least one RC-element subsequent to the fault location
(e.g. Fault F3 and F4 in Figure 1). A fault is also proven to be
untestable if the voltage induced by all aggressors influencing the
fault is interpreted as X-value by all affected gates, e.g. for all
possible voltages induced by the aggressors, the voltage level of
the floating part will be below VthH(G) and above VthL(G) (as
for Fault F5 in Figure 1 if VthH(G3) = 0.55VDD, VthL(G3) =
0.45VDD and CCV DD = CCV SS = 0.5VDD).

B. Explicit test pattern generation using iSAT3

The proposed method exploits the expressiveness of SMT-
formulas for interconnect open fault test pattern generation.
SMT stands for SAT Modulo Theory and extends SAT by
allowing arithmetic constraints. The constructed SMT-formula
consists of two parts: (a) a Boolean encoding of the circuit and
(b) arithmetic constraints describing the behaviour of the open
fault. With this separation we are able to easily consider the
different requirements of statically and dynamically detectable
faults, because only the arithmetic constraints are changed and
the Boolean part remains untouched. The SMT solver iSAT3 is
used to determine the satisfiability of the constructed formula.
If the formula is satisfiable, a test pattern is found. In case
the formula is unsatisfiable, the fault is marked as SMT-based
untestable according to Figure 3. As the problem of evaluating
an SMT-based formula depends on the theory and is at least NP-
complete (due to the underlying Boolean SAT problem), a time
limit may be used for practical reasons. Instances not solved
within the given time limit are marked as aborted.

1) The SMT solver iSAT3: SAT solvers calculate, whether a
propositional formula is satisfiable or not. Usually the input for-
mula is expected to be in conjunctive normal form (CNF). A CNF
is a conjunction of clauses with each clause being a disjunction
of literals. Most modern SAT solvers employ the conflict-driven
clause learning framework (CDCL) which is an extension of the
DPLL procedure introduced in [18]. While SAT expects Boolean
variables or their negations as literals, SMT additionally allows
arithmetic constraints. Besides variables and arithmetic operators,
an arithmetic constraint contains a relational operator. During the
SMT solving process all propositional variables and arithmetic
constraints in the CNF are assigned to one of these values: true,
false or undefined.

To satisfy an SMT-formula in CNF, every clause has to contain
at least one literal or arithmetic constraint assigned to true. An
additional check ensures, that arithmetic constraints assigned to
true are indeed consistent. Therefore, traditional SMT solvers
operate in two phases. First, a truth value is assigned to every
literal or arithmetic constraint in order to satisfy the CNF. Second,
it is checked if the arithmetic constraints are consistent – if
not, a conflict clause is created and the search for a satisfying
assignment is continued. The iSAT algorithm merges these two
phases and tightly integrates ICP into the CDCL framework to
reason about arithmetic constraints. In the context of this paper
we concentrate on the problem specific encoding, for further
details regarding the iSAT algorithm and iSAT3 refer to [15–17].

A very simple SMT-formula with Boolean variables a, b, c and
integer variables x, y may look like this ((a ∨ b) ∧ ((x+ 3 · y <
21) ∨ c). The assignment a =true, b =true, x = 3, y = 2,
c =false satisfies this formula. In fact the formulas created
by our proposed method will look similar to the example: the
clauses containing Boolean operations are introduced to encode
the circuit; the arithmetic constraints (with multiplication, addi-
tion and large integer constants) represent the influence of the
aggressors to an affected gate in relation to a threshold.

Fig. 4: Open fault at signal S1 with multiple affected gates

2) Boolean encoding of the circuit: We describe the Boolean
encoding with the help of an example. In Figure 4 S1 is the output
of G1 as well as an input for G3 and G4. Assume the interconnect
S1 is broken. The stable part of the interconnect (in the following
named S1,1) is connected to G1 and all gates not affected by the
fault. The floating part consists of S1,3 (connected to G3) and
S1,4 (connected to G4). The distinction between S1,3 and S1,4

is needed because the connected gates may interpret the induced
voltage differently due to different gate specific thresholds. For
example G3 could interpret the induced voltage as logic 0, while
G4 assumes a X-value.

We now encode two different sub-circuits containing some or
all gates and signals of the original circuit. The first sub-circuit
SCgood contains all signals and gates without modeling any
fault. As stated above, S1,1 is used for signal S1 in the fault-free
case. Therefore, we will use S1,1 within SCgood. Regarding our



example, SCgood contains G1, . . . , G5 as well as the signals
I1, I2, I3, I4, S1,1, S2, S3, O1, O2.

The second sub-circuit SCbad may reference gates or signals
from the first sub-circuit, or it may contain copies of them. A
gate G′1 (or signal S′2) stands for a copy of gate G1 (or signal
S2). In particular this means G1 and the copy G′1 are of the same
gate type, but S2 and S′2 may have different logic values.

In detail, SCbad contains a copied version of all signals and
gates having the floating part as input up to each reachable
output. In our example, these are the gates G′3, G

′
4, G

′
5 as well

as the signals S1,3, S1,4, S
′
3, O

′
1, O

′
2. As some gates in SCbad

are not driven exclusively by the floating part or by already
included signals, all signals connected to the side inputs of
these gates need to be included additionally referencing SCgood.
Consequently, SCbad contains the gates G′3, G

′
4, G

′
5 and the

signals I1, I4, S1,3, S1,4, S2, S
′
3, O

′
1, O

′
2.

It is possible that an affected gate interprets the induced voltage
as an X-value. Hence, in the final formula SCbad needs to be
encoded three-valued while for SCgood a two-valued encoding
is sufficient. The generation of such a combined two- and three-
valued CNF with the help of Tseitin transformations [19] has
been proposed in [20]. Additionally, the search for a test pattern is
sped up through D-chains which explicitly model the propagation
paths of the fault effect [21]. Also, the number of gates and
signals to be considered in SCgood could be reduced by only
encoding the union of the fault sites, all affected outputs’ and the
aggressors’ input cones. The resulting SMT-formula consists of:

• CNFSCgood encoded in two-valued logic (01),
• CNFSCbad encoded in three-valued logic (01X),
• the D-chains,
• a constraint which enforces a difference between at least

one output of SCgood and its copy in SCbad,
• the arithmetic constraints we describe in the following.

3) Arithmetic constraints to ensure dynamic detectability:
The arithmetic constraints contain the computation of the in-
duced voltage Vf in relation to the thresholds of each affected
gate. Because dynamically detectable faults are allowed to show
oscillating behaviour it is sufficient to assume the aggressors
are not influenced by the fault within the constraints. Hence,
oscillations may or may not occur for a generated pattern.
Therefore, oscillations could be ignored within the constraints
and only the signals of the aggressors taken from SCgood need
to be considered within the computation of Vf .

According to Section II, the induced voltage is Vf =
C1

C0+C1
VDD and C1 is the sum of the coupling capacitances of all

aggressors assigned logic 1. Assuming vali represents the logical
value of aggressor i in SCgood, the sum C1 for a fault affected
by n aggressors is expressed as C1 =

∑n
i=1 CCi · vali. This

leads to

Vf =
1

C0 + C1
· VDD ·

n∑
i=1

(CCi · vali)

with the constants VDD and C0 + C1 =

n∑
i=1

CCi

The resulting constraints modeling an affected gate G along
with its interpretation of the induced voltage and ensuring dy-
namic detectability are expressed as:

Vf < VthL(G) → 0
Vf > VthH(G) → 1

otherwise → X

4) Arithmetic constraints to ensure static detectability: The
arithmetic constraints ensuring static detectability are stricter
compared to the dynamical ones. According to Section II, for
static detection all affected gates used for fault propagation need
to interpret the induced voltage similarly in a fault-free and in
a fault affected circuit to ensure that no oscillating behaviour
might be observed at any output used for fault detection. While
in case of generating constraints to ensure dynamic detectability
only the two-valued fault-free version (out of SCgood) of the
aggressors is considered, we now have to additionally take the
faulty three-valued version (out of SCbad) into account – if
it exists. Regarding our example in Figure 4, S3 is such an
aggressor which is itself affected by the fault. Here it may
also happen that the aggressor is set to an X-value in SCbad.
According to Section II an X-value may be interpreted as either
logic 1 or logic 0 but it is unknown which of both. For the
constraints to ensure static detectability we need to guarantee the
validity of the generated test patterns, independent of X-valued
signals. Thus, we extend the arithmetic constraints to interpret
an X-value as logic 0 if it is compared to the high threshold, and
logic 1 if it is compared to the low threshold of a gate (i.e. the
worst case). Consequently, in addition to Vf two supplementary
voltages V

(X0)
f and V

(X1)
f are needed:

V
(X0)
f = 1

C0+C1
· VDD ·

∑n
i=1 CCi · val(X0)

i

V
(X1)
f = 1

C0+C1
· VDD ·

∑n
i=1 CCi · val(X1)

i

with

val
(X0)
i =


0 if vali = 0

0 if vali = X
1 if vali = 1

val
(X1)
i =


0 if vali = 0

1 if vali = X
1 if vali = 1

These two supplementary voltages reference the signal within
SCbad if it is included, otherwise – as for Vf – the signal in
SCgood is referenced. The resulting constraints for an affected
gate are:

(Vf < VthL(G)) ∧ (V
(X1)
f < VthL(G)) → 0

(Vf > VthH(G)) ∧ (V
(X0)
f > VthH(G)) → 1

otherwise → X

C. X-aware interconnect open fault simulation

The event driven fault simulation engine used within the
proposed ATPG is based on the simulator presented in [13, 14]
extended for interconnect open faults. It uses a combination of
numbered-X and two-valued simulation as well as a SAT-based
approach in order to accurately consider all X-values which may
be induced at affected gates. Hence, the simulator may classify
faults as being detected by a test pattern which the SMT-based
approach was not able to calculate a pattern for – as SAT-
and hence SMT-based ATPG is not able to consider X-values
accurately. The main differences between simulating stuck-at (as
in [13]) and interconnect open faults are:
• the computation of the induced voltage and their effect on

the floating part,
• the possibility that the fault effect is interpreted differently

by affected gates,



• the ability to handle two different types of detection: dy-
namic detection and static detection.

In detail, prior to processing each fault, the simulator performs
an accurate fault free simulation of the pattern to simulate. Af-
terwards, for each fault, first the induced voltage Vf is computed
according to the values of the aggressors affecting it (as described
in Section II), utilizing the results of the fault free simulation.
According to the used model, Vf is subsequently compared to
the thresholds VthH(G) and VthL(G) to determine the interpreted
value. If the interpreted value causes a change in the output of an
affected gate an event is created – otherwise not. Additionally, if
the interpreted value is an X-value a new X-source is introduced
at the affected gate. For further details on the event-driven
simulation refer to [13]. All faults that are classified as detectable
after this simulation are at least dynamically detected and need
to be tested for static detection. All others stay undetected.

In order to test for static detection, the induced voltage is
computed anew based on the results of the conducted simula-
tion. As explained in Section III-B4 within this second test an
aggressor may depend on the fault site and show an X-value. For
the comparison with the high threshold (low threshold) of each
affected gate, all aggressors assigned to an X-value are assumed
to show a logic 0 (logic 1). Hence, we are assuming the worst
case for each X-value. If no affected gate interprets the voltage
differently than Vf , the fault is statically detected. Otherwise a
second simulation is conducted searching for at least one still
valid propagation path showing no oscillating behaviour. If such
a path exists, the fault is also statically detectable, otherwise it
stays dynamically detected.

IV. EVALUATION

We evaluated the proposed approach using the combinational
cores of ISCAS85 and ISCAS89 benchmarks. We use the same
flow as in [10] for the circuit layout, the extraction of the parasitic
coupling capacitances and the calculation of the gate thresholds
VthL(G) and VthH(G). In contrast to [10] we always used the
union of intra-layer (via-open) and inter-layer open faults and did
not distinguish between them. Prior to each ATPG run, faults that
are classified as equivalent by preprocessing (Section III-A) are
merged.

A. Comparison to Previous Approaches

For a proper comparison with earlier approaches, we first
measured the runtime of our approach utilizing the same machine
as used in [8] and [10] (a single core of an AMD Opteron running
at 2.3 GHz). As already mentioned [8] does explicit test pattern
generation for the model proposed by Sato. To reduce the number
of patterns to be handled explicitly [10] additionally uses random
patterns and a method based on segment stuck-at faults for the
simplified REAV model. In comparison our approach strictly
focuses on the more accurate X-tolerant REAV model. Because
of lack of space we only list circuits with a runtime larger than
5 seconds using our approach and results of earlier approaches
– if available.

Table II compares the runtime of our results with those of [8,
10]. Additionally the number of aborts of [10] and our proposed
method are shown. Apparently our approach is at least two orders
of magnitude faster than [8] and on average 30.64 times faster
than [10]. Furthermore, the number of aborts of our approach
is significantly lower although we focus on X-tolerant REAV
while [10] only considers simplified REAV. This difference in the

TABLE II: COMPARISON TO [8, 10]

Circuit [8] [10] proposed speedups
time time aborts time aborts [8] [10]

c6288 7732s 13s 124 40s 0 193 0.33
c7552 18801s 93s 259 33s 0 570 2.81

cs09234 - 420s 659 89s 0 - 4.71
cs13207 - 807s 809 259 10 - 3.11
cs15850 - 1 576s 999 185s 0 - 8.52
cs38584 - 47 530s 4 553 1 057s 2 - 44.97∑

- 50 961s 7 403 1 663s 12 - 30.64

number of aborts as well as in the runtime is most probably due
to the fact that branch&bound based methods (as used in [8, 10])
generally explore many branches when there are many aggressors
and affected gates. Therefore, methods based on branch&bound
need multiple solver calls to determine one valid test pattern.
On the contrary, our approach only needs one solver call per
fault. We furthermore exploit the benefits of conflict learning in a
CDCL SMT solver and are therefore more efficient – particularly
for faults with a high number of aggressors or affected gates or
with large cones of influence. In addition, these hard-to-detect
faults are in most cases not found by random patterns or heuristic
approaches using segment stuck-at faults.

B. Comparison of different ATPG modes

According to Section III-B, our approach supports two types
of constraints which are now utilized in two different explicit
test pattern generation modes. The first mode DYNONLY only
considers detection requirements to ensure dynamic detectability.
Within this mode the simulator may recognize that a fault
is statically detected by a generated pattern, but there is no
guarantee to find all statically detected faults. The second mode
COMB combines the first with a more accurate investigation and
handles oscillations to explicitly generate test patterns to ensure
static detectability for all faults statically detectable according to
Section II.

In order to compare these two modes, we conducted experi-
ments on a single core of an Intel Xeon CPU running at 3.3 GHz.
As solver backend the SMT solver iSAT3 is used with a timeout
of 10 seconds. In both modes for each generated test pattern, the
simulator proposed in Section III-C is used for fault dropping
and classifies all faults detectable by that pattern as statically or
dynamically detected.

Table III shows the results for the largest ISCAS85 and
ISCAS89 benchmarks. The first three columns contain the circuit
name along with the number of gates and the number of non-
equivalent faults. The remaining columns contain the results of
the two modes explained above. For both modes all faults were
classified as statically or dynamically detected, untestable or
aborted (i.e. iSAT3 hit the timeout).

In Columns 4 and 5 the number of statically and dynamically
detected faults are listed for mode DYNONLY and in Columns
9 and 10 for mode COMB. To get a better overall picture we
furthermore measured the number of detected faults for which
an oscillating behaviour might be observed – but because of lack
of space did not include the numbers in Table III. Among the
1 307 027 faults detected in both modes, 448 339 may show an
oscillating behaviour. For all other faults, no aggressors depend
on the fault site and therefore each generated test pattern detects
the corresponding fault statically. Utilizing mode DYNONLY
383 912 faults which may oscillate are classified as statically



and 64 427 as dynamically detected. Utilizing mode COMB the
number of faults only dynamically detected is reduced by a factor
of 4.80 to only 13 422 dynamically detected faults on average.
This means over 97% of all detectable faults which may show
an oscillating behaviour are even though statically detected. In
total utilizing mode COMB over 90% of the non-equivalent faults
were marked statically detected. Summed up, out of 1.4 million
faults (Column 3) only 72 were not classified in both modes
(Columns 7, 12). Hence, over 99.99% of the non-equivalent faults
were classified by our approach.

Although some circuits contain faults with up to 2 506 ag-
gressors (cs38417) and up to 88 affected gates (cs38584) the
runtime in both modes is quite low. The total runtime for mode
DYNONLY was only ≈ 49 minutes and for mode COMB ≈ 85
minutes. Regarding scalability, our experiments show that the
runtime is not only determined by the number of faults and gates,
but rather by the number of hard-to-detect faults. Since only a
few faults were not classified within the timeout of 10 seconds,
our approach should also be able to classify most of the faults
in circuits with more than 30k gates, which were not considered
within this paper.

To summarize, our approach utilizing mode DYNONLY al-
ready allows to mark most of the faults as statically detectable
if combined with an accurate fault simulation engine. However,
additionally using ATPG to explicitly generate static test pat-
terns, boosts the number of statically detectable faults further.
Certainly, the much more complicated detection conditions lead
to a moderately increased runtime. Nonetheless this does not hurt
the scalability of our approach while providing more robust test
patterns.

V. CONCLUSIONS

In this paper we presented a novel SMT-based approach for
interconnect open faults able to accurately consider all aggressors
and their influence on the interconnect open. To the best of our
knowledge our method is the first which supports the X-tolerant
REAV model and allows to explicitly generate test patterns
for statically detectable faults. The experimental results show
that using our approach most of the faults could be marked as
statically detectable even though over 30% of them may show
an oscillating behaviour. Compared to previous approaches our
method is more accurate and scales better for larger circuits.

In the future we want to extend our approach to generate test
patterns for different types of defects and increase the scalability
further.

ACKNOWLEDGMENTS

The authors thank Professor Sudhakar Reddy from the Uni-
versity of Iowa and Linus Feiten, Stefan Hillebrecht from the
University of Freiburg for supporting this work. This work was
partially supported by the German Research Foundation (DFG)
under grants BE 1176/14-2, SFB/TR14 AVACS and GRK1103.

REFERENCES
[1] S. Murarka, I. Verner, and R. Gutmann, Copper-fundamental mechanisms

for microelectronic applications. John Wiley, 2000.
[2] Y. Sato, L. Yamazaki et al., “A persistent diagnostic technique for unstable

defects,” in Test Conference, 2002. Proceedings. International, 2002.
[3] G. Chen, S. Reddy et al., “A unified fault model and test generation

procedure for interconnect opens and bridges,” in Test Symposium, 2005.
[4] S. Rafiq, A. Ivanov et al., “Testing for floating gates defects in CMOS

circuits,” in Test Symposium, 1998. ATS ’98. Proceedings. Seventh Asian,
1998, pp. 228–236.

[5] D. Arumí, R. Rodríguez-Montañés, and J. Figueras, “Experimental charac-
terization of CMOS interconnect open defects,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 1, pp. 123–136, 2008.

[6] H. Konuk and F. Ferguson, “Oscillation and sequential behavior caused by
interconnect opens in digital CMOS circuits,” in Test Conference, 1997.
Proceedings., International, 1997, pp. 597–606.

[7] R. Gomez, A. Giron, and V. Champac, “Test of interconnection opens
considering coupling signals,” in Defect and Fault Tolerance in VLSI
Systems, 2005. DFT 2005. 20th IEEE International Symposium on, 2005.

[8] S. Spinner, I. Polian et al., “Automatic test pattern generation for intercon-
nect open defects,” in 26th IEEE VTS 2008., 2008.

[9] S. Reddy, I. Pomeranz, and C. Liu, “On tests to detect via opens in digital
CMOS circuits,” in Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, 2008, pp. 840–845.

[10] S. Hillebrecht, I. Polian et al., “Extraction, simulation and test generation
for interconnect open defects based on enhanced aggressor-victim model,”
in Test Conference, 2008. ITC 2008. IEEE International, 2008, pp. 1–10.

[11] S. Venkataraman and S. Drummonds, “A technique for logic fault diagnosis
of interconnect open defects,” in VLSI Test Symposium, 2000. Proceedings.
18th IEEE, 2000, pp. 313–318.

[12] S. Reddy, I. Pomeranz et al., “On testing of interconnect open defects in
combinational logic circuits with stems of large fanout,” in Test Conference,
2002. Proceedings. International, 2002, pp. 83–89.

[13] S. Hillebrecht, M. A. Kochte et al., “Exact stuck-at fault classification in
presence of unknowns,” in Proc. IEEE ETS, 2012, pp. 1–6.

[14] M. A. Kochte and H.-J. Wunderlich, “SAT-based fault coverage evaluation
in the presence of unknown values,” in Proc. Design, Automation and Test
in Europe (DATE’11), 2011, pp. 1–6.

[15] M. Fränzle, C. Herde et al., “Efficient solving of large non-linear arithmetic
constraint systems with complex Boolean structure,” Journal on Satisfiabil-
ity, Boolean Modeling and Computation, vol. 1, pp. 209–236, 2007.

[16] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent improvements in
the SMT solver iSAT,” in MBMV’13, 2013, pp. 231–241.

[17] K. Scheibler and B. Becker, “Implication graph compression inside the SMT
solver iSAT3,” in to appear in MBMV’14, 2014.

[18] M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem
proving,” Communications of the ACM, vol. 5, pp. 394–397, 1962.

[19] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in constructive mathematics and mathematical logic, vol. 2, 1968.

[20] D. Erb, M. A. Kochte et al., “Accurate multi-cycle ATPG in presence of
x-values,” in to be published in ATS13, 2013.

[21] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. CAD, vol. 11, no. 1, pp. 4–15, jan 1992.

TABLE III: RESULTS OF THE PROPOSED ATPG UTILISING DIFFERENT EXPLICIT TEST PATTERN GENERATION MODES.

circuit gates faults
DYNONLY: only generating dynamic test patterns COMB: generating static and dynamic test patterns

statically dynamically untestable aborted runtime statically dynamically untestable aborted runtime
detected detected faults faults [s] detected detected faults faults [s]

c0499 202 2 498 1 859 189 450 0 1 1977 71 450 0 1
c6288 2 416 21 956 15 420 2 491 4 045 0 14 17 108 803 4 045 0 76
c7552 3 513 41 447 32 804 2 451 6 192 0 13 34 103 1 152 6 192 0 26

cs01238 509 7 712 6 122 404 1 186 0 2 6 445 81 1 186 0 2
cs01494 647 10 815 9 084 339 1 392 0 1 9 375 48 1 392 0 1
cs09234 5 597 61 915 48 203 4 017 9 695 0 34 50 521 1 699 9 695 0 54
cs13207 8 027 124 903 107 590 5 497 11 806 10 169 111 477 1 610 11 806 10 287
cs15850 9 786 127 906 106 760 6 857 14 289 0 60 111 393 2 224 14 289 0 95
cs38584 19 407 465 218 408 236 20 445 36 537 0 398 425 848 2 833 36 537 0 1 239
cs38417 22 397 558 845 506 522 21 737 30 524 62 2 270 525 358 2 901 30 524 62 3 304∑

72 501 1 423 215 1 242 600 64 427 116 116 72 2 962 1 293 605 13 422 116 116 72 5 085


