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Abstract—The realisation of large-scale quantum computing is
no longer simply a hardware question. The rapid development
of quantum technology has resulted in dozens of control and
programming problems that should be directed towards the
classical computer science and engineering community. One such
problem is known as Pauli tracking. Methods for implementing
quantum algorithms that are compatible with crucial error
correction technology utilise extensive quantum teleportation pro-
tocols. These protocols are intrinsically probabilistic and result
in correction operators that occur as byproducts of teleportation.
These byproduct operators do not need to be corrected in the
quantum hardware itself , but are tracked through the circuit and
output results reinterpreted. This tracking is routinely ignored in
quantum information as it is assumed that tracking algorithms
will eventually be developed. In this work we help fill this gap and
present an algorithm for tracking byproduct operators through
a quantum computation.

I. INTRODUCTION

Quantum computing promises exponential speed-up for
a number of relevant computational problems. Building a
scalable and reliable quantum computer is one of the grand
challenges of modern science. While small-scale quantum
computers are routinely being fabricated and operated in the
laboratory [1], they can only serve as feasibility studies, and
fundamental breakthroughs will be required before a truly
practical quantum computer can be built. As the size of
computers increases, the focus of interest shifts from their
basic physical principles to structured design methodologies
that will allow us to realise large-scale systems [2], [3], [4],
[5].

A given technology is suited for construction of a general-
purpose quantum computer if it supports a direct realisation
of a universal quantum gate set which can implement or ap-
proximate arbitrary functions [6]. Moreover, today’s quantum
systems exhibit high error rates and require effective quantum
error-correcting codes (QECC) [7]. Consequently, building
a practical quantum computer requires an universal gate set
which can be implemented in an error-corrected manner.

In this paper, we consider a class of quantum circuits
based on an universal gate set that consists of just two
types of operations: injection of specific quantum states into
the circuit and the controlled-not (CNOT) operation. Using
the technique of quantum teleportation, state injections are
mapped to rotational gates that together with the CNOT
operation provide universality [8]. The advantage of this gate
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set is that it can be seamlessly integrated into very advanced
QECC schemes, allowing for scalable, large-scale information
processing [7], [9]. However, as quantum teleportation is inher-
ently probabilistic the direction of qubit rotations is random.
This randomness can be corrected via a technique known
as Pauli tracking. Pauli tracking operates by constructing a
classical record of each teleportation result and reinterprets
later results during the computation. This tracking means
that we do not need to perform active quantum corrections
because of the probabilistic nature of teleportation operations.
This technique is well known in the quantum information
community and routinely ignored (referred to as working in the
Pauli frame). While experimental results in Nuclear Magnetic
Resonance systems have considered the problem of phase
tracking [10], Pauli tracking is distinct as it arises from active
measurement and feedforward. To our knowledge, no details
on a general algorithm necessary to perform this tracking have
been previously presented.

The contributions of this paper are the presentation of
teleportation-based quantum computing in a generic way ac-
cesible to the design community, and the introduction of a
new algorithm for Pauli tracking. We formalise the algorithm,
prove its correctness and show its efficiency by simulations.

II. QUANTUM COMPUTING

Quantum circuits represent and manipulate information
in qubits (quantum bits). A single qubit has an associated
quantum state |ψ〉 = (α0, α1)

T = α0|0〉 + α1|1〉. Here,
|0〉 = (1, 0)T and |1〉 = (0, 1)T are quantum analogons of
classical logic values 0 and 1, respectively. α0 and α1 are
complex numbers called amplitudes with |α0|2 + |α1|2 = 1.

A state may be modified by applying single-qubit quantum
gates. Each quantum gate corresponds to a complex unitary
matrix, and gate function is given by multiplying that matrix
with the quantum state.

The application of X gate to a state results in a bit flip:
X(α0, α1)

T = (α1, α0)
T . The application of the Z gate

results in a phase flip: Z(α0, α1)
T = (α0,−α1)

T . Bit and
phase flips are used for modelling the effects of errors on
the quantum state as qubit errors can be decomposed into
combination of bit and/or phase flips. Further important single-
qubit quantum gates, in the context of a universal, fully error-

corrected system, are H = 1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)
and

T =

(
1 0
0 ei

π
4

)
. Note that T 2 = P and P 2 = Z.



Quantum measurement is defined with respect to a basis
and yields one of the basis vectors with a probability related
to the amplitudes of the quantum state. Of importance in this
work are Z- and X-measurements. Z-measurement is defined
with respect to basis (|0〉, |1〉). Applying a Z-measurement to
a qubit in state |ψ〉 = α0|0〉+α1|1〉 yields |0〉 with probability
|α0|2 and |1〉 with probability |α1|2. Moreover, the state |ψ〉
collapses into the measured state. X-measurement is defined
with respect to the basis (|+〉, |−〉), where |+〉 = 1√

2
(|0〉+|1〉)

and |−〉 = 1√
2
(|0〉 − |1〉).

A n-qubit circuit processes states represented by 2n ampli-
tudes, αy , with y ∈ {0, 1}n and

∑
y |αy|2 = 1. Measuring

multiple qubits of a circuit results in one basis vector with
the probability given by the corresponding amplitude, |αy|2.
Quantum gates may act on several qubits simultaneously. A
gate that acts on n qubits is represented by a 2n×2n complex
unitary matrix. One important two-qubit gate is the controlled-
not CNOT(c, t) gate, where the c qubit conditionally flips the
state of the t qubits when set to |1〉.

III. FAULT-TOLERANT GATE SET

While every unitary complex matrix qualifies as a quantum
gate in the mathematical formalism, most implementation
technologies only allow a direct physical realisation of rela-
tively few gates [11], [12], [13], [14]. Therefore, universal gate
sets are of interest. This concept is similar to universal gate
libraries in digital circuit design, where each Boolean function
can be mapped to a circuit composed of, for instance, AND2
gates and inverters. One instance of a universal quantum gate
set is {CNOT,H, P, T}.

A key requirement for successful realisation of quantum
circuits is the ability to perform error correction during com-
putation [7]. States of actual quantum systems are inherently
fragile and are affected even by the slightest interaction with
their environment. Therefore, QECC introduces substantial
redundancy to compensate for impact on the quantum state.

A fault-tolerant gate for a given QECC acts directly on
encoded qubits and produces legal encodings with respect
to that QECC at its outputs. In self-checking design of
classical circuits, error-correcting codes with this property are
called closed with respect to the gate’s operation. The closure
property is advantageous because decoding and re-encoding
of codewords before and after operation are avoided. As a
consequence, a practical universal gate set should consist of
fault-tolerant gates that allow circuit operation with errors
continuously taking place.

IV. TELEPORATION-BASED QUANTUM COMPUTING

In this paper, we focus on a set of operations that can
be implemented in a fault-tolerant manner with respect to
several state-of-the-art QECC [8]. This set consists of the
CNOT gate and two state injection operations. State injection
refers to initializing a qubit in one of the two following states
|A〉 = 1√

2
(|0〉 + eiπ/4|1〉), |Y 〉 = 1√

2
(|0〉 + i|1〉). Using

these states and a technique called quantum teleportation,
it is possible to obtain the following three quantum gates:

|Y 〉 R4
x|φ〉

|φ〉 • X

(a)

|Y 〉 • R4
z|φ〉

|φ〉 Z

(b)

|A〉 • R4
z R8

z|φ〉

|φ〉 Z

(c)

Fig. 1: Teleportation circuits used for (a) R4
x, (b) R4

z , (c) R8
z

Rx(π/4) = 1√
2
(I + iX), Rz(π/4) = P and Rz(π/8) = T .

In the Bloch sphere representation of a quantum state, Rx(θ)
and Rz(θ) stand for a rotation around the X- and the Z-axis
by angle θ [6]. We use the following abbreviations for brevity:
R4
x := Rx(π/4);R

4
z := Rz(π/4) ≡ P ;R8

z := Rz(π/8) ≡ T .
Using the relationship H = R4

zR
4
xR

4
z , the complete universal

gate set {CNOT,H, P, T} can be obtained based on CNOT,
state injection and quantum teleportation. All these gates
are compatible with error-corrected, fault-tolerant computation
[8], [15]. However, quantum teleportation is probabilistic itself
and may require (classical) correction that will be tracked. This
is described in detail below.

The rotational gates R4
x, R4

z and R8
z are constructed by com-

bining state injection with quantum teleportation. Applying the
three employed rotational gates to an arbitrary state, |φ〉, by
quantum teleportation is shown in Fig. 1. An auxilliary qubit
is initialised in state |Y 〉 or |A〉 (depending on the desired
rotation), and a CNOT gate is applied at the qubit that holds
|φ〉 and the auxilliary qubit (the control and target qubits are
denoted by • and ⊕, respectively). Finally, a measurement
(either X or Z) is performed at the control output, indicated
in Fig. 1 by an encircled X or Z. The effect at the target
output is shown in Fig. 1
Gate R4

x : The X-measurement in circuit of Fig. 1a yields
either |+〉 or |−〉. In the former case, the rotation Rx(π/4) has
been performed correctly. If the measurement result is |−〉, the
applied rotation was Rx(−π/4). This is easily compensated
by performing another rotation by angle π/2, namely applying
the gate Rx(π/2) = X . Consequently, quantum teleportation
must be followed by executing the X gate if the measurement
result is |−〉. We call this X-correction.
Gate R4

z : The two possible Z-measurement results in Fig. 1b
are |0〉 and |1〉. The state |0〉 indicates a correct teleportation. A
measured state |1〉 is an indicator for the state |ψf 〉 = α1|0〉−
iα0|1〉 where the input state was |φ〉 = α0|0〉 + α1|1〉. In
order to obtain the correct state, a Z operation followed by
the X operation is applied, as it is easily verified that |ψ〉 =
XZ|ψf 〉 = α0|0〉 + iα1|1〉 = R4

z|φ〉. This operation is called
XZ correction.
Gate R8

z : This gate is implemented in two stages (see
Fig. 1c). The first teleporation maps state |A〉 to an intermedi-
ate state, which is then given to the R4

z gate from Fig. 1b
that also incorporates a teleportation. The following three
measurement outcomes have to be distinguished:

1) If the first measurement results in |0〉, no correction is
required.

2) If the first measurement results in |1〉, the output will
be used as input for a R4

z correctional rotation. If the



second measurement returns |1〉, no further corrections
are necessary.

3) If the first measurement returns |1〉 and the second mea-
surement yields |0〉, then an XZ correction is required.

The computation continuously requests new qubits (for
injections) and abandons the old ones (the measured qubits),
such that the total number of used logical qubits is n or n+1
(for R8

z) at any given time.

V. PAULI TRACKING ALGORITHM

In this section, we demonstrate how applying teleportation
output corrections can be postponed to the end of calculation
without losing accuracy, by considering circuits consisting
of CNOT gates and the three types of rotational gates (see
Fig. 1). Measurements are still performed during quantum
teleportation, however their outcomes are stored in a variable
rather than used for immediate correction. For each rotational
gate gi, variable bi holds the result of the measurement. Note
that bi ∈ {|+〉, |−〉} if gi is a R4

x gate, bi ∈ {|0〉, |1〉} if gi
is a R4

z gate, bi ∈ {|00〉, |01〉, |10〉, |11〉} if gi is a R8
z gate,

where pairs of values refer to the outcomes of two consecutive
measurements.

We derive an algorithm (see Algorithm 1) that calculates,
for a given combination of bi values, the vector of equivalent
output correction statuses S = (s1, . . . , sn). For qubit k,
sk assumes one of four values that indicate the required
corrections: I (no correction), X (X-correction, i.e., a bit flip),
Z (Z-correction, or a phase flip), and XZ (both X- and Z-
correction). The values in S are calculated such that running
a teleportation-based quantum computation without applying
corrections after the gates and applying the correction in S to
the obtained output state is equivalent to teleportation-based
quantum computing with immediate correction.
S is calculated by propagating (tracking) the correction sta-

tus (s1, . . . , sn) through the circuit. We introduce the correc-
tion status tracking function τ that formalises the propagation.

There are two versions of τ : one for CNOT gates and
for rotational gates. CNOT gates do not employ teleportation
and therefore require no corrections; however, corrections that
originated from rotational gates may show up at the inputs of
a CNOT gate and have to be propagated to its outputs. Let c
and t be the control and the target qubit of the CNOT gate,
and let sinc and sint be the correction statuses at the inputs
of these qubits, respectively. Then, τ(sinc , s

in
t ) produces a pair

of correction statuses (soutc , soutt ) at the outputs of the CNOT
gates by the following calculation:

soutc =

{
sinc if sint ∈ {I,X}
sinc ⊕ Z if sint ∈ {Z,XZ}

(1)

soutt =

{
sint if sinc ∈ {I, Z}
sint ⊕X if sinc ∈ {X,XZ}

(2)

Here, s⊕Z and s⊕X are flipping the status of the respective
correction in s, e.g. XZ ⊕ Z = X , X ⊕ Z = XZ.

For a rotational gate gi on qubit k, the τ function takes
the pre-stored measurement result bi and the correction status

TABLE I: Correction status tracking τ for rotational gates

gi sink bi soutk

R4
x

I
|+〉 I
|−〉 X

Z
|+〉 X
|−〉 I

X
|+〉 X
|−〉 Z

XZ
|+〉 I
|−〉 Z

R4
z

I
|0〉 I
|1〉 XZ

Z
|0〉 Z
|1〉 X

X
|0〉 XZ
|1〉 I

XZ
|0〉 X
|1〉 X

gi sink bi soutk

R8
z

I
|0∗〉 I
|10〉 XZ
|11〉 I

Z
|0∗〉 Z
|10〉 X
|11〉 Z

X
|00〉 XZ
|01〉 I
|1∗〉 I

XZ

|00〉 X
|01〉 Z
|10〉 X
|11〉 Z

Algorithm 1 Pauli tracking

Require: n-qubit quantum circuit with m gates g1, . . . , gm ∈
{CNOT,R4

x, R
4
z, R

8
x}, measurement results bi for every

rotational gate gi
Ensure: Equivalent output correction status S = (s1, . . . , sn)

1: s1 := s2 := · · · := sn := I;
2: for i := 1 to m do
3: if gi is a CNOT gate with control/target qubits c/t then
4: (sc, st) := τ(sc, st); // Use Eqs. 1, 2
5: else if gi is a rotational gate on qubit k then
6: sk := τ(sk, bi); // Use Table I
7: end if
8: end for
9: return S = (s1, . . . , sn);

sink at its input and calculates the correction status soutk at
its output. The values calculated by τ for the three types of
rotational gates considered are given in Table I.
Example: Consider the two-qubit circuit in Fig. 2. Assume
that teleportation-based quantum computing has been done
without applying corrections. The recorded measurement re-
sults bi and the calculated correction statuses S = (s1, s2) are
shown in in the following table.

i 1 2 3 4 5 6
gi R4

x CNOT R8
z CNOT R4

z R4
z

bi |+〉 n/a |10〉 n/a |0〉 |1〉
s1 I I I I Z Z X
s2 I I I XZ XZ X X

The correctness of the tracking algorithm is now formally
proven. The following two lemmas formulate the validity of
the τ function for the individual gates, and can be verified for
every combination of inputs for τ .

1 2 3 4 5 6

0 R4
x • • R4

z

1 R8
z R4

z

Fig. 2: Quantum circuit implemented using fault-tolerant gates



TABLE II: Run-times RT (in seconds) of the Pauli tracking
algorithm for circuits with n qubits and m quantum gates

n m RT n m RT n m RT
100 1000 0 1100 1000 0.011 5100 1000 0.052
100 5000 0.002 1100 5000 0.069 5100 5000 0.309
100 10000 0.004 1100 10000 0.128 5100 10000 0.709
100 20000 0.011 1100 20000 0.300 5100 20000 1.930
100 50000 0.030 1100 50000 0.680 5100 50000 5.435

Lemma 1 Let gi be a CNOT gate with correction status sinc
at its control and sint at its target input and (soutc , soutt ) =
τ(sinc , s

in
t ). Then, performing the sinc -correction at the control

input and the sint -correction at the target input followed by
application of CNOT is equivalent to applying the CNOT gate
first and performing soutc -correction at the control output and
the soutt -correction at the target output.
Proof for sinc = X, sint = I: According to Eqs. 1, 2,
(soutc , soutt ) = τ(X, I) = (X,X). Without loss of generality,
assume that the control and target qubit of the CNOT gate
are qubit 1 and 2 respectively. Then, the X-correction at
the control qubit is described by matrix X1 = X ⊗ I and
the X-correction at the target qubit is described by matrix
X2 = I ⊗X . Performing the corrections first followed by the
CNOT operation corresponds to the matrix CNOT · X1 · I
while the CNOT operation followed by the two corrections
are described by the matrix X1 · X2 · CNOT . All other
combinations can be calculated similarly. �
Lemma 2 Let g be a rotational gate, sin the correction status
at its input, b the outcome of the associated measurement and
sout = τ(sin, b) the tracked correction status at its output
according to Table I. Then, performing the sin correction,
applying g and performing, if needed, correction according to
b, yields the equivalent state as applying g first and performing
sout-correction.
Proof for gate R4

z , b = |1〉 und sin = Z: Since b = |1〉, regu-
lar teleportation-based computing requires an XZ-correction,
such that the following four operations are applied to the
state: Z for sin-correction; R4

z for gate functionality, and
XZ for the correction of the wrong rotation. From Table
I, sout = τ(Z, |1〉) = X for the gate in question. The
equivalence stated in the lemma is verified by showing that
XZR4

zZ = XR2
z . Other cases are checked similarly. �

Inductively applying the two lemmas to all gates in a circuit
leads to the validity of the following theorem.
Theorem 1 Applying corrections calculated by Algorithm 1
on the state obtained without performing immediate correc-
tions results in the same state as the state obtained when all
corrections are performed immediately. �

VI. SIMULATION RESULTS

We implemented the Pauli tracking algorithm and applied
it to a number of randomly generated quantum circuits with
n logical qubits and m gates from the considered gate set.
The results in Table II for n = 100 are indicative of
largest quantum circuits within reach of today’s state-of-the-
art technology and n = 1100 and n = 5100 are the expected

sizes of quantum computers within a decade. It can be seen
that Pauli tracking is fast and all calculations can be performed
within a few seconds for all cases.

The expected number of corrections without Pauli tracking
is 0.5 ·m4 + 0.75m8 ≈ m, where m4 is the number of gates
R4
x and R4

z and m8 is the number of gates R8
z The expected

number of corrections with Pauli tracking is bounded by n,
because corrections have to be performed on each output k
with sk 6= I . As most relevant circuits have far more gates
than qubits, Pauli tracking substantially reduces the overall
effort for corrections.

VII. CONCLUSIONS
We have presented an algorithm that can be used to perform

Pauli tracking on quantum circuits compatible with all major
classes of QECC. This result helps fill an important gap in
the classical control software needed for large-scale quantum
computation. Pauli tracking is instrumental for both error cor-
rection and for teleportation based protocols and this algorithm
is easily adjustable to incorporate the required tracking for a
specific implementation of quantum error correction. Future
work will be focused on adapting this algorithm to popular
error correction techniques such as Topological codes [9], [16]
which requires more intensive Pauli tracking due to very high
numbers of teleportation operations.
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