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Abstract—As fabrication processes exploit even deeper 

submicron technology, power dissipation has become a crucial 
issue for most electronic circuit and system designs nowadays. In 
particular, leakage power is becoming a dominant source of 
power consumption. Recently, the reconfigurable single-electron 
transistor (SET) array has been proposed as an emerging circuit 
design style for continuing Moore's Law due to its ultra-low 
power consumption. Several automated synthesis approaches 
have been developed for the reconfigurable SET array in the past 
few years. Nevertheless, all of those existing methods consider 
fabrication constraints, which are mandatory, merely in late 
synthesis stages. In this paper, we propose a synthesis algorithm, 
featuring both variable reordering and product term reordering, 
for area minimization. In addition, our algorithm takes those 
mandatory fabrication constraints into account in early stages 
for better outcomes. Experimental results show that our new 
method can achieve an area reduction of up to 24% as compared 
to current state-of-the-art techniques. 
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I. INTRODUCTION  
As manufacturing processes are constantly moving toward very 

deep submicron (VDSM) technology, the device feature size of 
CMOS technology is continuously scaling down. However, this trend 
also makes leakage power play a dominant role in system power 
dissipation [1]. To tackle the problem of leakage power, various 
emerging low-power devices have been developed in recent years. 
Among them, the single-electron transistor (SET) is regarded as one 
of the most promising devices since it can operate with only few 
electrons at room temperature [2][3][4]. 

One of the realizations of SET has been demonstrated as a three-
terminal device that looks very similar to a classical metal-oxide-
semiconductor field-effect transistor (MOSFET) [5][6]. The wrap-
gates are utilized to control the nanowires. Several studies have 
demonstrated that a SET can be operated in open, Coulomb blockades, 
and short mode at room temperature [7][8][9]. However, a SET device 
is suffering from low transconductance and degraded output resistance 
since only few electrons are involved in a switching operation. 
Consequently, a SET-based circuit must be designed in conjunction 
with non-CMOS logic architectures. A binary decision diagram (BDD) 
[10] based logic structure has been proposed as a feasible approach for 
realizing logic functions using SETs [11]. Since BDD is an alternate 
representation of the truth table, any Boolean function can be 
implemented through a proper mapping onto a hexagonal nanowire 
network controlled by Schottky wrap-gates [12][13][14]. 

A BDD-based hexagonal nanowire network can be assembled 
using a set of node devices, and Fig. 1 illustrates the structure of a 
node device. Each node device has one entry branch and two exit 

branches; messenger electrons arrive via the entry branch and then 
leave through either the left exit branch or the right one depending on 
the control variable of the wrap-gate. An exit branch is a segment of 
SET-controlled nanowire, and has four operating modes in terms of its 
conductivity: open, short, active-high, and active-low. In a hexagonal 
network, each row is controlled by the same logic variable. Hence, 
with the help of node devices, the BDD representation of a given logic 
function can be easily mapped onto a hexagonal network according to 
its inherent structure. The first real BDD-based hexagonal nanowire 
network has already been demonstrated in [13]. Nevertheless, it is a 
custom implementation without reconfiguration capability. Besides, it 
also suffers from low yield due to the high defect rate of nanowire 
segments. 

A reconfigurable SET array architecture using wrap-gate tunable 
tunnel barriers has been proposed to deal with these variability and 
reliability issues [15]. The architecture also presents two fabrication 
constraints, granularity constraint and symmetric fabric constraint. 
More technical details about the reconfigurable SET array will be 
reviewed in Section II. Given a Boolean function, the mapping orders 
of variables and product terms can significantly affect the final 
implementation on a SET array. Conventionally, the number of 
hexagons used during implementation is regarded as the required area. 
The first automated synthesis method targeting the reconfigurable SET 
array for area minimization was proposed in [16]. It merely deals with 
the ordering of product terms. However, experimental results show 
that the ordering of variables actually has a bigger impact on the 
optimization outcome than the ordering of product terms. An 
enhanced version of [16] was later presented in [17], and it thus takes 
the ordering of variables into account as well. Nevertheless, neither of 
the above two algorithms is aware of the two mandatory fabrication 
constraints before proceeding into the actual mapping stage. Therefore, 
in most cases, the actual mapping solution is far away from what is 
expected in earlier optimization stages. In addition, another synthesis 
approach tries to map a given function in a ladder shape to minimize 
the number of required hexagons [18]. However, consider the two 
different implementations of an identical design illustrated in Fig. 2, 
where the two implementations are assumed to consume the same 
number of hexagons but are in different widths. Note that two 
solutions must be in the same height since the height is solely 
determined by the number of variables. Since a mapped circuit is 
inherently bell-shaped in a SET array, those unused hexagons in the 
upper portion of one mapped function, in fact, cannot be utilized by 
other mapped functions either. Consequently, in our opinion, 
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Figure 1. (a) Structural and (b) logical representations of a node device. 



minimizing the width of the mapped circuit is more advantageous than 
minimizing the number of hexagons because it is obvious that the 
circuit width can better estimate the area than the hexagon count. 
Though the prior art [18] can effectively reduce the number of 
hexagons, the reduction in width is not that significant. 

In this paper, we propose a synthesis algorithm for area 
minimization in terms of circuit width. Moreover, the two fabrication 
constraints are always considered throughout our approach as well. 
The key idea of the proposed algorithm is to maximize hexagon and 
path sharing during logic mapping. It consists of two primary stages: 
variable ordering and product term ordering. An input variable 
controls the behaviors (on/off) of all SETs at the same row in a SET 
array. Hence, at first, the proposed method gradually determines a 
proper variable ordering to maximize path sharing among product 
terms for width reduction. Next, product terms are mapped into a SET 
array sequentially, and the outcome is order dependent. The proposed 
product term ordering method can dynamically pick the best 
unmapped one that potentially achieves maximal path sharing with 
those mapped ones. Besides, the two fabrication constraints are 
constantly considered in both stages so that the mapping result is very 
close to what is estimated during optimization. 

The rest of this paper is organized as follows. In Section II, we 
briefly introduce the architecture of reconfigurable SET array and give 
the problem formulation. Section III and Section IV propose our 
variable ordering and product term ordering methods for area 
minimization, respectively. Experimental results and analyses are then 
reported and discussed in Section V. Finally, a few concluding 
remarks are given in Section VI. 

II. PRELIMINARIES AND PROBLEM FORMULATION 
The reconfigurable SET array is proposed to tackle the issues of 

variability as well as reliability [15]. Fig. 3(a) illustrates the structure 
of the target reconfigurable SET array, which can be further divided 
into three layers. The bottom layer is the device layer, where the 
regular hexagonal network is composed of identical node devices. The 
middle layer is used to configure the operation mode of every SET. 
Each edge (SET) of a node device can be freely configured to one of 
three modes: active, short, or open. Meanwhile, input signals are 
connected to SETs via the top layer, and control whether an active 
SET is on or off. Each row of SETs in the bottom layer is controlled 
by the same input. 

In a fully-customized design, every SET can be configured to one 
of three operation modes independently. Nevertheless, to effectively 
reduce the array size, the target architecture imposes two limitations at 
fabrication time for a significant area reduction just at the cost of a bit 
flexibility loss [15]. Those two fabrication constraints are granularity 
constraint and symmetric fabric constraint. As mentioned, each SET 
can be freely configured in a customized design. However, in that case, 
each SET requires its own configuration wires, and those metal wires 
physically dominate the array size. To reduce the array size, the 
granularity constraint enforces that a pair of SETs within the same 
node device, named a caret, share the same set of configuration wires. 
As for the price, two SETs in a caret must operate in the same mode, 
which lowers the flexibility. Besides, to implement a BDD-like 
conditional branch using a caret, it is natural to control those two 

SETs with a variable and its complement. Though each caret can have 
its own choice, it is actually an architectural decision since the 
hardware wiring must be fixed at fabrication time. A study examines 
several architectural alternatives and concludes that the symmetric 
fabric, as shown in Fig. 3(b), generally leads to a better synthesis 
outcome [15]. In fact, there are only three types of carets available 
under those two constraints, as depicted in Fig. 3(c). It is crucial that a 
synthesis algorithm should be fully aware of those two constraints, or 
the area minimization process is very likely to be misguided. 

In this paper, we propose a fabrication-constraint-aware area-
minimization synthesis algorithm for the reconfigurable SET array. 
More specifically, given a Boolean function represented by a set of 
disjoint product terms, the proposed constraint-aware algorithm can 
determine a proper ordering of variables and product terms such that 
the width of mapped circuit is minimized. 

III. VARIABLE (COLUMN) ORDERING 
The synthesis process is to allocate a path for every product term 

one-by-one from a single current detector at the top to current sources 
at the bottom, and each level is controlled by a different input variable. 
The orders of variables and product terms do affect the mapping result. 
Hence, the key objective of the proposed algorithm is to achieve more 
hexagon and partial path sharing among various product terms 
through finding good variable and product term orderings. 

A set of disjoint product terms can also be represented by a matrix, 
in which each row specifies a product term and each column 
represents a variable. Therefore, variable ordering is actually identical 
to column ordering in the matrix. The proposed fabrication-constraint-
aware column ordering method can be further divided into two steps: 
first column determination and next column determination. 

A. First Column Determination 
There is a special concern while choosing a variable as the first 

column. Due to the granularity constraint, the first caret in a mapped 
path cannot be an s-caret, which implies the first column in a row 
cannot be a don’t-care (–). If a row begins with a don’t-care, it must 
be split into two rows starting with 1 and 0, respectively. Obviously, 
this should be avoided since more product terms generally lead to a 
bigger circuit. In addition, it is preferred that the counts of 1’s and 0’s 
in the first column are as unequal as possible because it generally 
implies most rows heads toward the same branch edge (1 or 0), which 
increases chances for further partial path sharing. Therefore, for each 
column c, our method first counts the numbers of 0’s, 1’s, and –’s, 
denoted as n0(c), n1(c), and n-(c), respectively. To reduce the count of 
–’s as well as to increase the unbalance between 0’s and 1’s, the skew 
value of column c is defined as sv(c) = max(n0(c), n1(c)) – n-(c). The 
column with the largest skew value is then selected as the first column. 

 
Figure 2. Different outlines of mapped circuits in SET arrays. 

 
Figure 3. (a) Architecture of reconfigurable SET array, 

(b) symmetric fabric constraint, and (c) three types of carets. 



B. Next Column Determination 
In this step, the proposed method sequentially determines the 

next column k+1 one by one based on the previously determined 
column k. Bit values of two columns k and k+1 in a same row form a 
bit pair. Since each bit can be 0, 1, or –, there are nine possible 
combinations for a bit pair. We intend to figure out the relationship 
between the bit pairs of two consecutive mapped rows and evaluate 
how good the possibility of partial path sharing is for each bit pair. 
Due to the symmetric fabric constraint, invalid paths may be 
accidentally created during mapping. To correct such kind of errors, 
expansions are hence inevitably required. However, those expansions 
apparently increase the width of mapped circuit. Consequently, the 
objective of this step is to find a proper variable as the next column 
so that the need for expansions can be greatly minimized. 

The term b(i, j) is defined as the bit value of row i and column j in 
the matrix representation of a logic function. Similarly, bp(i, j, k) 
represents the bit pair of column j and k in row i. Given two bit pairs 
bp1 and bp2, the possible situations between them during the mapping 
process can be classified into three categories: a) expansion is always 
required, b) expansion may or may not be required, and c) expansion 
is never required. A function score(bp1, bp2) is therefore defined to 
assign appropriate scores (0~2) based on the above classification. It 
represents the safety score between two associated bit pairs. A score 
of 2 guarantees that the bit pair bp2 never causes an expansion with 
respect to bp1; a score of 1 implies that bp2 occasionally causes an 
expansion with respect to bp1; similarly, a score of 0 indicates that bp2 
always causes an expansion with respect to bp1. In order to evaluate 
how good the chance for partial path sharing between two columns p 
and q, the neighborhood gain between them is further defined as: 

𝑛𝑔(𝑝, 𝑞) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑏𝑝(𝑥, 𝑝, 𝑞), 𝑏𝑝(𝑦,𝑝, 𝑞))1≤𝑥<𝑦≤|𝑅| , (1) 

where |R| is the total number of rows (product terms). A high value of 
ng(p, q) suggests column q is generally a very good neighbor for 
column p in terms of area minimization. The reason for summing up 
scores for all possible row pairs is that the row ordering is not 
determined yet at this point. With the help of ng(p, q), the proposed 
method can gradually complete the column ordering by selecting only 
one most appropriate variable at a time. Assume variable p has just 
been selected as column k, k ≥ 1, and Q is the set containing those 
variables q that have not been selected yet. Our method examines all 
the neighborhood gains between p and every candidate variable q and 
then picks the one with the highest gain as column k+1. This process 
is not terminated until the complete column ordering is finalized. 

IV. PRODUCT TERM (ROW) ORDERING 
In this section, we present a dynamic approach to determine the 

row ordering. Since the synthesis process maps those product terms to 
a SET array in downward order starting from the top one, the order of 
rows in a matrix is actually the mapping order of product terms during 
implementation. Most of previous works use static heuristic 
approaches to determine the row ordering. In contrast, our approach 
adopts a dynamic iterative approach instead. At each iteration, our 
method dynamically just selects the next mapping row that has the 
most potential for circuit width reduction based on the current 
intermediate mapping result. Hence, our on-the-fly ordering strategy 
can generally achieve a better mapping outcome. 

Due to the fabrication constraints, two branch edges in a caret 
must be configured simultaneously in the mapping process. However, 
only one of them is occasionally required to form the path for the 
target product term. Hence, the key idea of the proposed method is to 
utilize those configured-but-not-in-use edges, created in previous 
iterations, for circuit width minimization. Similarly, the proposed 
dynamic row ordering algorithm can be further divided into two steps: 
first row determination and next row determination. 

A. First Row Determination 
An interesting observation from the mapping outcome is that 

don’t-cares in different positions of a product term make different 
degrees of impact on the mapping area; in general, the more forward 
the don’t-care, the larger the area. To summarize the overall impact 
for a product term p, the don’t-care weight of p, dw(p), is defined as: 

𝑑𝑤(𝑝) = ∑ 𝑏𝑝𝑤(𝑗).𝑏𝑖𝑡 𝑗 𝑖𝑠 𝑎 𝑑𝑜𝑛′𝑡−𝑐𝑎𝑟𝑒   (2) 

bpw(j) represents the bit position weight of the jth bit and is defined as 
bpw(j) = |C| – j + 1, where |C| denotes the number of columns 
(variables). After calculating don’t-care weights for all rows, the row 
with the smallest weight is thus selected to be the first for mapping.  

B. Next Row Determination 
As aforementioned, two branch edges of a caret are configured 

simultaneously during mapping, but only one is required occasionally. 
Hence, there are many unterminated paths, named dangling paths, in 
the middle of mapping process. For the sake of area minimization, it 
would be a big plus if the upcoming path for the next product term can 
utilize one of those dangling paths (i.e., path sharing). Consequently, 
the proposed method keeps track of all dangling paths throughout the 
mapping process and records those path prefixes into a prefix table. At 
each iteration, our method examines if there are matches between 
unmapped rows and known path prefixes in decreasing order of path 
length. Once a match is found, our method further checks whether the 
matched row can be successfully mapped without introducing extra 
expansions. If it is the case, that matched row would be formally 
accepted for mapping. Unfortunately, if all unmapped rows fail to pass 
the above qualification, the one with the smallest don’t-care weight 
would be selected for mapping instead. At the end of the iteration, the 
prefix table is updated according to the current mapped circuit. This 
process is not terminated until all rows are mapped. 

At the end of this section, Fig. 4 illustrates the overall flow. It 
takes a set of disjoint sum-of-product terms as input at the beginning. 
Next, it gradually completes the variable ordering for circuit width 
minimization under the two mandatory fabrication constraints. Then, 
it adopts an on-the-fly strategy to maximize path sharing while 
dynamically mapping product terms into a SET array one by one. 

V.  EXPERIMENTAL RESULTS 
The proposed algorithm has been implemented in C++/Linux. To 

evaluate the proposed method we compare it against two prior 
synthesis techniques [17][18]. A set of 21 test cases are selected from 
the MCNC benchmark suite [19] for the experiments and the results 
are presented in Table 1. The first column lists the names of test cases; 
the second and the third give the numbers of primary inputs and 
primary outputs, respectively. The forth column shows the number of 
disjoint product terms of a test case, which is obtained from its 
ROBDD [20]. We have re-implemented the method proposed in [17] 
because no width data are reported in [17]. Meanwhile, the results of 
the approach presented in [18] are directly quoted since the width data 
are already available. As mentioned previously, circuit width should 
be a better indicator for the required area than the hexagon count. 
Hence, the circuit width would be the primary comparison factor here 
though the number of hexagons is also reported for reference. Note 
that both of the methods in [17] and [18] focus on hexagon 
minimization rather than circuit width. 

 
 

Figure 4. The overall flow of the proposed algorithm. 



The overall experimental results show that our approach can 
achieve a reduction of circuit width by 19% and 24% on average as 
compared to [17] and [18], respectively. Furthermore, our method 
performs better than [17] in both circuit width and hexagon count. The 
comparisons between our method and [18] are a bit interesting. The 
work [18] tries to minimize the number of required hexagons by 
mapping the circuit in the fashion illustrated in Fig. 2(b). Though that 
strategy can effectively decrease the hexagon count, it also leads to an 
increase of the circuit width. Both of the comparisons between our 
method and [18] as well as between [17] and [18] draw the same 
conclusion. Therefore, it is no doubt that our method should be 
considered better in terms of area (width) minimization. Regarding the 
runtime efficiency, our method can finish the synthesis task in one 
second for each of test cases. It confirms that the better synthesis 
outcome does not come from the increase of runtime. Consequently, it 
is conclusive that the proposed algorithm can efficiently offer a better 
area-minimized synthesis solution than the prior arts. 

VI. CONCLUSION 
In this paper, we address the issue of synthesis for the 

reconfigurable SET array. We first point out that the circuit width can 
better estimate the actual area required by a mapped circuit than the 
conventionally-used hexagon count. We also propose a synthesis 
algorithm for area minimization. The algorithm is fully aware of the 
two mandatory fabrication constraints, granularity constraint and 
symmetric fabric constraint, throughout the entire synthesis process. It 
consists of two major phases, the constraint-aware column ordering 
for width reduction with the help of skew value and neighborhood 
gain, as well as the dynamic row ordering for path sharing by means 
of don’t-care weight and prefix table. The experimental results 
demonstrate that the proposed method achieves 19% and 24% 
reduction of circuit width as compared to [17] and [18], respectively. 
Consequently, it is convincing that our approach should be a better 
solution for area minimization synthesis targeting the reconfigurable 
SET array. 
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Benchmark Proposed Method [17] (re-implemented) [18] (quoted) 
Name PI PO PT Width Nhex Runtime (s) Width Nhex Runtime (s) Width Nhex Runtime (s) 
c17 5 2 8 22 45 0.00 29 83 0.00 31 54 0.09 

cm138a 6 8 48 129 332 0.01 310 1029 0.00 199 460 0.10 
x2 10 7 40 122 498 0.02 170 850 0.00 134 397 0.10 

cm151a 12 2 17 75 372 0.00 112 668 0.00 109 521 0.09 
cm162a 14 5 41 152 849 0.01 156 1045 0.00 156 578 0.09 

cu 14 11 23 95 285 0.01 96 512 0.00 103 415 0.09 
cmb 16 4 26 55 80 0.00 111 695 0.00 122 376 0.09 

cm163a 16 5 31 114 647 0.02 129 939 0.00 113 391 0.09 
pm1 16 13 49 136 591 0.02 164 1085 0.00 156 586 0.10 
pcle 19 9 45 116 581 0.02 164 1323 0.00 183 751 0.10 
sct 19 15 153 439 3521 0.05 608 5544 0.02 620 3168 0.11 
cc 21 20 53 193 1180 0.01 206 1793 0.00 191 1040 0.09 
i1 25 16 38 97 322 0.01 168 1617 0.01 159 1190 0.09 
lal 26 19 171 543 5455 0.06 591 6883 0.04 613 3312 0.11 

pcler8 27 17 67 234 1756 0.04 256 2713 0.01 315 1920 0.10 
c8 28 18 85 249 2208 0.05 298 3465 0.02 427 2026 0.11 

count 35 16 200 444 3844 0.07 754 11329 0.05 755 4590 0.15 
unreg 36 16 48 194 2424 0.03 213 3061 0.01 257 1515 0.11 

b9 41 21 376 1190 20674 0.26 1375 26003 15.20 1520 9112 0.24 
cht 47 36 81 340 3528 0.06 345 6206 0.02 349 3556 0.13 

example2 85 66 447 1144 23964 0.49 1280 42332 0.66 1517 14402 0.50 
Total - - - 6083 73156 1.24 7535 119175 16.04 8029 50360 2.68 

Table 1. Comparisons among the proposed method, [17], and [18]. 

 
 
 
 
 
 


