
Area Minimization Synthesis for Reconfigurable
Single-Electron Transistor Arrays with Fabrication Constraints

Yi-Hang Chen, Jian-Yu Chen and Juinn-Dar Huang
Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University, Hsinchu, Taiwan
{carlok, M100cychen}@adar.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract—As fabrication processes exploit even deeper

submicron technology, power dissipation has become a crucial
issue for most electronic circuit and system designs nowadays. In
particular, leakage power is becoming a dominant source of
power consumption. Recently, the reconfigurable single-electron
transistor (SET) array has been proposed as an emerging circuit
design style for continuing Moore's Law due to its ultra-low
power consumption. Several automated synthesis approaches
have been developed for the reconfigurable SET array in the past
few years. Nevertheless, all of those existing methods consider
fabrication constraints, which are mandatory, merely in late
synthesis stages. In this paper, we propose a synthesis algorithm,
featuring both variable reordering and product term reordering,
for area minimization. In addition, our algorithm takes those
mandatory fabrication constraints into account in early stages
for better outcomes. Experimental results show that our new
method can achieve an area reduction of up to 24% as compared
to current state-of-the-art techniques.

Keywords—single-electron transistor; automatic synthesis;
reconfigurable; area minimization; binary decision diagram.

I. INTRODUCTION
As manufacturing processes are constantly moving toward very

deep submicron (VDSM) technology, the device feature size of
CMOS technology is continuously scaling down. However, this trend
also makes leakage power play a dominant role in system power
dissipation [1]. To tackle the problem of leakage power, various
emerging low-power devices have been developed in recent years.
Among them, the single-electron transistor (SET) is regarded as one
of the most promising devices since it can operate with only few
electrons at room temperature [2][3][4].

One of the realizations of SET has been demonstrated as a three-
terminal device that looks very similar to a classical metal-oxide-
semiconductor field-effect transistor (MOSFET) [5][6]. The wrap-
gates are utilized to control the nanowires. Several studies have
demonstrated that a SET can be operated in open, Coulomb blockades,
and short mode at room temperature [7][8][9]. However, a SET device
is suffering from low transconductance and degraded output resistance
since only few electrons are involved in a switching operation.
Consequently, a SET-based circuit must be designed in conjunction
with non-CMOS logic architectures. A binary decision diagram (BDD)
[10] based logic structure has been proposed as a feasible approach for
realizing logic functions using SETs [11]. Since BDD is an alternate
representation of the truth table, any Boolean function can be
implemented through a proper mapping onto a hexagonal nanowire
network controlled by Schottky wrap-gates [12][13][14].

A BDD-based hexagonal nanowire network can be assembled
using a set of node devices, and Fig. 1 illustrates the structure of a
node device. Each node device has one entry branch and two exit

branches; messenger electrons arrive via the entry branch and then
leave through either the left exit branch or the right one depending on
the control variable of the wrap-gate. An exit branch is a segment of
SET-controlled nanowire, and has four operating modes in terms of its
conductivity: open, short, active-high, and active-low. In a hexagonal
network, each row is controlled by the same logic variable. Hence,
with the help of node devices, the BDD representation of a given logic
function can be easily mapped onto a hexagonal network according to
its inherent structure. The first real BDD-based hexagonal nanowire
network has already been demonstrated in [13]. Nevertheless, it is a
custom implementation without reconfiguration capability. Besides, it
also suffers from low yield due to the high defect rate of nanowire
segments.

A reconfigurable SET array architecture using wrap-gate tunable
tunnel barriers has been proposed to deal with these variability and
reliability issues [15]. The architecture also presents two fabrication
constraints, granularity constraint and symmetric fabric constraint.
More technical details about the reconfigurable SET array will be
reviewed in Section II. Given a Boolean function, the mapping orders
of variables and product terms can significantly affect the final
implementation on a SET array. Conventionally, the number of
hexagons used during implementation is regarded as the required area.
The first automated synthesis method targeting the reconfigurable SET
array for area minimization was proposed in [16]. It merely deals with
the ordering of product terms. However, experimental results show
that the ordering of variables actually has a bigger impact on the
optimization outcome than the ordering of product terms. An
enhanced version of [16] was later presented in [17], and it thus takes
the ordering of variables into account as well. Nevertheless, neither of
the above two algorithms is aware of the two mandatory fabrication
constraints before proceeding into the actual mapping stage. Therefore,
in most cases, the actual mapping solution is far away from what is
expected in earlier optimization stages. In addition, another synthesis
approach tries to map a given function in a ladder shape to minimize
the number of required hexagons [18]. However, consider the two
different implementations of an identical design illustrated in Fig. 2,
where the two implementations are assumed to consume the same
number of hexagons but are in different widths. Note that two
solutions must be in the same height since the height is solely
determined by the number of variables. Since a mapped circuit is
inherently bell-shaped in a SET array, those unused hexagons in the
upper portion of one mapped function, in fact, cannot be utilized by
other mapped functions either. Consequently, in our opinion,

978-3-9815370-2-4/DATE14/©2014 EDAA

Figure 1. (a) Structural and (b) logical representations of a node device.

minimizing the width of the mapped circuit is more advantageous than
minimizing the number of hexagons because it is obvious that the
circuit width can better estimate the area than the hexagon count.
Though the prior art [18] can effectively reduce the number of
hexagons, the reduction in width is not that significant.

In this paper, we propose a synthesis algorithm for area
minimization in terms of circuit width. Moreover, the two fabrication
constraints are always considered throughout our approach as well.
The key idea of the proposed algorithm is to maximize hexagon and
path sharing during logic mapping. It consists of two primary stages:
variable ordering and product term ordering. An input variable
controls the behaviors (on/off) of all SETs at the same row in a SET
array. Hence, at first, the proposed method gradually determines a
proper variable ordering to maximize path sharing among product
terms for width reduction. Next, product terms are mapped into a SET
array sequentially, and the outcome is order dependent. The proposed
product term ordering method can dynamically pick the best
unmapped one that potentially achieves maximal path sharing with
those mapped ones. Besides, the two fabrication constraints are
constantly considered in both stages so that the mapping result is very
close to what is estimated during optimization.

The rest of this paper is organized as follows. In Section II, we
briefly introduce the architecture of reconfigurable SET array and give
the problem formulation. Section III and Section IV propose our
variable ordering and product term ordering methods for area
minimization, respectively. Experimental results and analyses are then
reported and discussed in Section V. Finally, a few concluding
remarks are given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION
The reconfigurable SET array is proposed to tackle the issues of

variability as well as reliability [15]. Fig. 3(a) illustrates the structure
of the target reconfigurable SET array, which can be further divided
into three layers. The bottom layer is the device layer, where the
regular hexagonal network is composed of identical node devices. The
middle layer is used to configure the operation mode of every SET.
Each edge (SET) of a node device can be freely configured to one of
three modes: active, short, or open. Meanwhile, input signals are
connected to SETs via the top layer, and control whether an active
SET is on or off. Each row of SETs in the bottom layer is controlled
by the same input.

In a fully-customized design, every SET can be configured to one
of three operation modes independently. Nevertheless, to effectively
reduce the array size, the target architecture imposes two limitations at
fabrication time for a significant area reduction just at the cost of a bit
flexibility loss [15]. Those two fabrication constraints are granularity
constraint and symmetric fabric constraint. As mentioned, each SET
can be freely configured in a customized design. However, in that case,
each SET requires its own configuration wires, and those metal wires
physically dominate the array size. To reduce the array size, the
granularity constraint enforces that a pair of SETs within the same
node device, named a caret, share the same set of configuration wires.
As for the price, two SETs in a caret must operate in the same mode,
which lowers the flexibility. Besides, to implement a BDD-like
conditional branch using a caret, it is natural to control those two

SETs with a variable and its complement. Though each caret can have
its own choice, it is actually an architectural decision since the
hardware wiring must be fixed at fabrication time. A study examines
several architectural alternatives and concludes that the symmetric
fabric, as shown in Fig. 3(b), generally leads to a better synthesis
outcome [15]. In fact, there are only three types of carets available
under those two constraints, as depicted in Fig. 3(c). It is crucial that a
synthesis algorithm should be fully aware of those two constraints, or
the area minimization process is very likely to be misguided.

In this paper, we propose a fabrication-constraint-aware area-
minimization synthesis algorithm for the reconfigurable SET array.
More specifically, given a Boolean function represented by a set of
disjoint product terms, the proposed constraint-aware algorithm can
determine a proper ordering of variables and product terms such that
the width of mapped circuit is minimized.

III. VARIABLE (COLUMN) ORDERING
The synthesis process is to allocate a path for every product term

one-by-one from a single current detector at the top to current sources
at the bottom, and each level is controlled by a different input variable.
The orders of variables and product terms do affect the mapping result.
Hence, the key objective of the proposed algorithm is to achieve more
hexagon and partial path sharing among various product terms
through finding good variable and product term orderings.

A set of disjoint product terms can also be represented by a matrix,
in which each row specifies a product term and each column
represents a variable. Therefore, variable ordering is actually identical
to column ordering in the matrix. The proposed fabrication-constraint-
aware column ordering method can be further divided into two steps:
first column determination and next column determination.

A. First Column Determination
There is a special concern while choosing a variable as the first

column. Due to the granularity constraint, the first caret in a mapped
path cannot be an s-caret, which implies the first column in a row
cannot be a don’t-care (–). If a row begins with a don’t-care, it must
be split into two rows starting with 1 and 0, respectively. Obviously,
this should be avoided since more product terms generally lead to a
bigger circuit. In addition, it is preferred that the counts of 1’s and 0’s
in the first column are as unequal as possible because it generally
implies most rows heads toward the same branch edge (1 or 0), which
increases chances for further partial path sharing. Therefore, for each
column c, our method first counts the numbers of 0’s, 1’s, and –’s,
denoted as n0(c), n1(c), and n-(c), respectively. To reduce the count of
–’s as well as to increase the unbalance between 0’s and 1’s, the skew
value of column c is defined as sv(c) = max(n0(c), n1(c)) – n-(c). The
column with the largest skew value is then selected as the first column.

Figure 2. Different outlines of mapped circuits in SET arrays.

Figure 3. (a) Architecture of reconfigurable SET array,

(b) symmetric fabric constraint, and (c) three types of carets.

B. Next Column Determination
In this step, the proposed method sequentially determines the

next column k+1 one by one based on the previously determined
column k. Bit values of two columns k and k+1 in a same row form a
bit pair. Since each bit can be 0, 1, or –, there are nine possible
combinations for a bit pair. We intend to figure out the relationship
between the bit pairs of two consecutive mapped rows and evaluate
how good the possibility of partial path sharing is for each bit pair.
Due to the symmetric fabric constraint, invalid paths may be
accidentally created during mapping. To correct such kind of errors,
expansions are hence inevitably required. However, those expansions
apparently increase the width of mapped circuit. Consequently, the
objective of this step is to find a proper variable as the next column
so that the need for expansions can be greatly minimized.

The term b(i, j) is defined as the bit value of row i and column j in
the matrix representation of a logic function. Similarly, bp(i, j, k)
represents the bit pair of column j and k in row i. Given two bit pairs
bp1 and bp2, the possible situations between them during the mapping
process can be classified into three categories: a) expansion is always
required, b) expansion may or may not be required, and c) expansion
is never required. A function score(bp1, bp2) is therefore defined to
assign appropriate scores (0~2) based on the above classification. It
represents the safety score between two associated bit pairs. A score
of 2 guarantees that the bit pair bp2 never causes an expansion with
respect to bp1; a score of 1 implies that bp2 occasionally causes an
expansion with respect to bp1; similarly, a score of 0 indicates that bp2
always causes an expansion with respect to bp1. In order to evaluate
how good the chance for partial path sharing between two columns p
and q, the neighborhood gain between them is further defined as:

𝑛𝑔(𝑝, 𝑞) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑏𝑝(𝑥, 𝑝, 𝑞), 𝑏𝑝(𝑦,𝑝, 𝑞))1≤𝑥<𝑦≤|𝑅| , (1)

where |R| is the total number of rows (product terms). A high value of
ng(p, q) suggests column q is generally a very good neighbor for
column p in terms of area minimization. The reason for summing up
scores for all possible row pairs is that the row ordering is not
determined yet at this point. With the help of ng(p, q), the proposed
method can gradually complete the column ordering by selecting only
one most appropriate variable at a time. Assume variable p has just
been selected as column k, k ≥ 1, and Q is the set containing those
variables q that have not been selected yet. Our method examines all
the neighborhood gains between p and every candidate variable q and
then picks the one with the highest gain as column k+1. This process
is not terminated until the complete column ordering is finalized.

IV. PRODUCT TERM (ROW) ORDERING
In this section, we present a dynamic approach to determine the

row ordering. Since the synthesis process maps those product terms to
a SET array in downward order starting from the top one, the order of
rows in a matrix is actually the mapping order of product terms during
implementation. Most of previous works use static heuristic
approaches to determine the row ordering. In contrast, our approach
adopts a dynamic iterative approach instead. At each iteration, our
method dynamically just selects the next mapping row that has the
most potential for circuit width reduction based on the current
intermediate mapping result. Hence, our on-the-fly ordering strategy
can generally achieve a better mapping outcome.

Due to the fabrication constraints, two branch edges in a caret
must be configured simultaneously in the mapping process. However,
only one of them is occasionally required to form the path for the
target product term. Hence, the key idea of the proposed method is to
utilize those configured-but-not-in-use edges, created in previous
iterations, for circuit width minimization. Similarly, the proposed
dynamic row ordering algorithm can be further divided into two steps:
first row determination and next row determination.

A. First Row Determination
An interesting observation from the mapping outcome is that

don’t-cares in different positions of a product term make different
degrees of impact on the mapping area; in general, the more forward
the don’t-care, the larger the area. To summarize the overall impact
for a product term p, the don’t-care weight of p, dw(p), is defined as:

𝑑𝑤(𝑝) = ∑ 𝑏𝑝𝑤(𝑗).𝑏𝑖𝑡 𝑗 𝑖𝑠 𝑎 𝑑𝑜𝑛′𝑡−𝑐𝑎𝑟𝑒 (2)

bpw(j) represents the bit position weight of the jth bit and is defined as
bpw(j) = |C| – j + 1, where |C| denotes the number of columns
(variables). After calculating don’t-care weights for all rows, the row
with the smallest weight is thus selected to be the first for mapping.

B. Next Row Determination
As aforementioned, two branch edges of a caret are configured

simultaneously during mapping, but only one is required occasionally.
Hence, there are many unterminated paths, named dangling paths, in
the middle of mapping process. For the sake of area minimization, it
would be a big plus if the upcoming path for the next product term can
utilize one of those dangling paths (i.e., path sharing). Consequently,
the proposed method keeps track of all dangling paths throughout the
mapping process and records those path prefixes into a prefix table. At
each iteration, our method examines if there are matches between
unmapped rows and known path prefixes in decreasing order of path
length. Once a match is found, our method further checks whether the
matched row can be successfully mapped without introducing extra
expansions. If it is the case, that matched row would be formally
accepted for mapping. Unfortunately, if all unmapped rows fail to pass
the above qualification, the one with the smallest don’t-care weight
would be selected for mapping instead. At the end of the iteration, the
prefix table is updated according to the current mapped circuit. This
process is not terminated until all rows are mapped.

At the end of this section, Fig. 4 illustrates the overall flow. It
takes a set of disjoint sum-of-product terms as input at the beginning.
Next, it gradually completes the variable ordering for circuit width
minimization under the two mandatory fabrication constraints. Then,
it adopts an on-the-fly strategy to maximize path sharing while
dynamically mapping product terms into a SET array one by one.

V. EXPERIMENTAL RESULTS
The proposed algorithm has been implemented in C++/Linux. To

evaluate the proposed method we compare it against two prior
synthesis techniques [17][18]. A set of 21 test cases are selected from
the MCNC benchmark suite [19] for the experiments and the results
are presented in Table 1. The first column lists the names of test cases;
the second and the third give the numbers of primary inputs and
primary outputs, respectively. The forth column shows the number of
disjoint product terms of a test case, which is obtained from its
ROBDD [20]. We have re-implemented the method proposed in [17]
because no width data are reported in [17]. Meanwhile, the results of
the approach presented in [18] are directly quoted since the width data
are already available. As mentioned previously, circuit width should
be a better indicator for the required area than the hexagon count.
Hence, the circuit width would be the primary comparison factor here
though the number of hexagons is also reported for reference. Note
that both of the methods in [17] and [18] focus on hexagon
minimization rather than circuit width.

Figure 4. The overall flow of the proposed algorithm.

The overall experimental results show that our approach can
achieve a reduction of circuit width by 19% and 24% on average as
compared to [17] and [18], respectively. Furthermore, our method
performs better than [17] in both circuit width and hexagon count. The
comparisons between our method and [18] are a bit interesting. The
work [18] tries to minimize the number of required hexagons by
mapping the circuit in the fashion illustrated in Fig. 2(b). Though that
strategy can effectively decrease the hexagon count, it also leads to an
increase of the circuit width. Both of the comparisons between our
method and [18] as well as between [17] and [18] draw the same
conclusion. Therefore, it is no doubt that our method should be
considered better in terms of area (width) minimization. Regarding the
runtime efficiency, our method can finish the synthesis task in one
second for each of test cases. It confirms that the better synthesis
outcome does not come from the increase of runtime. Consequently, it
is conclusive that the proposed algorithm can efficiently offer a better
area-minimized synthesis solution than the prior arts.

VI. CONCLUSION
In this paper, we address the issue of synthesis for the

reconfigurable SET array. We first point out that the circuit width can
better estimate the actual area required by a mapped circuit than the
conventionally-used hexagon count. We also propose a synthesis
algorithm for area minimization. The algorithm is fully aware of the
two mandatory fabrication constraints, granularity constraint and
symmetric fabric constraint, throughout the entire synthesis process. It
consists of two major phases, the constraint-aware column ordering
for width reduction with the help of skew value and neighborhood
gain, as well as the dynamic row ordering for path sharing by means
of don’t-care weight and prefix table. The experimental results
demonstrate that the proposed method achieves 19% and 24%
reduction of circuit width as compared to [17] and [18], respectively.
Consequently, it is convincing that our approach should be a better
solution for area minimization synthesis targeting the reconfigurable
SET array.

REFERENCES
[1] ITRS, Semiconductor Industry Association, 2006.
[2] H. W. Ch. Postma et al., “Carbon nanotube single-electron transistors at

room temperature,” Science, vol. 293, pp. 76–79, Jul. 2001.
[3] Y. T. Tan et al., “Room temperature nanocrystalline silicon single-

electron transistors,” JAP, vol. 94, pp. 633–637, Jul. 2003.
[4] L. Zhuang et al., “Silicon single-electron quantum-dot transistor switch

operating at room temperature,” APL, vol. 72, pp. 1205–1207, Mar.
1998.

[5] P. S. K. Karre et al., “Room temperature operational single electron
transistor fabricated by focused ion beam deposition,” JAP, vol. 102, pp.
024316–024316-4, 2007.

[6] S. Kasai et al., “GaAs Schottky wrap-gate binary-decision-diagram
devices for realization of novel single electron logic architecture,” in
Proc. IEDM, 2000, pp. 585–588.

[7] L. Liu et al., “Device circuit co-design using classical and non-classical
IIIV multi-gate quantum-well FETs (MuQFETs),” in Proc. IEDM, 2011,
pp. 4.5.1–4.5.4.

[8] K. Yano et al., “Room-temperature single-electron memory,” IEEE TED,
vol. 41, pp. 1628–1638, Sep. 1994.

[9] K. Uchida et al., “Programmable single-electron transistor logic for low-
power intelligent Si LSI,” in Proc. ISSCC, 2002, pp. 206.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE TC, vol. 35, pp. 677–691, Aug. 1986.

[11] N. Asahi et al., “Single-electron logic device based on the binary
decision diagram,” IEEE TED, vol. 44, pp. 1109–1116, Jul. 1997.

[12] H. Hasegawa et al., “Hexagonal binary decision diagram quantum logic
circuits using Schottky in-plane and wrap gate control of GaAs and
InGaAs nanowires,” Physica E, vol. 11, pp. 149–154, Oct. 2001.

[13] S. Kasai et al., “Fabrication of GaAs-based integrated 2-bit half and full
adders by novel hexagonal BDD quantum circuit approach,” in Proc.
ISDRS, 2001, pp. 622–625.

[14] S. Kasai et al., “A single electron binary-decision-diagram quantum
logic circuit based on Schottky wrap gate control of a GaAs nanowire
hexagon,” EDL, vol. 23, pp. 446–448, Aug. 2002.

[15] S. Eachempati et al., “Reconfigurable BDD-based Quantum Circuits,”
in Proc. NANOARCH, 2008, pp. 61–67.

[16] Y. C. Chen et al., “Automated mapping for reconfigurable single-
electron transistor arrays,” in Proc. DAC, 2011, pp. 878–883.

[17] Y. C. Chen et al., “A synthesis algorithm for reconfigurable single-
electron transistor arrays,” ACM JETC, vol. 9, no. 1, article 5, Feb. 2013.

[18] C. E. Chiang et al., “On reconfigurable single-electron transistor arrays
synthesis using reordering techniques,” in Proc. DATE, 2013, pp. 147–
152.

[19] S. Yang, “Logic synthesis and optimization benchmarks, Version 3.0,”
MCNC, Research Triangle Park, NC, Tech. Rep., 1991.

[20] F. Somenzi, CUDD: CU decision diagram package - release 2.4.2, 2009.
http://vlsi.colorado.edu/∼fabio/CUDD

Benchmark Proposed Method [17] (re-implemented) [18] (quoted)
Name PI PO PT Width Nhex Runtime (s) Width Nhex Runtime (s) Width Nhex Runtime (s)
c17 5 2 8 22 45 0.00 29 83 0.00 31 54 0.09

cm138a 6 8 48 129 332 0.01 310 1029 0.00 199 460 0.10
x2 10 7 40 122 498 0.02 170 850 0.00 134 397 0.10

cm151a 12 2 17 75 372 0.00 112 668 0.00 109 521 0.09
cm162a 14 5 41 152 849 0.01 156 1045 0.00 156 578 0.09

cu 14 11 23 95 285 0.01 96 512 0.00 103 415 0.09
cmb 16 4 26 55 80 0.00 111 695 0.00 122 376 0.09

cm163a 16 5 31 114 647 0.02 129 939 0.00 113 391 0.09
pm1 16 13 49 136 591 0.02 164 1085 0.00 156 586 0.10
pcle 19 9 45 116 581 0.02 164 1323 0.00 183 751 0.10
sct 19 15 153 439 3521 0.05 608 5544 0.02 620 3168 0.11
cc 21 20 53 193 1180 0.01 206 1793 0.00 191 1040 0.09
i1 25 16 38 97 322 0.01 168 1617 0.01 159 1190 0.09
lal 26 19 171 543 5455 0.06 591 6883 0.04 613 3312 0.11

pcler8 27 17 67 234 1756 0.04 256 2713 0.01 315 1920 0.10
c8 28 18 85 249 2208 0.05 298 3465 0.02 427 2026 0.11

count 35 16 200 444 3844 0.07 754 11329 0.05 755 4590 0.15
unreg 36 16 48 194 2424 0.03 213 3061 0.01 257 1515 0.11

b9 41 21 376 1190 20674 0.26 1375 26003 15.20 1520 9112 0.24
cht 47 36 81 340 3528 0.06 345 6206 0.02 349 3556 0.13

example2 85 66 447 1144 23964 0.49 1280 42332 0.66 1517 14402 0.50
Total - - - 6083 73156 1.24 7535 119175 16.04 8029 50360 2.68

Table 1. Comparisons among the proposed method, [17], and [18].

