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Abstract—Power consumption has become one of the primary
challenges to meet the Moore’s law. For reducing power consump-
tion, Single-Electron Transistor (SET) at room temperature has
been demonstrated as a promising device for extending Moore’s
law due to its ultra-low power consumption during operation.
Prior work has proposed an automated mapping approach for
SET arrays which focuses on minimizing the number of hexagons
in an SET array. However, the area of an SET array is more
related to the width. Consequently, in this work, we propose
an approach for width minimization of the SET arrays. The
experimental results show that the proposed approach saves 26%
of width compared with the state-of-the-art for a set of MCNC
and IWLS 2005 benchmarks while spending similar CPU time.

I. INTRODUCTION

Reducing power consumption has become one of the
primary challenges in chip design to meet the Moore’s law. To
deal with this issue, many ultra-low power devices have been
explored. Since the power consumption of Single-Electron
Transistors (SETs) [9], which work with only one or few
electrons during switching operations, is ultra-low, SETs are
considered as a promising candidate that substitutes conven-
tional Complementary Metal-Oxide-Semiconductor (CMOS)
devices for future VLSI/SoC designs [5][15][17][20].

Although SETs are promising candidate devices that could
substitute CMOSs, they have a poor driving capability and poor
threshold control due to only one or few electrons involvement
in the switching process. Therefore, the conduction mechanism
of the conventional CMOS-based logic is not applicable to
SETs. As a result, a binary decision diagram (BDD)-based [2]
architecture was proposed as a suitable platform for imple-
menting logic functions using SETs [1]. Therefore, a Boolean
circuit can be implemented by mapping its BDD onto a BDD-
based SET array which is represented as a hexagonal nanowire
network controlled by schottky wrap gates [9][11].

In parallel with the advances of SET array realization, a
reconfigurable version of SET that uses wrap gate tunable
tunnel barriers was proposed in [8] and the first automatic
synthesis method was proposed in [3]. Furthermore, [6][7] pro-
posed mapping approaches to reduce the number of hexagons
of the mapped SET arrays by using reordering techniques.
Although [6][7] minimized the number of hexagons in SET
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Fig. 1. (a) An SET array fabric. (b) An example of a⊕b. (c) A simplified
diamond-shaped network of a⊕b [3].

arrays, the mapped area might not be significantly reduced.
That is because the area of an SET array on a chip is the
product of its bounded height and width. As a result, the area
of an SET array is more related to the width, which is not
considered in these works. Thus, in this work, we propose a
synthesis algorithm for width minimization, which also reduces
the length of routing wires and saves power in SET arrays.

We conducted the experiments on a set of MCNC [19] and
IWLS 2005 [21] benchmarks. The mapped results were veri-
fied by an SET verification tool [5]. The experimental results
show that our approach saves 26% of the width compared to
[7] while spending similar CPU time.

II. BACKGROUND

A. Reconfigurable BDD-based SET array

A reconfigurable BDD-based SET array can be represented
as a hexagonal network as shown in Fig. 1(a). There is a
current detector at the top and a current source, represented
as 1, at the bottom. When the electrons are transported from
the current source to the current detector through a conducting
path, which is controlled by the input variables, the current
is detected and the output value of the Boolean circuit is 1;
otherwise, it is 0. All the sloping edges in the SET array can
be configured as active high, active low, short, or open. An
active high edge indicates that the corresponding node device
operates in active mode controlled by a variable x. Conversely,
an active low edge is controlled by x′. Furthermore, a short
(open) edge is electrical short (open), where the corresponding
SET device operates in short (open) mode. For example, Fig.
1(b) shows an implementation of a⊕b. The current detector
detects the current and the function will be evaluated as 1
when either (a=1, b=0) (left path) or (a=0, b=1) (right path).

Since all the vertical edges of the hexagons are electrically
short, for ease of discussion, only the sloping edges are
preserved in the abstract graph. Fig. 1(c) is the corresponding
diamond-shaped network of the hexagonal network in Fig.
1(b).
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Fig. 2. (a) The fabric constraint. (b) 2-bit Branch-then-Share.

B. Fabric constraint

A typical mapping constraint, called the fabric constraint
[8][11], is imposed on the SET arrays [3][6][7]. Let (high,
low) and (low, high) denote the two configurations of edges
in a node. According to the fabric constraint, except the short
or open edges, both the (high, low) and (low, high) cannot
simultaneously appear in the same row. Fig. 2(a) shows an
SET array that meets the fabric constraint.

C. Branch-then-Share

Collected product terms are named Branch-then-Share
product terms or Branch-then-Shares in short, as they
branch in one row and merge in the succeeding rows such that
the remaining edges are all shared [7]. For example, in Fig.
2(b), the product terms, 1100– and 1111–, are Branch-then-
Shares, since only two variables configure different types of
edges. Therefore, the width of the resultant array is minimized.
We only consider two-bit Branch-then-Share like Fig. 2(b)
in this work for simplicity.

III. THE PROPOSED APPROACH

A. Product term number minimization

In general, if the number of product terms of a circuit to
be mapped is fewer, the mapped area in SET arrays would
be smaller. Therefore, in addition to the BDD-based approach
used in [3][6][7], we can use other methods to figure out
the product terms of a circuit. Note that these product terms
obtained have to be disjoint to each other mutually as obtained
from its BDD. This is because only one path can be conducted
at a time in an SET array from its physical characteristic [8].
As a result, we try to compute fewer disjoint product terms
from a circuit’s threshold network representation, which can
be obtained from [4].
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Fig. 3. (a) The definition of an LTG. (b) An LTG implementing the function
f = x1 + x2x

′

3
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A threshold network is a network composed of linear
threshold gates (LTG). The parameters of an LTG are
weights wi: i = 1 ∼ n, which correspond to inputs xi: i
= 1 ∼ n, and a threshold value T . The output f of an LTG
is evaluated by the equation in Fig. 3(a). For example in Fig.
3(b), the LTG generates 1 if 2x1+x2−x3 ≥ 1, and generates 0
otherwise. Since {x1 = 1} or {x2 = 1, x3 = 0} can uniquely
make the LTG become 1, the Boolean function it represents is
f = x1 + x2x

′

3
.

In this work, we assume the weights and the threshold
value of an LTG are integers, and use a weight-threshold
vector 〈w1, w2, . . . , wn;T 〉 to represent an LTG. We also
transform the negative weights of an LTG into positive ones by

applying a Positive-Negative weight transformation procedure
[12][14][18] for ease of analysis in this work.

Next, let us discuss how to derive the product terms from
a threshold network. Given a single-output threshold network,
we compute its disjoint product terms from the primary output
(PO) towards the primary inputs (PIs) in a breadth-first search
manner. Before this, we first compute the onset and offset of
each LTG and disjointly decompose the input space to ensure
that the product terms in both onset and offset are disjoint. The
product terms (onset) of the whole threshold network then can
be derived level by level.

We use an example, as shown in Fig. 4, to demonstrate the
product term computation of a threshold network. Fig. 4(a)
is the given threshold network, and both the onset and offset
of each LTG have been computed. The onset of the LTG f
〈2, 1, 1; 2〉 are (n1, n2, n3) = (1,−,−) and (0, 1, 1), where
– represents don’t-care. For the first onset (n1, n2, n3) =
(1,−,−), we assign 1 to n1. Thus, we use the onset of n1

to derive the input assignments, (a, b) = (1, 1). Then we also
assign – to n2 and n3, and the corresponding input assignments
are (b, c) = (–, –) and (c, d) = (–, –). Similarly, the other onset
(n1, n2, n3) = (0, 1, 1) is also used to compute the product
terms of LTGs as shown in the rest rows of Fig. 4(b).

After having the input assignments in the product term
table of Fig. 4(b), we need to further refine these input
assignments such that no conflict exists for a single input. For
example, in the 4th row of Fig. 4(b), the input assignments
of (a, b), (b, c) are (1, 1), (– ,−), respectively. Because –
represents either 0 or 1, we can assign b as 1 without causing
any conflicts. Thus, the input assignment of the 4th row can
be refined as (a, b, c, d) = (1, 1,−,−) as shown in the 3rd

row of Fig. 4(c). For the product term that has conflict values,
0 and 1, in one variable, we discard this product term.

B. Architecture relaxation

The previous work [7] limited all the rows of an SET
array to only (high, low) for simplicity. This limitation may
lose the opportunities for achieving smaller SET arrays due
to inflexibility. Thus, in this work, we adopt the hybrid
architecture, i.e., allowing either (high, low) or (low, high)
in the configuration of each row of the SET arrays, which
is also compatible with the fabric constraint. Using the hybrid
architecture, two issues have to be addressed.

1) Branch-then-Share collection: We allow different types
of configurations on the rows to create more Branch-then-
Shares, which are classified into two types: twin type and
invert type as shown in Fig. 5(a). The twin type (invert
type) represents that the Branch-then-Share occurs at two
consecutive rows that have the same (opposite) configurations.
The four diamonds in upper left of Fig. 5(a) are for (high,
low) (high, low) configuration. Their reverses are for (low,
high) (low, high) configuration. For simplicity, we only show
the fifth diamond that is the reverse of the first one. We use
subscripts t (for twin), and i (for invert) to denote the Branch-
then-Share types, as shown in Fig. 5(b).

Figs. 5(c)∼5(e) demonstrate the Branch-then-Shares col-
lection. First, we mark Branch-then-Shares with the subscript,
t or i as shown in Fig. 5(c). Second, in each product term,
consecutive Branch-then-Shares form a share group, and the
initial number of Branch-then-Shares (NBS) is the number
of Branch-then-Share in this share group. Furthermore, for
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Fig. 4. An example for demonstrating the computation of product terms from a threshold network.
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Fig. 5. (a) The types of Branch-then-Shares. (b) Notations of Branch-then-
Shares. (c)∼(e) The demonstration of collecting Branch-then-Shares.

each variable within a share group, if there is another same
type Branch-then-Share with respect to this variable in other
product terms, we increase the NBS of this share group by
one. Since the [1,–][0,–] can be considered either twin or invert
type, we determine it by the majority of twin type and invert
type. Fig. 5(d) shows the NBS for each share group.

Finally, to meet the fabric constraint, we eliminate the
Branch-then-Shares that violate the constraint. The constraint
limits that only one share group can be kept in a product
term, and only one Branch-then-Share type can appear in one
column. After calculating the NBSs, we select the share group
with the maximal NBS. We then eliminate the violated Branch-
then-Shares, and the result is as shown in Fig. 5(e).

After collecting Branch-then-Shares, we reorder the vari-
ables for creating more share edges by using the method in
[7]. Figs. 6(a) and 6(b) show the results before and after the
variable reordering.

2) Hybrid architecture determination: Without loss of gen-
erality, the first row is configured as (high, low). Then we
examine the other variables sequentially. If there exits a
Branch-then-Share, we determine the corresponding config-
uration according to its type. As shown in Fig. 5(a), the
twin type Branch-then-Shares require that the configurations
of two rows must be identical, and invert type Branch-then-
Shares require that the configuration must be different. For the
remaining variables, we set the row’s configuration as same as
the previous row if half or more than half of the product terms
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Fig. 6. An example. (a)(b) Variable reordering. (c) Architecture determina-
tion. (d) Grouping tree construction and EBL estimation.

change the variable’s bit value. Otherwise, we change the row’s
configuration. Note that the don’t-care bit value is ignored
during the calculation. That is because the corresponding short
edges can go either left or right, and do not influence the width
of SET arrays.

For example, in Fig. 6(c), the 1st row’s configuration is
(high, low) as default. For the 2nd row, since less than half of
the product terms change the bit values from the 1st row, we set
the 2nd row as (low, high). Then, we determine the 3rd row’s
configuration as (low, high) since the 2nd row has the twin
type Branch-then-Share with the 3rd row, and so on. Fig. 6(c)
lists the determined configurations in the hybrid architecture
of an SET array.

C. Product term reordering

1) Grouping: By building a grouping tree among all the
product terms, we can realize which product terms have
good share relationships with other product terms. With this
information, a proper mapping order can be determined. First,
we scan all the product terms from the first variable to the last
one until at least one of the product terms has the different bit
values on the variable. Then, the product terms with the same
bit value are grouped into one group. We keep separating a
group until each group contains only one or two product terms,
which is called a leaf group and its common bits are called
label as shown in Fig. 6(d).

2) Expansion and branch level estimation: A ladder-like
shape usually results in a smaller width. To obtain a ladder-
shape SET array, the expansion and branch level (EBL)
information of each product term is needed before mapping.
The initial EBL of a product term in a leaf group is the number
of bits in its label. However, an expansion is to use two short
edges to extend the mapping space. An expansion could create
a pitfall of invalid path that maps illegal product terms of the
circuit [7]. In order to avoid creating an invalid path, we have
to decrease the EBL by one according to the bit value and the



row’s configuration. For example, consider the leaf group that
contains P2 and P6 in Fig. 6(d). Since the last two bits in
its label are identical (11) and these two rows’ configurations
(rows 3 and 4) are different, the EBL is estimated to be 3,
which is the initial EBL 4 minus 1. Since the product terms
with lower EBL provide more flexibility for expansion, we
attempt to search the expanding location as lower as possible.
Thus, we keep scanning the bits when the two consecutive bits
are identical (different) and their rows’ configurations are also
identical (different). As a result, the EBL of P1, P3 and 4 is
3, 2 and 4 respectively.

A don’t-care bit, –, which is configured as two short edges
in the SET arrays, has two possible edges for conducting.
Therefore, we propose a heuristic to predict the don’t-care bits
for EBL estimation. For example, for P5 in Fig. 6(d), the 4th

bit is a don’t-care bit. Since the 3rd and 4th row are (low, high)
and (high, low) configurations, we determine the don’t-care bit
as 0 which is different from the 3rd bit. This is because we
attempt to get the EBL as lower as possible. The EBL of all
the product terms are shown in Fig. 6(d).

3) Product term order determination: First, we choose the
product term with the smallest EBL to map. If it is a Branch-
then-Share with other product terms, we put these product
terms next to it. Otherwise, we put the product terms that are
within the same leaf group next to it. Furthermore, if there
are more than one product term having the same smallest
EBL, we determine their ordering by their group levels in the
grouping tree. For example, we first choose P3 to map, then
P2 and P1 since they are Branch-then-Shares. Next, we map
P6 followed by P4 and P5 according to the EBL ordering.
The final product term ordering is shown in Fig. 6(d).

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C language.
The experiments were conducted on a set of MCNC [19] and
IWLS 2005[21] benchmarks in a 3.0 GHz Linux platform
(CentOS 4.6), as was used in [3][7].

Table I summarizes the experimental results of [7] and ours.
For example, the large benchmark simple spi has 148 PIs and
144 POs. [7] cost 13.05 seconds to map 3065 product terms
into an SET array with 129039 hexagons and 12483 widths
while our approach reduced the number of product terms to
2000 and mapped an SET array with 85948 hexagons and 7379
widths in 6.66 seconds where 0.42 seconds is for the product
term computation.

According to Table I, we find that our approach can reduce
21% of the hexagons and 26% of the width compared with
[7] while spending similar CPU time for all the benchmarks.
The reasons for the width-saving are that our approach created
fewer product terms, more Branch-then-Shares, and more
flexibility in the SET architecture. The CPU time overhead
for some circuit, e.g., i2c, comes from the product term
computation, don’t-care prediction for EBL, and mapping.

V. CONCLUSION

In this paper, we propose an approach for reducing the
width of an SET array. We first minimize the number of
product terms. Then, we relax SET array architecture to al-
low more Branch-then-Share product terms. The experimental
results show that our approach reduced 26% of the width of
SET arrays for all the benchmarks compared with a previous
work while spending similar CPU time.

TABLE I. THE EXPERIMENTAL RESULTS OF [7] AND OURS.

bench. PI PO
[7] ours

PT Nhex W Ttal(s) PT Nhex W Tpt(s)Ttal(s)

C17 5 2 8 54 31 0.09 8 57 28 <0.01 0.02
cm138a 6 8 48 460 199 0.10 48 244 152 <0.01 0.02
x2 10 7 33 397 134 0.10 30 330 106 <0.01 0.03
cm162a 14 5 37 578 156 0.09 84 1287 312 <0.01 0.03
cm163a 16 5 27 391 113 0.09 53 678 184 <0.01 0.02
cu 14 11 24 415 103 0.09 23 415 82 <0.01 0.06
cmb 16 4 26 376 122 0.09 26 334 93 <0.01 0.03
pm1 16 13 41 586 156 0.10 37 574 122 <0.01 0.02
pcle 19 9 45 751 183 0.10 46 675 179 <0.01 0.02
cc 21 20 57 1040 191 0.09 53 1006 181 <0.01 0.03
c8 28 18 94 2026 427 0.11 82 1968 369 <0.01 0.17
count 35 16 184 4590 755 0.15 184 4557 661 0.01 0.07
unreg 36 16 64 1515 257 0.11 49 1282 164 <0.01 0.03
cht 47 36 92 3556 349 0.13 91 3511 332 <0.01 0.05
cm85a 11 3 49 686 174 0.09 49 690 155 0.01 0.02
sct 19 15 142 3168 620 0.11 107 1880 395 0.01 0.03
i1 25 16 38 1190 159 0.09 31 934 99 <0.01 0.04
lal 26 19 160 3312 613 0.11 163 3159 577 <0.01 0.05
pcler8 27 17 68 1920 315 0.10 146 3235 584 0.01 0.04
b9 41 21 352 9112 1520 0.24 211 4764 808 0.01 0.09
apex7 49 37 1440 49004 5859 1.36 699 25256 2698 0.25 0.80
example2 85 66 430 14402 1517 0.50 469 14789 1514 0.02 0.81
stepper. 29 29 795 22994 3250 0.35 783 21532 2887 0.01 0.53
usb phy 113 116 401 28960 1527 0.64 379 28536 1314 0.02 0.56
sasc 133 129 1407 54987 5883 4.01 1030 46131 3993 0.04 2.43
i2c 147 142 3187 115944 9756 12.10 2601 103706 9117 4.38 16.64
simple spi 148 144 3065 129039 12483 13.05 2000 85948 7379 0.42 6.66

total 12314 454453 46852 34.19 9482 357478 34485 5.19 29.3

ratio – 1 1 – – 0.79 0.74 – –
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