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Abstract—Recently, many works have been focused on syn-
thesis, verification, and testing of threshold circuits due to the
rapid development in efficient implementation of threshold logic
circuits. To minimize the hardware cost of threshold circuit
implementation, this paper proposes a heuristic that consists of
rewiring operations and a simplification procedure. Additionally,
a subset of input vectors of a gate, called critical-effect vectors,
are proved to be complete for formally verifying the equivalence
of two threshold logic gates, instead of the whole truth table
in this paper. This achievement can accelerate the equivalence
checking of two threshold logic gates. The experimental results
show that the proposed heuristic can efficiently reduce the cost.

I. INTRODUCTION

The research and development of threshold logic can be
cast back to the 1960s. In 1961, an effective method to
enumerating the threshold functions was proposed [28]. Later
in 1962, an approximation method was proposed to determine
the input weights and the threshold value of a threshold
logic gate [27]. Besides, linear programming and tabulation
methods were introduced to determine whether a function
can be represented in threshold logic or not [26]. Although
the related research on threshold logic was introduced in
early days, threshold logic had a little impact on integrated
circuit designs due to the lack of efficient implementation. In
past decades, however, threshold logic becomes popular due
to the rapid growth in nanotechnology-based devices, such
as Resonant Tunneling Diodes (RTD) [2][3][12], Quantum
Cellular Automata (QCA) [23], Resistance switching devices
[20], Spin-based devices [1], and Single-Electron Transistor
(SET) [4][29][30][19][24]. Thus, threshold logic attracts more
attention than ever before.

Due to the tremendous impetus of VLSI technology, there
are various implementations for threshold circuits, e.g., ca-
pacitive linear threshold gates (LTGs) or RTD-based LTGs.
Accordingly, different cost functions have been proposed to
evaluate the threshold circuits. In particularly, for the capacitive
LTGs and RTD-based LTGs, the circuit area is proportional to
the weights and threshold value of an LTG [3]. Thus, in this
work, we adopt the summation of the weights and threshold
value of gates in threshold networks as the cost function when
synthesizing a threshold logic circuit.

On the other hand, not only the nanotechnology devices,
the design automation research has also triggered a vigorous
growth on threshold logic circuits. For example, the threshold
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logic network synthesis and fault-tolerant threshold logic de-
signs are interesting achievements recently [13][14][31]. Static
Timing Analysis of threshold logic circuits has been proposed
[25]. Besides, algorithms for the equivalence checking of
threshold logic circuits have been proposed [15]. Additionally,
testing issue in threshold logic has also been addressed [16].

Rewiring is a logic restructuring technique that has been
well developed and widely applied in the traditional Boolean
circuits. It plays an important role in optimization of Boolean
networks [5]-[11][18]. Recently, Kuo et al. proposed the first
rewiring algorithm and a simplification procedure for threshold
logic circuits [17]. Furthermore, in the simplification proce-
dure, it proposed that if the critical-effect vectors! (CEVs)
and their additional brother vectors? of two threshold logic
gates are identical, the two threshold logic gates are equivalent
meaning that the simplification operation is valid. However,
their rewiring algorithm only focused on circuit restructuring
and did not consider the cost minimization issue. Thus, in this
work, we propose a heuristic to rewire the circuit for mini-
mizing its weights and threshold value. Additionally, we also
prove that the CEVs, without including their brother vectors,
are sufficient to justify the equivalence of two threshold gates.

II. PRELIMINARIES
A. Threshold logic

An LTG is a logic element whose output f is evaluated by

EQ(1):
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where w; and 7' can be positive or negative numbers.

If the summation of corresponding weights w; of inputs
z; that are assumed to be 1 in an input vector is greater
than or equal to the threshold value 7', the output f is 1.
Otherwise, the output f is 0. The model of an LTG is shown
in Fig. 1. A Boolean function realized by such an LTG is
called a threshold function. Furthermore, a threshold function
may have many different representations that are represented
as a weight-threshold vector (wy,ws,...,wy;T). A network
that is composed of LTGs is called a threshold network.
Any Boolean function can be represented by a corresponding
threshold network.

B. Critical-effect vectors

An LTG has a critical-effect if and only if there exists an
assignment such that the output changes from 1 to 0 when any

1The critical-effect vectors will be introduced in Section II.
2Pplease refer [17] for the definition of the brother vectors of CEVs.



Fig. 1. An LTG model.
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Fig. 2. An LTG and its CEVs.

one of its inputs in this assignment changes from 1 to 0. An
input assignment that satisfies the requirement of the critical-
effect for an LTG is called a critical-effect vector (CEV). For
example, in Fig. 2, input assignments 011 and 100 are the
CEVs of LTG (2,1, 1;2). This is because changing any 1 to 0
in these assignments will also change the output from 1 to 0.

EQ(2) shows the sufficient condition of an input assignment
being a CEV, where n is the number of inputs in an LTG.

Note that although in this example, the two CEVs both satisfy
EQ(2), the CEVs of an LTG do not always satisfy this equation.

Since the concept of CEV plays an important role in the
proposed simplification flow, here we briefly introduce how
to find the CEVs of an LTG. First, the weights are sorted
in a descending order. By the definition of a CEV, we know
that when any input in this assignment changes from 1 to 0,
the output changes from 1 to 0. Thus, in the procedure, we
iteratively decrease the threshold value by the largest input
weight and check the threshold value. If the threshold value
after the decrement becomes less than or equal to 0, the
procedure is terminated, and the threshold value is restored
for the next CEV. In each iteration of the procedure, when we
reduce the threshold value by w;, the corresponding input x;
is set to 1; otherwise, it is set to 0. All the input assignments
obtained in this procedure are the CEVs of this threshold gate.

In the example of Fig. 2, we first decrease the threshold
value by 2 after setting ¢ = 1, then the threshold value
becomes 0 and we get a CEV = 100. Next, we set {a =
0,b = 1,¢ = 1} and the threshold value is also decreased
from 2 to 0. Hence, 011 is another CEV of an LTG. The
proposed heuristic for finding CEVs is quite affordable. This
is because in practice, the number of CEVs of an LTG is not
large compared to the number of all input patterns.

C. Weight transformation

By the definition of LTG, the weights and threshold value
can be positive or negative integers. In this work and the
proposed theorems, however, we assume that the weights and
threshold value are positive integers for facilitating the analysis
of the threshold network. A threshold gate with negative
weights or threshold value can be transformed to the one with
positive weights and threshold value by the method detailed
in [22].
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III. COST MINIMIZATION ALGORITHM

The most commonly used approach to synthesizing a
threshold network is the ILP-based algorithm [31]. Although
this algorithm is efficient to synthesize threshold networks
for arbitrary functions, it actually achieves a local optimum
of weights and threshold value under a given fanin number
constraint®. Additionally, the algorithm tries to use fewer
numbers of LTG to express a given function, which may
increase weights or threshold value.

For example, given a function f = ab + ac + ad. Fig.
3(a) is a corresponding threshold gate synthesized by the ILP-
based algorithm. In contrast with Fig. 3(a), Fig. 3(b) is another
representation of the function f which is synthesized by the
rewiring algorithm. We can see that the summation of all the
weights and threshold value of Fig. 3(a) is 10, while that of Fig.
3(b) is only 8. As a result, a synthesized threshold network with
fewer LTGs does not always achieve the globally minimal cost.
In the following paragraphs, we first review some terminology
proposed in [17].

Definition 1: An LTG is useless if and only if it outputs zero
for all input combinations.

Definition 2: An input in an LTG is critical if and only if this
LTG will become useless after removing this input.

A. Overview

Fig. 4 gives an overview of our algorithm. The input is
a threshold network, and the output is a rewired threshold
network with the reduced cost. We first identify a target wire
such that the cost can be reduced after removing the target
wire and adding the rectification network. After the rewiring
operations, the appearance of some LTGs may be changed.
Thus, we perform the simplification procedure to minimize
the weights and threshold value.

B. Target wire selection

In this subsection, we introduce how to choose the target
wire such that the cost will be reduced after removing the
target wire and adding the rectification network. We summarize
two cases that are capable of achieving this cost reduction
potentially.

Case 1: An input having the weight that equals the
threshold value: In this situation, if the input of this weight
is 1 in a vector, the output f is 1 without considering the
values of other inputs. It means that we can split this input
from the threshold gate since it independently determines the
output value. If such inputs are not unique in an LTG, we
simultaneously remove them. Then, we connect the remaining
threshold gate to the removed target wire with an OR gate

3The fanin number constraint is a limitation that the input number of every
LTG in the threshold circuit cannot exceed.
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Fig. 5. Case 1 (a) The LTG before rewiring. (b) The resultant threshold
network after rewiring.

at its transitive fanout cone. Although the functionality is not
changed after the rewiring operation [17], we have to further
ensure that this rewiring operation does reduce the cost. Thus,
we propose Theorem 1 that states the condition for having a
cost reduction.

Theorem 1. Given an n-input (r1 ~ x,) LTG with
k symmetric inputs T ~ xx;, kK > 1. G =
(W1, ey Wy Wit 1y« v oy Wi T, w1 = wo = o0 = wg, = T,
the rewired threshold network has a cost reduction if and only
ifk(T—1) > 2

Proof: (=) Given such an LTG G; = (wi,...,ws,
Wi 1, -+ -, Wy; T), as shown in Fig. 5(a). According to the
rewiring operation, the resultant network is as shown in Fig.
5(b). To ensure the cost of Fig. 5(b) is less than that of Fig.
5(a), we have wi + ...+ W + W1+ ...+ wWp +T > wpy1 +
coitwp,+T+(k+1)+1. Because wy = wy = ... = wy, =T,
the inequality can be rewritten as T+ 7T + ...+ T + (wg+1 +
coitw, +T) > (W1 + ...+ w, +T) + (K4 1) + 1. After
refining this inequality, we have kT > k+2, or k(T'—1) > 2.

(<) The proof can be done by reversing the proof in (=).
O
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Fig. 6. Case 2 (a) The LTG before rewiring. (b) The resultant threshold
network after rewiring.

Case 2: A critical input: According to the definition of
critical input we mentioned before, the LTG will become
useless, i.e., always produce 0, after removing the critical
input. However, a useless gate is not allowed in threshold
circuits since it actually is a constant 0. To prevent this LTG
from being a useless gate, we have to reduce the threshold
value of this LTG by the weight of critical input accordingly
after removing the critical input. After removing the target
wire x; and the corresponding weight w;, we construct the
rectification network using the target wire x; only. Finally, we
connect the remaining LTG to the rectification network with an
AND gate at its transitive fanout cone [17]. We also propose
Theorem 2 for Case 2 to state the condition that makes the
cost reduced.

Theorem 2. Given an n-input (x1 ~ x,) LTG with the
critical input x1 : G1 = (w1, wa, W3, ..., Wy; 1), the rewired
threshold network has a cost reduction if and only if wy > 2.

Proof: (=) Given such an mn-input LTG G; =
(w1, wa, w3, ..., wy;T), as shown in Fig. 6(a). According to
the rewiring operation, the resultant threshold network is as
shown in Fig. 6(b). To ensure the cost of Fig. 6(b) is less than
that of Fig. 6(a), we have w; +wg +wg + ... +wy, +T >
Wa + W3z + ...+ wq + (T—wp)+1+1+2. After simplifying
this inequality, we have 2w; > 4, or w; > 2.

(<) The proof can be done by reversing the proof in (=).
O

IV. SIMPLIFICATION
A. Functional equivalence of two LTGs

A threshold function has different LTG representations. For
example, given two LTGs (2, 1;3) and (1, 1; 2), we can recog-
nize that both LTGs represent the same function f(a,b) = ab,
because they both produce 1 if and only if {a = 1,0 =1}.

In this subsection, we propose Theorem 3, which can
efficiently verify the functional equivalence of two LTGs with
different appearances.

Theorem 3. Given two LTGs with positive weights and thresh-
old values, they are functionally equivalent if and only if they
have the same CEVs.

Proof: Given two LTGs GG; and G5 with n inputs, assume
CEVg and CEVgo denote the CEVs of G and G, respec-
tively. ©F denotes n-bit vectors in which the number of 1 is <.
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Fig. 7. (a) Case 1 in Theorem 3. (b) Case 2a in Theorem 3. (c) Case 2b in
Theorem 3.

For example, ©f = {0001,0010,0100, 1000}. Thus, U?_,0OF
represents the whole input space. We also use the notation
G1(vj) to represent the output of gate G under the vector v;.

(=) If G1 and G are functionally equivalent, G4 (v;) =
G4(v;) for any input vector v;. Thus, their CEVs are also
identical.

(<) Given CEVgy = CEVgs, we use the mathematical
induction to prove the functional equivalence of G and Go.
That is, we would like to show that G1(0F) = G2(0F) for
1=0~n.

1) Base case: For ¢ = 0: Since ©f contains only the
all-0 vector, the weighted summation of G; and G
under Of is zero. Hence, G1(0}) = G2(0F) = 0.

2)  Induction hypothesis: For i = 1 ~ n: We would like
to show that if G, (O}) = G2(OF), then G1(OF ;) =
G2(O},) in this step. Assume hd(v;, v},) denotes the
hamming distance between vectors v; and vg. We
observed that any v, € O}, there exist (i + 1)
v; € OF such that hd(vj,vy) = 1. In this proof
segment, we discuss each v € O}, | and summarize
that for each vy, and all its (i + 1) v;, they will fall
into one of the following two cases.

a) Case 1: (Refer Fig. 7(a), 3G1(v;) = 1,
and G1(vg) = 1) If there exists a v; with
hd(vj,vr) = 1 and Gi(v;) = 1, then
G1(vr) = 1 by the definition of threshold
logic. This is because for such a v;, the CEVs
of bit assumed to be 1 is the subset of that of

vg. That is, it is impossible that for any v;,
G1(vj) =1, but G1(vg) = 0. Thus, because
we are given G1(0OF) = G2(O}), that means
G1(vj) = Ga(v;) for all vj, we can conclude
that Go(vg) = 1, and G1(vg) = Ga(vg) in
this case.
b) Case 2: When G(v;) = 0 for all (i + 1)
vj, G'1(vx;) could have two outcomes, either
G1(vk) = 1 or G1(vg) = 0. Thus, we further
divide this case into two subcases.
i) Case 2a: (Refer Fig. 7(b), VG1(v;) =
0, and Gi(vy) = 1) If for all v,
G1(vj) = 0, and Gy(v) = 1, then
v € CEVg1 by the definition of CEV.
Since CEVgy = CEVgo, we know
that vy, € CEVgs. Thus, because we
are given G1(0OF) = G2(OF), that
means G1(v;) = Ga(v;) = 0 for all
v;, we can conclude that Ga(vy) = 1,
and G (vr) = G2(vg) in this subcase.
ii)  Case 2b: (Refer Fig. 7(c), VG1(v;) =
0, and Gi(vy) = 0) If for all v,
G1(vj) = 0, and Gy (vg) = 0, then vy,
is not a CEV, i.e., vy, ¢ CEV. Since
CEVGl = CEVGQ, Vk ¢ CEVGQ. As
a result, Go(vg) = 0, and Gy (vg) =
G2(v) in this subcase.
Cases | and 2 contain all situations of v; € ©} and
v € Ofy,. Thus, when G1(O}) = G2(O}), we
conclude that G1 (0}, ;) = G2(O},,)-
3) By 1) and 2) and mathematical induction, G1(OF) =
Go(0F) for i =0 ~ n. O

According to Theorem 3, we can only examine the CEVs
rather than the whole truth table of these two LTGs for check-
ing their equivalence. Thus, with this method, the efficiency
of LTG simplification can be boosted.

B. Simplification overview

In this subsection, we give an overview of the proposed
simplification procedure. According to Theorem 3, we know
that given two LTGs, they are functionally equivalent if and
only if they have the same CEVs. That is, if we can ensure the
CEVs intact after the simplification, this simplification is valid
and we can obtain an LTG with smaller weights or threshold
value. Let us use Fig. 8 as an example to illustrate this idea.
Fig. 8(a) is a 4-input LTG that needs to be simplified. Its
6 CEVs are shown in Fig. 8(b). We denote the summation
of weights with respect to the assignment 1 in a CEV;
as W(CEYV;). For example, W(CEV}) of CEV; = 1100 is
3+ 3 = 6. From the definition of CEV, we know that each
W(CEYV;) is greater than or equal to the threshold value.
Hence, we can draw a figure like Fig. 8(c) where all W(C'E'V;)
are above the threshold value line, 1" = 4.

In the simplification process of an LTG, we try to minimize
its weights and the threshold value without changing its
functionality. Hence, the main idea is to keep all CEVs being
above the threshold value line after the simplification.

C. Simplification flow

The proposed simplification flow is shown in Fig. 9. In
the beginning, we derive all the CEVs of this LTG. Second, a
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Fig. 9. Our simplification flow.

larger-than-1 common divisor, if any, divides the weights and
the threshold value. Then we decrease one input weight*. Next,
we assign the threshold value as the smallest W(C' E'V;) of this
LTG. After these steps, we have to check if the decrement is
valid or not by comparing the CEVs of the original LTG and
the new LTG according to Theorem 3. If the decrement is valid,
we update the LTG. The simplification procedure is terminated
when no more input weights can be decreased.

Here, we use an example to demonstrate our simplification
algorithm. Given an LTG (5, 5, 3, 2; 10), we get its CEVs 1100,
1011 and 0111, as shown in Fig. 10(a). Since there is no
common divisor among the weights and threshold value, we
perform the next step. For each iteration of weight decreasing
operation, we sequentially decrease the input weight. In the
beginning, we decrease the weight of input a from 5 to
4. However, because the input b has the same weight, we
decrease it simultaneously. Next we determine the threshold
value from W(CEV'). The corresponding W(C'EV) of CEV
1100, 1011, and 0111 are 8, 9, and 9, respectively. Thus, we

4We simultaneously decrease the weights of symmetric inputs. This is
because if the weights of the symmetric inputs become different after the
simplification, the new LTG is nonequivalent to the original one.
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Fig. 10. An example for simplification.

assign the threshold value as the minimal W(C'EV'), 8. After
the decreasing step, we have to check if the decrement is valid
or not by comparing their CEVs. Since the CEVs of these two
LTG are the same, the decrement is valid and the updated LTG
is (4,4, 3,2;8), as shown in Fig. 10(b).

Next, the decrement operation for input b is performed.
Also, the inputs a and b are symmetric inputs, thus, we de-
crease them at the same time, and the corresponding W(C'E'V)
of CEV 1100, 1011, and 0111 are 6, 8, and 8, respectively.
We update the threshold value by the minimal W(C'EV),
6. However, the decrement is invalid because the CEVs are
changed, as shown in Fig. 10(c).

Now we decrease input ¢ from Fig. 10(b). Again, we find
that the threshold value is 8. This is a valid decrement because
the CEVs are intact, as shown in Fig. 10(d).

In the fourth iteration, we can find a common divisor,
2, among the weights and threshold value. Hence, a new
representation (2,2, 1, 1;4) is obtained, as shown in Fig. 10(e).
Since the weight of input d is already the minimal positive
integer, the weight cannot be decreased anymore.

In the last iteration, we decrease the weights of inputs a and
b. However, the resultant representation (1, 1,1, 1;2) is invalid
due to different CEVs. Since there is no more weight can be
decreased, we terminate the procedure. The final LTG is as
shown in Fig. 10(e), and the implementation cost is reduced
from 25 to 10.

V. EXPERIMENTAL RESULTS

We implemented the proposed heuristic in C++ language.
The experiments were conducted on a 3.0 GHz Linux platform
(CentOS 4.6). The benchmarks are from IWLS 2005 [32]
and MCNC, and each benchmark was initially synthesized
as a threshold network [31], using |PI| as the fanin number
constraint.

In the experiment, we demonstrate the capability of our
heuristic on the cost function reduction. Table I summarizes
the experimental results. Column 1 shows the names of the
benchmarks. Column 2 lists the number of LTGs of the bench-
marks. Column 3 lists the original cost of the benchmarks.



TABLE L. THE EXPERIMENTAL RESULTS OF OUR APPROACH.

ours

benchmark |LTG| | ori_cost ratio(%)
[case 1] [ Jcase 2] | cost
usb_phy 285 1586 4 20 1498 5.55
C1908 295 1671 1 8 1631 2.39
rot 394 1960 6 26 1878 4.18
alu4 380 1986 4 7 1934 2.62
apex6 428 2079 4 21 2007 3.46
C1355 349 2102 2 0 2098 0.19
x3 438 2170 2 54 2054 5.35
k2 379 2228 16 11 2097 5.88
481 324 2237 23 52 2037 8.94
simple_spi 576 2626 9 24 2540 3.27
pei_spoci_ctrl 581 3254 24 34 3127 3.90
i2c 510 3268 26 35 2867 12.27
frg2 525 3299 66 72 2977 9.76
dalu 841 3644 6 8 3608 0.99
pair 766 4057 9 36 3945 2.76
C5315 1142 4661 0 5 4651 0.21
C7552 1633 6468 9 15 6412 0.87
§9234 1058 7056 19 95 6415 9.08
i10 1354 7490 41 142 6888 8.04
des 1906 8906 11 11 8860 0.52
$13207 1853 9542 18 83 9221 3.36
C6288 1833 9892 12 12 9844 0.49
systemcdes 2134 11677 19 224 11139 4.61
spi 1911 12004 74 142 11184 6.83

Columns 4 and 5 show the numbers of rewired LTGs in case
1 and case 2, respectively. Column 6 lists the reduced cost of
the benchmarks. Column 7shows the cost reduction ratio. For
example, the i2¢ benchmark has 510 LTGs and the original
cost is 3268. The cost was reduced to 2867 and 26 LTGs in
case 1 and 35 LTGs in case 2 were rewired by the heuristic.
The cost reduction ratio is 12.27%.

According to Table I, we realize that this cost reduction
strongly depends on circuit structures. For some circuit, e.g.,
C6288, the reduction is very little due to fewer profitable
structures. However, some circuit like i2¢ has up to 12% cost
reduction. On the other hand, the required CPU time for each
circuit is less than 1 second. Note that we do not compare
with any previous work, since the objectives of these works
are quite different from ours.

VI. CONCLUSION

Different from the prior work that minimizes the number
of LTGs for synthesizing a threshold network, this paper
considers the objective of cost function reduction instead. A
simplification procedure that includes an efficient equivalence
checking operation of two LTGs is also proposed. As the
threshold logic is becoming popular, the proposed method will
benefit the realization of digital designs in threshold logic.
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