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Abstract

1
—Resonance energy transfer (RET) circuits are 

networks of photo-active molecules that can implement arbitrary 

logic functions. The nanoscale size of these structures can bring 

high-density computation to new domains, e.g., in vivo sensing 

and computation. A key challenge in the design of a RET 

network is to find, among a huge set of configurations (i.e., design 

space), the optimum choice and arrangement of molecules on a 

nanostructure. The prohibitively large size of the design space 

makes it impractical to evaluate every possible configuration, 

motivating the need for design-space pruning to be integrated 

into the design flow. To this end, we have developed a computer-

aided design framework, called RETLab, that enables structured 

pruning of the design space to extract a sufficiently small subset, 

which is fully evaluated and ranked based on user-defined 

metrics to yield the best configuration. More importantly, we 

have developed a new RET-simulation algorithm, which is 

several orders of magnitude (e.g., for a 4-node network, one 

million times) faster than the conventional Monte-Carlo-based 

simulation (MCS). This speedup in configuration evaluation 

enables a significantly more extensive design-space exploration 

with fewer and less constrained heuristics, compared to existing 

RET-network design methods which are ad-hoc and rely on MCS 
for configuration evaluation. 

Keywords— design space; candidate space; sample space; 

fluorescence; RET network; FRET; chromophores; RET logic 

I. INTRODUCTION  

In a class of photo-active molecules, called 

chromophores, photon absorption creates an exciton which is 

a transient state that can migrate from one molecule to another 

nearby molecule through a mechanism called Förster 

Resonance Energy Transfer (FRET)[1]. The control of exciton 

currents in a network of these chromophores (RET network) 

enables logic functionality, in the same fashion the control of 

electron currents enables logic functionality in electronic 
circuits[2]. Such nanoscale logic devices may offer a way to 

realize unconventional computing paradigms which require 

computational elements to function in many kinds of organic 

environments such as in ubiquitous or swarm computing. 

Furthermore, RET devices are biocompatible and can be used 

in applications which require biological environments, such as 

in vivo sensing [3, 4] and targeted drug delivery.  

A RET network can be represented by an Exciton Flow 

Graph (EFG) in which nodes represent a set of desired photo-

physical properties and edge weights are inter-node distances. 

The realization of an EFG faces two challenges in practice: 
first, the underlying nanostructure that hosts the chromophores 
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does not allow arbitrary positions for the chromophores. 
Instead, it allows the chromophore molecules to attach (i.e., 

form a covalent bond) only to a set of particular sites, 

rendering some inter-node distances unrealizable on the 

nanostructure. Further, because of the highly-nonlinear nature 

of RET networks the required distance cannot be 

approximated to the closest possible one, either. Second, when 

a real chromophore is chosen to represent an ideal 

chromophore required by EFG, some undesired photo-

physical properties are imposed on the network by the 

molecular structure of the real chromophore; for example, an 

ideal chromophore only absorbs photons of a particular 
wavelength range, while not absorbing any out-of-range 

photons, whereas, a commercially available chromophore type 

(also called dye) often has a wide range of wavelength 

absorption and thus, absorbs (although rarely) out-of-range 

photons, as well. These two challenges cause a gap between 

the desired- and real behavior of a manufactured RET 

network, the minimization of which is among the objectives of 

the design process. 

Finding the optimum configuration (i.e., dye and site 

assignment to every network node) is complicated by the 

highly-nonlinear nature of chromophore interactions; 

specifically, the lack of an efficient (polynomial time) and yet 
function-independent algorithm for this purpose has lead all 

existing RET-network design methods to be ad hoc and 

specific to RET networks with particular functionalities (e.g., 

wire [5, 6], light-harvesting [7], logic [8, 9], etc.). The 

drawback of these ad hoc methods is their lack of 

generalizability to RET networks with different 

functionalities, as well as their poor design-space exploration 

capabilities which is exacerbated by the inherently-slow 

nature of their design flow.   

In this paper, we present an automated design framework 

that addresses these issues. Specifically, we have made the 
following contributions: 

1- By decoupling the functionality aspects of RET-network 

design from its fabrication issues, we have developed a 

function-independent high-throughput automated design 

framework for RET logic.  

2- We have also developed a novel configuration evaluation 

algorithm which is multiple orders of magnitude faster 

than conventional evaluation methods. 
The rest of the paper is organized as follows: In section 2 

the theoretical background of RET logic is explained and in 
section 3, the RETLab architecture is presented. The new 
configuration-evaluation algorithm is described in section 4 



followed by the evaluation and discussion in section 5, and 
finally, the conclusion in section 6. 

II. BACKGROUND: RET CIRCUITS 

In order for a RET network to exhibit a consistent 

behavior, its chromophores have to be fixed in position 

relative to one another and this is achieved by attaching them 

to an underlying nanostructure which could be a DNA 

grid[10] or a protein or any other supramolecular structure. 

Therefore each structure holds a fixed number of 
chromophores (of different types), and a relatively large 

population of these multi-chromophore structures (e.g. 250 

nano moles) constitutes a RET device which in turn performs 

a logic function under certain excitation conditions.  

A chromophore is normally in its ground state, i.e., at 

energy equilibrium with its micro environment, until it 

absorbs a photon which promotes it to an excited state. Since 

the excited state is unstable the excited molecule relaxes back 

to its ground state after a period of time [11]. In general, an 

excited molecule de-excites (i.e., relaxes back to its ground 

state) through one of these pathways: 1- Emitting a photon 
(called fluorescence), 2- Transferring energy to a nearby and 

unexcited chromophore (called RET), or 3- Releasing the 

excess energy non-radiatively, which we call exciton-loss. 

Förster Resonance Energy Transfer (FRET or RET) is a 

mechanism through which an excited molecule (called donor) 

de-excites by transferring its excess energy to an unexcited 

nearby acceptor molecule [11]. 

When a fraction of a chromophore’s population (denoted 

by [D]) is excite, all these relaxation pathways compete with 

one another simultaneously at different rates to depopulate the 

excited population (denoted by [D*]) as described by Eq.1 
wherein kF, kL, and kR are the rate-constants of fluorescence, 

loss, and RET, respectively. 

 [  ]

  
     [  ]           (1) 

A. Implementation of Logic Functions 

Each chromophore is maximally excited at a particular 

wavelength (ex) and fluoresces at a longer wavelength (em) 

after an average of  units of time (called lifetime) [1]. The 
photo-physical properties of chromophores depend on their 

type, i.e., molecular structure. Many different chromophore 

types (also called dyes) are commercially available; for 

example, Lucifer Yellow is a dye with ex=428nm and 

em=535nm, and Texas Red is another dye with different 

properties: ex=589nm and em=615nm. The lifetime () 
values for these dyes are 5.7ns and 4.2 ns respectively2. 

The absorption and emission of photons by chromophores 

can serve as the input and output mechanisms, respectively. 

Signal separation is achieved by wavelength division 

multiplexing (WDM) in the same physical medium (channel). 

For example, Fig. 1 shows an OR gate in which two different 

dyes are used for A and B and therefore each one gets excited 

by a different wavelength (ex(A) and ex(B)). The 
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communication is enabled by RET, the rate (strength) of 

which can be tuned by adjusting the donor-acceptor distance 

or the choice of corresponding dyes. In the OR gate example 

(Fig. 1), A and B have RET to O and therefore an exciton in 

either one of them hops to O and eventually fluoresces out (at 

O) which can be detected by a photo-detector.  
In general arbitrary logic functions can be implemented 

by controlling the exciton flow within a RET network, which 
is achieved by either engineering pairwise RET rates, or 

saturating acceptors. The rate constant (kR) of a RET pair 

depends non-linearly on the donor-to-acceptor distance as well 

as their molecular structures as expressed by Eq.2 [11]: 
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In this equation, R0 is called the Förster radius which is the 

distance at which half of the excited donors transfer to their 

acceptors[11]. Depending on their molecular structure, 
different donor-acceptor pairs have different R0 values. 

Further,    is the intrinsic excited-state lifetime of the donor. 
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Fig. 1. A RET network 

that implements a two-

input RET-logic OR 

gate – Node O is the 

output and fluoresces 

(emits photons) if 

excitons from A or B 

hop to O through RET. 
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Fig. 2. Saturation of G weakens the MG path and 

increases the fluorescence of N 

Another exciton-flow control mechanism is acceptor 

saturation which can be achieved by intensely exciting the 

acceptor either through another donor or directly by incident 

photons. Acceptor saturation occurs because only a single 
exciton can excite an unexcited chromophore, and no excitons 

can hop to an already-excited chromophore [12]. This implies 

that when multiple excitons attempt to hop to the same 

acceptor simultaneously, exciton collision occurs as a result of 

which only one exciton hops, while others remain unmoved. 

In Fig. 2 for example, nodes G and N compete to depopulate 

the excited M population. The saturation of G induces an 

increase on N’s share of hopping excitons from M, because 

after being saturated, G receives fewer excitons from M, 

leaving more excitons available for N to receive per unit time.  

III. PROPOSED AUTOMATED DESIGN FRAMEWORK 

One of the drawbacks of existing RET-network design 

methods is their low throughput which, with a limited design 

time, translates to poor and coarse-grained exploration of the 

design space. The key to overcome this problem is higher 

throughput which we have achieved by making two 

modifications to existing RET design flows: first, we have 

added a validation step before the evaluation step, which 

quickly identifies disqualified configurations without thorough 



simulation. Second, we have developed a new evaluation 

algorithm which is faster than existing evaluation algorithms. 

A. Overview 

As illustrated in Fig. 3, the proposed design flow involves 

user-guided sampling of the design space followed by 

validation of each sample to check if it qualifies for a potential 

solution (candidate). In this figure, the design space is the set 

of all possible configurations (i.e., dye-site assignments) and 

the sample space is a subset of the design space for every 

vector of which a quick inspection is performed. Those 

vectors out of the sample space which pass the validation test 

(quick inspection) form the candidate space. To find the final 
solution, all (or some) candidates are fully simulated, from the 

results of which the values of a set of user-defined metrics 

(response) are extracted. Finally the candidates are ranked 

based on these metrics and the Pareto optimal configuration is 

chosen as the solution(s). 

 
Fig. 3.  Overview of the proposed design flow – four major steps: sampling, 

validation, simulation and ranking 

In general, the output quality, as well as the running time 

of the design process is highly influenced by the domain-

specific step of sampling.  As shown in Fig. 4, most parts of 

the design space, due to its prohibitively-large size, cannot 

even be sampled. In fact, guided by a set of user-provided 

heuristics, RETLab samples only those regions of the design 

space that are likely to contain a candidate.  

 

Fig. 4. Relative size of the design space vs. sample space and candidate space 

– Most regions of the design space are not inspected (sampled).  

To accurately compare two configurations, they both have 

to be simulated in detail. However, many configurations can 

be easily disqualified if they violate certain circuit-specific 

rules the checking of which, compared to circuit simulation, is 
appreciably faster. Therefore, the validation step has been 

added to the design flow with the purpose of improving the 

overall throughput by avoiding many unnecessary and 

relatively-slow detailed simulations of unqualified 

configurations; for instance in Fig. 1, the A-to-B distance must 

be more than 5nm (i.e. |A-B|5); thus, all configurations in 
which |A-B|<5, can be disqualified without a detailed 

simulation. Finally, the sample space must be small enough 

such that its thorough validation is computationally feasible. 

Thus, if the sample-space size cannot be sufficiently reduced 

(due to insufficient heuristics, etc.) other pruning techniques, 

such as the divide-and-conquer approach, must be 
incorporated into the sampling step (if possible).  

B. RETLab Framework 

Fig. 5 illustrates the major components of RETLab. As 

seen in this figure, the inputs to the design problem are the 

target logic function and the set of available dyes and sites. 
The target logic function is described for RETLab in the form 

of an exciton flow graph (EFG) which is constructed based on 

the principles of RET logic and the functionality of the target 

function. In addition to these, the automated design flow also 

requires extra domain specific information which is classified 

into Guidelines, Rules and Metrics. These three classes of 

information are used by different components of RETLab to 

find the optimal RET network. Extraction of this information 

requires domain expertise and human intervention and cannot 

be automated.  
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Fig. 5. Components of RETLab  

IV. FAST RET-SIMULATION ALGORITHM 

In the absence of saturation, the kinetics of exciton 

migration in a RET network (which predicts its response) can 

be described by a system of ordinary differential equations 

(ODE) similar to Eq.1. However, an ODE system based on 

Eq.1 cannot accurately describe (discussed later) the behavior 

of RET networks with saturated nodes. For this reason, 

Monte-Carlo Simulation (MCS) is alternatively used to predict 

the behavior of such networks. Despite its flexibility, MCS 

has the drawback of being significantly slower than 

numerically solving ODE systems, and as a result, when used 
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in the automated design flow, MCS becomes the bottleneck, 

and imposes an upper bound on the total number of analyzed 

configurations per unit time, and possibly limits the maximum 

permitted size of the sample space. Therefore, to increase the 

simulation throughput and consequently enable a more 

extensive design space exploration, we developed a novel 
algorithm for RET calculation which – at the cost of higher 

memory consumption – is several orders of magnitude faster 

than MCS and yet highly precise.   

A. Kinetics of RET in saturated networks 

For two reasons, Eq.1 fails to accurately describe the RET 

kinetics in a network with fully- or partially-saturated nodes: 
first, [D*] in this equation indicates only the size of the 

excited-population without providing any information about 

the effective excited-population which actually participates in 

RET. Second, in the cases where multiple donors compete for 

the same (shared) acceptor, the effective RET-rate constant 

from each co-donor to the acceptor, drops below its nominal 

rate constant (given by Eq.2), rendering kR values inaccurate. 

These two reasons are illustrated in Fig. 6 which compares a 

partially saturated acceptor (A) with an unsaturated one. In 

this figure,  is the fraction of the excited D-population for 
which the acceptor is already excited, and hence cannot 

receive anymore excitons; therefore, the effective excited 

population is actually [D*]-. Further, since D is competing 
with another co-donor (i.e., B) for exciting A, some fraction of 
its excitons fails to hop to A, due to exciton collision; 

therefore, the effective RET-rate constant in this case is kR-.  
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Fig. 6. Correction of Eq.1: [  ]   is written as  [  ]           

By adding the - and -terms to the ODE of each RET pair 
(Fig. 6), the resulting ODE system can accurately describe the 

kinetics of exciton migration in the network even in the 

presence of saturation. Unfortunately, the values of (t) and 

(t) are not known prior to solving the ODE system, rendering 
the conventional ODE solving techniques inapplicable. In the 

next section, we present a RET-specific algorithm to calculate 

the (t) and (t) values, as well as the network response. 

B. Algorithm 

To solve the aforementioned time-varying ODE system, 

we adopt a divide-and-conquer approach by partitioning the 

population into a number of sections each called a stratum. 

The stratification is performed based on the excitation status 

of nodes, for example in Fig. 7, the network has four nodes 

and therefore the population is partitioned into a total of 

sixteen (24) strata each representing one possible collective 

excitation status (only four strata,        , are designated in 

the figure), e.g.,    represents the fraction of the population in 
which D and E are excited and F is unexcited. The size of all 

these strata is maintained in an array called population profile 

which is updated as the simulation proceeds. 
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Fig. 7. Population Stratification: Only four strata are designated 

The way that the population is stratified in this algorithm, 

enables us to easily obtain the  values. Specifically, since the 
population of every node in each stratum is either fully excited 

or entirely unexcited, the donor-acceptor population overlap is 

either zero or 100% (i.e., =0 or =[D*]). 
As shown in Fig. 8, after stratification and initialization, 

the simulation proceeds in small time steps (    ) during 

each of which the system is assumed to be linear. In each time 
step, the response of each stratum is calculated separately, 

which is subsequently used to obtain the overall network 

response. Further, due to node-to-node exciton migration, the 

population distribution among the strata changes in each time 

step, thus, the population profile is updated with migration 

data before the simulation proceeds to the next time step.  

Each stratum, proportional to its population, contributes to 

the overall network response at each time step. For instance, 

the instantaneous exciton transfer from D to A in Fig. 7 

(denoted by RETD


A) is the weighted sum of the contributions 

of         in which D is excited, as expressed by the 

following formula, wherein    denotes the population size of 



stratum i at time t and    denotes the effective RET-rate 

constant of the DA pair in stratum i. 

       ∑     
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Fig. 8. Flowchart of the proposed RET calculation algorithm 

C. Calculation of Effective RET-rate Constants  

The effective RET-rate constant (kR- in Fig. 6) of a RET 
pair equals its nominal rate constant (Eq.2) as long as its 

acceptor is exclusively excited by the donor (i.e., =0). 
However, if the acceptor is shared by multiple co-donors, the 

effective RET-rate constant is reduced, due to the exciton 

collision caused by the competition among the co-donors. 

Therefore, to calculate the effective RET-rate constant of a 

RET pair in a given stratum we first obtain the probability of 

exciton collision at the acceptor in that stratum, and then we 

resolve the collision.  

The exciton-collision probability depends on the number of 

participating co-donors and their strengths, which we refer to 

as competition scenario; for example,   ̅  is a scenario in 
which excitons at D and F (but not E) attempt to hop to the 

acceptor at the same time. The probability of this scenario is 

    ̅        (      )       wherein P(D) 

denotes the probability that an exciton at D attempts to hop to 

the acceptor, which can in turn be calculated from kR(D


A), the 
nominal RET-rate constant of DA, as follows: 

     
             

  
            

All different competition scenarios occur concurrently under 

each of which every co-donor receives a different share of 

successfully hopped excitons. Thus, the RET weight of co-

donor d – which we define as                – is the sum 

of d’s share of accepted excitons under all scenarios as 

expressed by Eq.3 in which P(s) is the occurrence probability 

of scenario s and (s) is the donor’s share of accepted 
excitons under s. 

              ∑          

        

 (3) 

In this equation, E(d) is the set of all scenarios in which d 

attempts to hop; for example, Since F is not populated 

(excited) in stratum    of Fig. 7, only D and E participate in 

the competition, and hence            ̅ . Finally, the 

resolution function, , is calculated by (s)=1/n wherein n is 

the number of attempting co-donors, e.g.,     ̅    and 

(DE) =  ½. 

V. EVALUATION AND DISCUSSION 

To evaluate the performance of our RET simulation 

method, we simulated several RET networks with our method 

and also with a typical MCS method[13, 14], and compared 

the results in terms of precision and simulation speed 

(simulation length=8000ps). Both simulation algorithms were 

compiled with the same C++ compiler and ran on the same 

machine (64-bit Intel Core-i5 at 2.3 GHz).  
While the error of both methods is affected by time 

resolution (Dt), the error in MCS with insufficient sampling 
cycles, is always higher than that of our method because the 

precision of a Monte-Carlo method is proportional to   √ ⁄   
in which  is the standard deviation of the underlying 
distribution and N is the number of generated events[15]. 

Thus, as shown in Fig. 9a, depending on the network, only 

after (tens of) millions of cycles, does the precision in MCS 

approach that of our method. Being deterministic, our method 

is highly precise (i.e., no variability) as it always yields the 

same result for the same input. 

  
Fig. 9. MCS vs. our method: precision (a), and latency (b)  

Fig. 9b shows the latency of our method versus that of 

MCS with ~ the same precision (~107 sampling cycles, 

Dt=1ps) for different network sizes (n). As seen in the figure, 
depending on n, our method is several orders of magnitude 

faster than MCS. For instance, when n=4 our method is ~one 

million times faster than MCS (latency: 140ms vs. ~40 hours).  
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A. Why is our method faster? 

The higher speed of our algorithm is due to the 

significantly fewer number of required iterations per time step 

(Dt); e.g., for a 4-node network, our method requires only 16 

calculation cycles per Dt (since 24=16 strata), whereas MCS 

requires millions of sampling cycles per Dt. This speedup is 
achieved at the cost of limited scalability, since the 

population-profile vector in our algorithm grows exponentially 

with the number of network nodes. However, despite this 

limitation, our algorithm can still be employed in the design of 

large RET circuits, because they can often be broken down 

into smaller components each of which is optimized separately 

(as in the following example).  

B. Design Example: Sequence Detector 

As a design example, we consider a wavelength sequence 

detector which detects a particular sequence of four symbols 

(i.e., wavelength-pairs). The circuit has 39 chromophores 

which is realized on a DNA grid with 192 available sites, and 

using 300 commercially-available dyes, yielding a design-

space size of (
   
  

)  (
   
  

)       
. Using conventional 

heuristics[4-6], the sample-space size was estimated to be 

larger than ~1040, implying that these heuristics could not 

sufficiently prune the search space. Therefore, we broke the 

EFG of this circuit down into five distinct 3-chromophore 

components and used RETLab for each one separately. As 

depicted in Fig. 10, these five components included: AND 

gate, symbol detectors (three different symbols), and D-

FlipFlop. The cited EFG-decomposition with spectral 

heuristics yielded a sample-space size of ~108 with a total 

candidate-space size of ~10,000 which was evaluated in ~ 27 

minutes; whereas the same evaluation using MCS, even with a 
noticeably higher error (10%), takes more than 185 days to 

finish, highlighting the efficacy of our algorithm in improving 

the throughput of the automated RET network design process. 

 
Fig. 10. Wavelength Sequence Detector – The circuit has 39 chromophores 
and is decomposed into five different 3-chromophore block types  

VI. CONCLUSION 

The real functionality of a fabricated RET network usually 

deviates from its desired functionality due mainly to two 

reasons: 1- Undesired modified inter-chromophore distances 

imposed by the underlying nanostructure, 2- Undesired RET 

properties dictated by the molecular structure of 

chromophores. The desired functionality is described by an 

exciton-flow graph (EFG) which serves as the ideal model. 

Therefore, the automation problem is to find the configuration 

that yields the best behavioral match to the EFG.  

Existing methods for RET network design are all ad hoc 

and limited to a particular functionality. Aside from lack of 

generalizability, due to their low throughput, these methods 

are incapable of efficiently exploring large design spaces 

within a limited design time.   

In this work, we presented a generic RET-network design 
framework which has a higher throughput compared to ad hoc 

existing methods. The higher throughput of our design flow is 

enabled by avoiding unnecessary simulations, as well as 

employing a novel simulation algorithm which, in addition to 

being highly precise, is several orders of magnitude faster than 

conventional simulation methods. This higher throughput 

enables a more extensive exploration of larger design spaces, 

compared to the existing methods, making RETLab an 

efficient framework for optimizing RET circuit components 

and devices. 
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