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Abstract—Floating-point arithmetic is widely used in scientific
computing. While many programmers are subliminally aware
that floating-point numbers only approximate the reals, few are
cognizant of the dangers this entails for programming. Such
dangers range from tolerable rounding errors in sequential
programs, to unexpected, divergent control flow in parallel code.

To address these problems, we present a decision procedure
for floating-point arithmetic (FPA) that exploits the proximity
to real arithmetic (RA), via a loss-less reduction from FPA to
RA. Our procedure does not involve any form of bit-blasting or
bit-vectorization, and can thus generate much smaller back-end
decision problems, albeit in a more complex logic. This trade-
off is beneficial for the exact and reliable analysis of parallel
scientific software, which tends to give rise to large but benignly
structured formulas. We have implemented a prototype decision
engine and present encouraging results analyzing such software
for numerical accuracy.

I. INTRODUCTION

Floating-point arithmetic (FPA) is the most widely used
form of approximating real-valued calculations implemented
on computers today. A real number is encoded in the format
(−1)s⋅m⋅2e with a sign bit s, a mantissa m and an exponent e.
The components m and e are stored in fixed-width bitvectors,
an (unavoidable) limitation that impacts both the precision
and the range of real numbers that can be represented as
floating-point numbers. Any real number that does not fit
into this format is rounded. The precise rules for rounding
are formulated in the IEEE 754 Floating-Point Standard, first

published in 1985, with a major revision in 2008 [11].
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FPA computations are subject to rounding errors, which
lead not only to imprecision in the result, but also to potentially
surprising side effects of apparently harmless code manipula-
tions, especially in parallel scientific computing applications.
Platforms such as OpenMP, CUDA and OpenCL come with
compilers that distribute complex computations onto many
nodes of a parallel cluster. In the process of doing so, an
expression to be evaluated may be reordered, in a way that
changes its value under floating-point semantics. For instance,
if an OpenCL compiler implements the (ambiguous) source
code expression a + b + c + d in a reduction tree style as
(a+ b)+ (c+d), rather than sequentially as ((a+ b)+ c)+d,
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We refer to the 2008 revision simply as the Standard in this paper.

the results can differ since floating-point addition is not asso-
ciative. For long summations, the difference can be significant.
Note that the Standard leaves expression evaluation rules to the
programming language implementation. Such dependencies on
compiler behavior challenge the promise of code portability
that platforms like OpenCL make.

To address floating-point inaccuracies, several approaches
to formal reasoning with expressions that involve FPA have
been developed. Procedures based on arithmetic over real
intervals or other abstract domains (e.g., Gappa [5]) determine
value ranges for the result of a computation. For efficiency,
these procedures typically overapproximate this range. In con-
trast, more expensive model-exploration based techniques aim
at precise floating-point reasoning [3], [10]. These techniques
encode floating-point expressions into propositional or bit-
vector formulas, which are easy to reason about but incur a
large increase in formula size, as was clearly demonstrated in
[3]. This increase can be attributed to the “logical distance”
between the language of the encoding and real arithmetic.

In this paper, we propose an approach that exploits the
proximity of floating-point to exact real arithmetic. The Stan-
dard essentially mandates that FPA is to be implemented
as exact arithmetic followed by rounding. For designers of
floating-point hardware, this specification poses a challenge
(which is not the topic of this paper): given the limited
resources on a processor, the FPU cannot first compute the
exact arithmetic result. In contrast, a logical reasoning engine
for FPA can encode floating-point expressions in two layers:
an infinite-precision layer (exact arithmetic) underneath an
“adjustment layer” that models the aspects in which FPA and
RA differ. The outer layer is primarily responsible for the
rounding step.

We show in this paper that such a dual-layer approach
is not only feasible, but can lead to a competitive floating-
point decision procedure. We present the formal details of
the floatingpoint-to-real reduction along with a summary of
its implementation in our prototype tool REALIZER.

II. BACKGROUND: FLOATING-POINT ARITHMETIC

We review the basics of floating-point arithmetic. We use
the symbols N,Z,R to denote the natural, integral and real
numbers, respectively. The operators ⌈⋅⌉ and ⌊⋅⌋ round a real
number up and down, respectively, to the next integer. E.g.
⌈2.7⌉ = 3, ⌊−2.3⌋ = −3.



A. Floating-Point Numbers

Floating-point numbers are approximations of real numbers
suitable for manipulation on a computer. A finite subset of the
reals are directly representable as floating-point numbers; other
reals are rounded to some nearby value. In addition, there are
floating-point data that indicate computational results outside
the reals, such as positive and negative infinities (e.g. resulting
from overflows), and not-a-number (NaN) (e.g. resulting from
a division 0/0).

The binary floating-point format defined by the 2008 IEEE
754 Floating-Point Standard [11] formalizes floating-point
data as triples consisting of a sign s ∈ {0, 1}, an integer-
valued exponent e, and a rational-valued mantissa m; the
triple (s, e,m) represents the real value (−1)s ⋅ m ⋅ 2

e
. The

three components are encoded using bit-vectors, of widths 1, r
(“range), and p (“precision”), respectively; common instances
are (r, p) = (8, 23) and (r, p) = (11, 52), called single and
double representations. We denote by FP(r,p) the set containing
the real values representable in floating-point format (r, p),
and the three symbols ±∞ and NaN. The real-valued subset
FP(r,p) \ {±∞,NaN} equals the set of values (−1)s ⋅m ⋅ 2

e

(where e and m fit within the bit-vector dimensions given by
r and p) except that some bit patterns in the encoding (s.e.m)
are reserved by the Standard for special purposes.

In this paper, we suppress issues involving subnormal
numbers, and non-real computational results. We focus mostly
on the numerical behavior of expression evaluation. The oc-
currence of infinities and NaN’s in computations can often be
caught in programs via exception handling and is therefore
usually less of interest than problems arising from rounding.

B. Floating-Point Arithmetic

Floating-point arithmetic (FPA) is the logic (parameterized
by r, p) of formulas whose atoms are floating-point (in-)equal-
ity relations. Such relations are built from expressions whose
atoms are floating-point data, or floating-point valued vari-
ables. In this paper, we use the fragment of floating-point
arithmetic formulas φ defined by the grammar

φ ∶∶= t⊜ t ∣ t 5 t ∣ ¬φ ∣ φ ∨ φ
t ∶∶= c ∣ v ∣ �t ∣ t � t ∣ t � t ∣ t � t ∣ t � t

(1)

where t denotes a floating-point term, c a floating-point literal,
and v a floating-point valued variable. A floating-point literal
is an element of FP(r,p). As usual, expressions like t1 4 t2 and
φ1∧φ2 are convenient abbreviations for ¬(t15t2)∧¬(t1⊜t2)
and ¬(¬φ1 ∨ ¬φ2), respectively.

The Standard requires that an operation be performed as
if it first produced an intermediate result correct to infinite
precision and with unbounded range, and that this intermediate
result be rounded, if necessary, to fit in the destination’s format.
This can be formalized as follows (we borrow part of the
notation from [3]). For x ∈ R, define

⌊x⌋(r,p) ∶= max{f ∈ FP(r,p) ∶ f ≤ x} , and

⌈x⌉(r,p) ∶= min{f ∈ FP(r,p) ∶ f ≥ x} . (2)

The values ⌊x⌋(r,p) and ⌈x⌉(r,p) are the two floating-point
numbers in FP(r,p) nearest to x. To round x means to map x

to one of ⌊x⌋(r,p) and ⌈x⌉(r,p); which one is determined by

the rounding mode.
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For example, in the “directed” rounding mode roundTo-
wardPositive, x is always rounded up to ⌈x⌉(r,p). For a given
rounding mode µ, rounding defines a mathematical function,
which we denote by rd

µ

(r,p)∶R → FP(r,p). We write FPA(r,p,µ)
for floating-point arithmetic (1) over floating-point constants
from FP(r,p) and rounding mode µ. According to the above
Standard specification, each binary floating-point operator � ∈

{�,�,�,�} in FPA(r,p,µ) is defined to return the rounded
result of the corresponding real operator ◦ ∈ {+,−,×, /}:

x � y ∶= rd
µ

(r,p)(x ◦ y) . (3)

The Standard extends this definition to non-real operands (and
results), e.g. +∞� −∞ ∶= NaN.

Operations that produce Boolean rather than floating-point
results, e.g. ⊜ and 4, require no rounding. On the subset
FP(r,p) \ {±∞,NaN} of real-valued floating-point numbers,
they behave like their real counterparts, i.e. we can treat ⊜
as = , and 4 as < . The Standard defines how the non-real
floating-point data compare against others, e.g. ¬(NaN⊜NaN),
−∞4∞.

We observe that, for a given parameter tuple r, p, µ, the
set FP(r,p) of floating-point literals is finite. All operations of
FPA(r,p,µ) are effectively computable, since both the underly-

ing arithmetic operations and the rounding function rd
µ

(r,p) are

computable. Satisfiability for FPA(r,p,µ) is thus decidable, for
instance (in principle) by enumeration.

We also frequently refer to real arithmetic (RA) in this
paper, which is the standard mathematical theory of the real
numbers with classical arithmetic operations. This theory is
decidable [8], but complete decision procedures would be too
complex to be useful; existing solvers handle fragments. The
combination of the reals with integers and classical linear and
non-linear arithmetic is known as mixed real/integer arithmetic
(RIA) and is undecidable [8].

III. A FLOATING-POINT DECISION PROCEDURE

BASED ON EXACT ARITHMETIC

The goal of this section is to describe a procedure to

translate a formula f ∈ FPA(r,p,µ) into a formula f
′

in

some logic L such that (i) f and f
′

are equi-satisfiable, and

(ii) if satisfiable, an L-valued assignment satisfying f
′

can
be mapped to an assignment of variables over FP(r,p) that

satisfies f . We call formulas f and f
′
with these two properties

satisfiability-equivalent. In addition, we want L to be such that
efficient solvers exist, and we expect L’s background theory
to be close to real arithmetic.

A. Reducing Floating-Point to Exact Arithmetic

The real-valued result of a binary floating-point operation
� on real-valued floating-point numbers x, y ∈ FP(r,p) can be
computed according to the following steps:

2
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1) calculate z ∶= x ◦ y, the real-valued result of the
corresponding real-arithmetic operation ◦ ;

2) normalize z, i.e. represent z uniquely in the form

z = m ⋅ 2
e

with 1 ≤ ∣m∣ < 2, and emin ≤ e ≤ emax for

emax = 2
r−1

− 1 and emin = 1 − emax .
3

Value m is the signed mantissa of z, e its exponent ;
3) round m to p bits precision (p bits following the

radix point), subject to rounding mode rules, obtain-
ing a rounded signed mantissa m ;

4) return the real number m ⋅ 2
e
.

The pre-rounding normalization step 2 is required to obtain
the mantissa m, on which the rounding step depends. In
contrast, there is no re-normalization after rounding, although
the signed mantissa m and exponent e of the final result
may not be normalized: the rounding in step 3 may result
in m = 2, e.g. for p = 4, m = 1.111101 (in binary) and
mode roundTowardPositive. However, re-normalization does
not change the real-valued result of the operation, so it is
not required in our technique.

Step 2 can be accomplished in real arithmetic as follows.

Multiplying 1 ≤ ∣m∣ < 2 by 2
e

we obtain 2
e
≤ ∣z∣ < 2

e+1
, so

2
e
= max{2i ∣ i ∈ Z ∧ 2

i
≤ ∣z∣}. (4)

We can now compute the signed mantissa m of step 2 as z/2e.
In order to round m to p bits of precision (step 3), we first
define five functions — one for each rounding mode — with
signature rd ∶R → Z, which round their real-valued argument
to an integral value:

roundTowardPositive : rd(x) = ⌈x⌉
roundTowardNegative : rd(x) = ⌊x⌋
roundTowardZero : rd(x) = sign(x) ⋅ ⌊∣x∣⌋
roundTiesToEven : rd(x) = rd tte(x)
roundTiesToAway : rd(x) = sign(x) ⋅ ⌊∣x∣ + 0.5⌋

where rd tte(x) is defined as follows: compute both ⌊x+0.5⌋
and ⌈x−0.5⌉. If these are the same, return that value. Otherwise
they differ by exactly 1; return whichever is even.

The rounded signed mantissa m can now be computed as

m = rd(m ⋅ 2
p) / 2p,

where rd is the rounding function chosen according to the
rounding mode. For example, to round m to p bits of precision
in mode roundTowardPositive, we shift the radix point in m
to the right by p positions, then round up to the next integral
value, then shift the radix point back p positions. The general
procedure is summarized in Algorithm 1.

According to Algorithm 1, we can express x�y explicitly
in terms of x ◦ y as the following closed formula:

x � y =

⎛
⎜
⎝
rd (x◦y

2
e
⋅ 2

p)
2p

⎞
⎟
⎠
⋅ 2

e
. (5)
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This representation is not possible if ∣z∣/2emin

< 1, in which case z is
subnormal or zero. It is also not possible if ∣z∣/2emax

≥ 2, in which case
z overflows; the result of normalization then depends on the rounding mode.
These cases are easy to catch; we ignore them in this description.

Algorithm 1 Compute x � y

Require: x, y ∈ R, p ∈ N

1: z ∶= x ◦ y

2: exp e ∶= max{2i ∣ i ∈ Z∧2
i
≤ ∣z∣} , // 2

e
as in eq. (4)

m ∶= z/exp e
3: m ∶= rd(m ⋅ 2

p) / 2p
4: return m ⋅ exp e

Suppose now f ∈ FPA(r,p,µ) is a floating-point formula
containing an expression x�y. We can replace all occurrences
of x� y in f by the right-hand side term of equation (5) and

obtain a satisfiability-equivalent formula f
′
. A more compact

and division-free formulation can be obtained by first replacing
f equivalently by f∣x�y→v ∧ v = x � y ; the first conjunct
here denotes the substitution of a fresh real-valued variable v
for each occurrence of x � y. We can now rewrite v = x � y
equivalently as v ⋅ 2

p−e
= rd((x ◦ y) ⋅ 2p−e). Putting it all

together, our approach is to translate floating-point formula f
into the new formula

f
′

:: f∣x�y→v ∧ v ⋅ 2
p−e

= rd((x ◦ y) ⋅ 2p−e). (6)

This replacement applies to all binary computational opera-
tions � with their corresponding real counterparts ◦ . Other
(e.g. unary) operations that return a numeric result can be
replaced similarly. Repeating this step for all occurrences

of floating-point operations results in a formula f
′

with the
following properties:

1) f
′

is floating-point free: after full replacement, the
expression in (6) is rid of all occurrences of any �.

2) f
′

and f are satisfiability-equivalent: this follows
from the fact that all floating-point terms have been
replaced by equal-valued exact-arithmetic terms. The
Boolean structure of f has not been altered, except

that f
′

has additional conjuncts that involve fresh
variables v: a satisfying assignment for f can be

extended to one for f
′

using the explicit formula (5),
with v in place of x � y.

B. The Decision Procedure

We now illustrate how to turn the mathematical machin-
ery described above into an effective decision procedure for

floating-point arithmetic. Consider the translated formula f
′

defined by equation (6). This formula is free of occurrences of
x� y. The formula contains parameter p, which is a constant
(e.g., p = 23 for single-precision floating-point arithmetic).
According to this equation, 2

e
is the largest power of 2 that is

not larger than ∣z∣. We can find value of 2
e

via a case analysis
over the magnitude of z (assumed non-zero). The constraints
cover the entire range of z. This requires about log rg(z) cases,
where rg(z) is the size of that range.

The right-hand side of equation (6) contains expressions
of the form x ◦ y, which are real-arithmetic terms. Depending
on the rounding mode, (6) may also contain absolute-value
and sign operators, which can be defined via simple if-then-
else expressions. Finally, the equation may also contain the
operators ⌈⋅⌉ and ⌊⋅⌋, which round a real number up or down
to the nearest integer. These operators are typically available



in solvers that support mixed real/integer arithmetic, such as
z3 [6].

To summarize, formula f
′

resulting from the translation
of the given floating-point formula f can be expressed in
Boolean logic with real arithmetic as background theory,
extended by ceiling and floor functions. That logic is a (small)
fragment of mixed real/integer arithmetic (RIA) and is thus
amenable to deciding by solvers that support RIA. The size

of f
′

is dominated by the constraints corresponding to (4)
that determine 2

e
, whose number is logarithmic in the size

of the range of ∣z∣ and hence linear in the exponent range
of the given floating-point format. Considering this number a

(possibly large) constant, we have ∣f ′∣ = O(∣f∣). We have
implemented the procedure described so far in a tool called
REALIZER. This tool takes as input an FPA formula to be
analyzed (as defined in (1), but in a LISP-like prefix notation),
and a configuration file that specifies the precision parameter,
the lower and upper range for each floating-point value in
the formula, the decision objective (satisfiability or validity),
and the rounding mode. Our way of specifying the range
parameter deviates from, but is more flexible than, the way
this is formalized in the Standard (e.g. it permits user-specified
ranges that go beyond those of double or float).

REALIZER translates the input formula into a satisfiability-
equivalent real-arithmetic formula expressed in the SMT2
language [1] and passes it to the Z3 theorem prover [6]. If
satisfiable, the output is an assignment to the input variables
of real values that are representable in the chosen floating-point
format. REALIZER is available from our project website

http://www.ccs.neu.edu/home/wahl/

Research/fpa-heterogeneous.html

The website also contains experimental results obtained us-
ing REALIZER on formulas arising from reduction sums, a
common technique for adding large arrays of floating-point
numbers on parallel platforms.

IV. RELATED WORK AND CLOSING REMARKS

Prior decision procedures for floating-point arithmetic are
primarily based on propositional or bit-vector encodings of
floating-point constraints. “Bit-blasting” approaches are imple-
mented in CBMC [3] and in MATHSAT [4]. With increasing
size and complexity of FPA constraints, the resulting propo-
sitional encoding becomes very large, which is problematic
especially if the input formula itself is large, such as when it
represents a lengthy reduction-style computation. An attempt
was made to alleviate this problem by applying a combination
of under- and over-approximations to the same formula [3].

Decision procedures for FPA have been developed and used
in the field of Constraint Satisfaction Problems for generating
test vectors [13]. The problem is formalized as a Floating-point
Constraint System, and heuristic local consistency algorithms
are used to identify parts of the search space which do not
contain a solution and interval analysis is then used to verify
that no solution exists in that space.

Various formalizations and libraries for FPA have been
developed in the domain of theorem proving [12]. Such provers
have been used extensively to prove correctness properties of
floating-point algorithms for hardware [14], an objective that

is completely orthogonal to ours: we analyze software under
the assumption that the hardware correctly implements IEEE
floating-point arithmetic.

ASTREE, a static analysis engine, can soundly abstract
floating-point operations using intervals, octagons and ellip-
soids [2]. Goubault and Putot [9] present abstract domains
and methods to bound the difference between floating-point
and real-arithmetic interpretations of the program. These have
been incorporated into FLUCTUAT, and can be used for test-
case generation. Abstract interpretation and interval arithmetic
techniques provide clear efficiency benefits over model explo-
ration approaches such as ours, and feature a high level of
automation. They have been successfully applied in industrial
contexts. On the other hand, they are approximate and may
not suffice when accurate analysis is paramount. Mapping an
abstract assignment into the concrete (floating-point) domain
can be non-trivial. In contrast, in our approach there is an easy
and immediate mapping between floating-point values and val-
ues in the model domain (= reals). Recently, a framework for
lifting the Conflict Driven Clause Learning (CDCL) approach
to abstract domains was proposed [7] and implemented for
floating-point numbers [10], using real intervals as abstract
domains.

In closing, we mention future work, which includes a
customized decision procedure for the fragment of mixed re-
al/integer arithmetic that arises from floating-point encodings.
The motivation is that off-the-shelf generic real arithmetic
solvers such as Z3, lacking domain knowledge, necessarily
embed this fragment into full mixed real/integer arithmetic,
which is not even decidable.
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