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Abstract—In the framework of symbolic model checking,
BDD-based approximate reachability is potentially much more
scalable than its exact counterpart. However, its practical ap-
plicability is highly limited by its static approach to abstraction,
and the intrinsic difficulty to find an acceptable trade-off between
accuracy and memory/time complexity.

In this paper, we apply SAT-based cube generalization, a core
step of the IC3 model checking algorithm, to BDD-based over-
approximate reachability analysis. More specifically, we use cube
generalization, in both its inductive and non-inductive versions,
to tighten BDD-based over-approximate representations of state
sets computed by Machine by Machine (MBM) and Frame by
Frame (FBF) algorithms. The resulting approach benefits from
the orthogonal power of BDD and CNF representations, and it
improves the scalability and applicability in verification of BDD-
based methods.

Experimental results confirm that this approach can provide
tighter representations of reachable state sets and more powerful
fully BDD-based engines, as well as potential applications of BDDs
as invariants or constraints in SAT-based model checking.

I. INTRODUCTION

Binary Decision Diagrams [1] (BDDs) represented a major
technology in symbolic model checking for about a decade,
before the advent of SAT solvers, and SAT-based model
checking methods, in the late 90s. Whereas BDD-based reach-
ability analysis tends to become impractical if the design
under verification cannot be reduced or abstracted below
several hundred state variables, SAT-based techniques can
scale beyond tens of thousands of state variables. Nevertheless,
BDDs may dramatically outperform SAT-based techniques
for selected classes of problems, and are still needed for
specific verification instances [2]. As a consequence, albeit
BDDs are typically considered as a second level engine in a
modern Model Checking portfolio, a well-tuned BDD-based
reachability engine is an essential component of a state-of-
the-art verification tool.

Numerous techniques have been developed to boost the
scalability of BDD-based reachability engines. Approximate
reachability techniques [3], [4] obtain a higher degree of scal-
ability than exact BDD traversal. They represent state sets as
partitioned BDDs of bounded support, and work on partitioned
(abstract) transition relations. Scalability is paid in terms of
over-approximation and incompleteness of the approach in the
stand-alone mode, as it is quite rare that an over-approximate
set of reachable states proves a property. Anyhow, approximate
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reachability may play a key role as a slave technique to guide
exact backward traversals in pure BDD-based model checking,
or as a pre-processing step producing invariants for Bounded
Model Checking, Craig interpolants or IC3.

Moving to SAT-based model checking, interpolant-based
verification [5] and IC3 [6] are the most recent and no-
table achievements. Craig interpolants are usually computed
by transforming a refutation proof into a Boolean circuit
with the same structure. Unfortunately, since modern SAT
solvers are not specifically aimed to generate compact refu-
tation proofs, the produced interpolants are often very large
even for simple designs. To solve this problem, Chockler
et al. [7] use cubes generalization to evaluate interpolants
without refutation proofs. The authors essentially compute an
interpolant incrementally, by taking the disjunction (union) of
point interpolants. Each point interpolant is obtained with cube
generalization.

IC3 (Incremental Construction of Inductive Clauses for
Indubitable Correctness) is based on incrementally refining,
and extending, a sequence of over-approximated reachable
states. It does not require unrollings of the transition relation,
as it uses inductive reasoning to incrementally find those state
sets. One of the most important steps performed by the tool is
the so called cube generalization. Cube generalization is the
process of finding a minimal sub-clause, by removing as many
literals as possible from it, such that it over-approximates the
set of reachable states while excluding the cube. Generalization
is used in IC3 to refine clause-based representations of state
sets.

Following the work by Chockler et al. [7], we tighten BDD-
based approximate reachable states with sets of clauses, prop-
erly strengthened by generalization. We apply this tightening
scheme to two approximate reachability algorithms, namely
the Machine by Machine (MBM) and the Frame by Frame
(FBF) algorithms [3], [4]. Though the overall idea, i.e., to use
clauses to strengthen representations of reachable state sets,
is common to IC3 and [7], we integrate the clause generation
and generalization steps within the inner steps of BDD-based
reachability. We thus propose an intertwined approach where
SAT-generated clauses refine and strengthen the BDD-based
reachability. In the case of Machine by Machine (MBM),
whose top level algorithm iterates through exact traversals of
component transition relations, clause-based strengthening is
activated within the main loop, after one step of reachability
on all component sub-models. In the Frame by Frame (FBF)
over-approximate reachability, that performs partitioned image
steps, generalized clauses are added at the end of each ap-
proximate image computation. We also propose a light-weight



strengthening step, achieved by a pure post-processing of over-
approximate reachability, in both MBM or FBF approaches.

We present a set of encouraging experimental results show-
ing how cube generalization is able to strengthen (in terms of
number of reached states) over-approximate reachability state
sets computed with the MBM and FBF approaches. Moreover,
we demonstrate how tighter estimates can be used in a BDD-
based verification framework mixing approximate forward and
exact backward reachability analysis.

II. BACKGROUND

A. Model, Notation, and Property Definition

The sequential systems we address are usually modeled as
Finite State Machines (FSMs). Each FSM is described by a
Transition Relation TR(s, y), which indicates its present–next
state behavior, and an initial state set I. In our notation, B
indicates the Boolean space. Symbols ∧, ∨, and ¬ are used for
Boolean conjunction (AND), disjunction (OR), and negation
(NOT), respectively. The ↓ symbol denotes the generalized
cofactor function. We make no distinction between the BDD
representing a set of states, the characteristic function of that
set, and the set itself. We thus use Boolean operators for set
operations, implemented by Boolean operators on BDDs.

In our approximate BDD-based reachability pseudo-codes,
subscripts will be used for iteration, and superscripts will be
adopted to identify decomposed machines.

B. Approximate Reachability Analysis

Approximate Traversals [3], [4] attain scalability and ap-
proximation adopting the two following steps:

1) Performing a (static) State Space Decomposition, i.e.,
heuristically partitioning state variables in subsets.
Each partition corresponds to a Boolean subspace,
and to a sub-FSM of the original FSM.

2) Computing super-sets (R+) of the reachable states
(R), by performing separate traversals and/or images
on sub-FSMs.

Different strategies can be used to coordinate traversal and
image computations of the different sub-FSMs, and to model
the interaction among them. In this paper, we will concentrate
on the Machine by Machine (MBM) and the Frame by Frame
(FBF) approaches. Their description will be embedded in our
contributions in Section III-A and III-B, respectively.

Notice that, although over-approximate reachable state sets
include more states than their exact counterparts, their BDD
representations are usually much smaller, as many mutual
interactions and dependencies among state variables disappear
because of the approximation. Moreover, notice that albeit
approximate techniques are computationally cheaper and more
scalable, they provide sufficient but not necessary checks, i.e.,
they can prove correctness but they cannot disprove it.

C. Satisfiability

Given a propositional formula, the Boolean Satisfiability
Problem (commonly abbreviated as SAT) consists of deter-
mining a variable assignment such that the formula evaluates

to true, or establishing that no such assignment exists. In case
no assignment exists, we would say that the function is unsat-
isfiable. On the contrary, if we are able to find an assignment,
we would say that the Boolean formula is satisfiable.

SAT solvers generally operate on problems for which a
Boolean function is specified in Conjunctive Normal Form
(CNF). A formula in CNF form is the logical conjunction
(AND) of one or more clauses, each of which consists of the
logical disjunction (OR) of one or more literals. A literal is
merely an instance of a variable or its complement. A cube is
the negation of a clause, i.e., a conjunction of literals.

D. Generalization

Inductive generalization [8], [6] of a cube s, with respect to
a set of states Fi, is the process of finding a minimal inductive
sub-clause d of ¬s, if one exists. The resulting sub-clause over-
approximates the set of reachable states while excluding s and
all states that can reach s. More in detail, given two sets of
states Fi−1 and Fi, such that:

• Over-approximate states reachable from I in i − 1
(resp. i) steps,

• Satisfy the relation Fi ⊇ IMG(TR,Fi−1).

the generalized clause is a clause such that:

Fi ∧ d ⊇ IMG(TR,Fi−1 ∧ d)

In practice, a minimal inductive sub-clause is typically substan-
tially smaller than the cube s from which it is extracted and
it excludes states that are not necessarily related to s by TR,
which is why we say that the inductive sub-clause generalizes
that s is unreachable.

III. OVER-APPROXIMATE REACHABILITY WITH

SAT-BASED STRENGTHENING

The driving idea, for our variants of MBM and FBF
approximate reachability algorithms, is to intertwine BDD-
based approximation steps with SAT-based strengthening com-
putations. Strengthening steps, adopting a bounded number of
generalized clauses, are introduced to filter-out unreachable
states. Figure 1 shows the core idea of our approach. Let us
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Fig. 1. Tightening the Rj set using cube extraction and generalization.

suppose that during a step of over-approximated reachability
analysis the state set Rj is computed starting from Rj−1. Our
target is to tighten Rj by selecting a limited number of cubes
outside Rj, and by generalizing them. Each cube generalization



is used to restrict the original Rj set. When available Rj−1 can
be used for inductive generalization.

In the rest of the section, we will describe the MBM and
FBF algorithms in more details.

A. The Machine by Machine (MBM) Approach

Our Machine by Machine (MBM) approach, improved with
SAT-based clause generalization, is reported in Figure 2.

The algorithm starts with all Ri sets initialized to the
tautology ⊤. This indicates that all the states of each sub-
machine are assumed to be reachable. Moreover, it gives a
trivial upper bound for the computation.

After that, the procedures enters a main iteration in which
both BDD-based and SAT-based contributions are computed.
BDD-based contributions are evaluated by functions TRAV

+.
This procedure computes non-increasing over-estimates of the
global reachable state set until a greatest fixed point is found.
Each greatest-fixed point is evaluated through a sequence
of non-decreasing exact least fix-points performed on each
sub-FSMs by procedure TRAV. SAT-based contributions are
computed by procedure SATSTRENGTHEN.

MBM (TR, I, MAXCL)

for all sub-machines i

Ri = Ci = ⊤

traversei = TRUE

do

converged = TRUE

newR = TRAV
+ (I, TR, C, R, traverse)

R = newR
From = To = C ∧ R
NewC = SATSTRENGTHEN (From, TR, To, MAXCL)

C = C ∧ NewC

for all sub-machines i

if (traversei = TRUE)

converged = FALSE

while (converged = FALSE)

return (R ∧ C)

TRAV
+(I, TR, C, R, traverse)

for all sub-machines i

if (traversei == FALSE) continue

oldRi = Ri

newTR = TR ↓ C ∧ R

Ri = TRAV (newTR, I)

traversei = FALSE

if (oldRi 6= Ri)

for all sub-machines j in fan-out of Mi

traversej = TRUE

return (R)

Fig. 2. MBM Approximate Reachability with Clause Generalization.

To compute over-estimations of the reachable states, i.e.,

TRAV
+(TR,From) ⊇ TRAV(TR,From)

function TRAV
+ essentially traverses all sub-FSMs serially.

It uses previously computed R and C sets as constraints for
each new computation performed by function TRAV. When
the reachable state set of a sub-FSMs is updated by function
TRAV, all sub-FSMs in its fan-out cones are marked (i.e., the
traversej flag is set to TRUE) to be traversed again in the
future.

SAT-based contributions are computed by
SATSTRENGTHEN. Those contributions are accumulated
by conjoining strengthening terms in C. Notice that C is

stored as a set of clauses, even if we represent it as a single
term. The user-defined integer value MAXCL, is used to
specify the number of cubes generalized by this function.

The SAT-based C contribution is finally used to strengthen
the reachable state sets computed by TRAV+ as (R∧C). Notice
that, the same set is used for both the domain and co-domain
sets within the generalization procedure, and strictly inductive
clauses will be selected by SATSTRENGTHEN. In the next
section, within the FBF procedure, we will see how to apply
inductive generalization more efficiently having two distinct
reachable sets.

B. The Frame by Frame (FBF) Approach

The Frame by Frame (FBF) approach handles sub-FSMs
in parallel performing a traversal step (an image) on each
sub-machine. Interactions among the sub-FSMs are more fine-
grained, so FBF is usually more expensive, but it results in
stronger estimates of the reachable state set. Our modified FBF
approach with clause generalization is shown in Figure 3. The
codes adopts an approximate image (IMG

+) operator, which
returns over-estimations of exact images:

IMG+(TR,From) ⊇ IMG(TR,From)

Variable j is the iteration counter, whereas i is used to specify
sub-machines. As a consequence, Ri

j specifies the set of states
reachable by sub-machine i at iteration j. Rj is the set of all
Ri

j .

The key operation of FBF is over-approximate image com-
putation. Function IMG

+ computes over-approximate images
by taking the Cartesian product of images on TR partitions.

Once computed Rj = IMG
+(TR,Rj−1) the standard FBF

algorithm would proceed to compute the next image, by
applying the IMG

+ function to Rj . In our case, function
SATSTRENGTHEN (analyzed in Section IV) takes care of
clause selection and generalization, i.e., our strengthening step
is activated on the Rj , right after over-approximate image
computation.

FBF (TR, I, MAXCL)

R0 = I
j = 1

do

Rj = IMG
+(TR, Rj−1)

C = SATSTRENGTHEN (Rj−1, TR, Rj , MAXCL)

Rj = Rj ∧ C

j = j + 1

while (Rj 6⊆ Rj−1)

return (R)

IMG
+ (TR, From)

To = ⊤
for all sub-machines i

newTR = TR ↓ Fromi

Toi = IMG (newTR, Fromi)

To = To ∧ Toi

return (To)

Fig. 3. FBF Approximate Reachability with Clause Generalization.

An interesting scenario is provided here by the fact that
we have both a Rj , i.e., the over-approximated image to be
strengthened, and its exact counterpart, though just implicitly
represented by TR ∧ Rj−1. This gives us the opportunity
to operate both non-inductive and inductive generalizations,



as the former is not allowed to strengthen Rj , whereas the
inductive one could.

IV. IMAGE STRENGTHENING BY GENERALIZATION

Figure 4 shows our SAT strengthening routine.

SATSTRENGTHEN (From, TR, To, MAXCL)

SP = ¬ To
C = ⊤
if (pushEnabled)

for all clj ∈ From

if (clj ⊇ IMG(TR, From))
C = C ∧ clj
SP = SP ∧ clj

for (i=0; i<MAXCL; i++)

cube = SAT(SP)
if (cube == NULL) break

cl = GENERALIZECUBE (From, TR, cube)

C = C ∧ cl
SP = SP ∧ cl

return (¬ C)

Fig. 4. SAT strengthening with clause generalization.

The procedure operates in the present and next state spaces,
using a CNF encoding of the transition relation. Though some
SAT details are hidden in GENERALIZECUBE, TR ∧ From is
an implicit representation of the image of From, whereas To
is its over-approximation to be strengthened.

The first part of the function (if enabled by a user selectable
flag pushEnabled) tries to recycle as many clauses as possible
from the domain set of states (From). This is inspired by the
push operation in IC3, and it is done though an iterative process
with incremental SAT.

The second part of function SATSTRENGTHEN enumerates
through candidate cubes for generalization. The cube search is
performed in the SP co-domain space in a random way, as the
selection cannot be “property-directed” as in IC3. Although the
random choice may appear to be a weak point of the algorithm,
it has to be noticed that even in IC3 the cube selection phase
is a critical phase and it is still an open issue how to perform
it.

We allow clauses to span on the entire set of variables,
and we use the full (non-partitioned) transition relation, as
scalability is guaranteed by two factors:

• The number of clauses is bounded.

• The transition relation is not expressed by BDDs, but
directly converted from circuit to CNF clauses.

It may be useful to point out that in terms of SAT solving,
following the experience of several researchers working on
the IC3 methodology, it is possible to use one or two SAT
solvers. On the one hand, is it possible to use just one SAT
solver if an efficient implementation of incremental SAT and
activation literals is put in place. On the other hand, two solvers
can be easier to deal with in term of work-load distribution.
In our case, the first solver is used during the search space
exploration, to select cubes in the state space outside Rj . The
second one is employed within the clause generalization phase,
in a similar fashion to what happens within the IC3 algorithm,
i.e., such that the obtained clause includes IMG(TR,Rj−1)
(exact image) and strengthens Rj .

The procedure returns the overall set of clauses (C) able
to strengthen To and From, if clauses are inductive.

V. EXPERIMENTAL RESULTS

In order to analyze the full potential benefit of our
methodology, we ran experiments on a selected benchmark
set extracted from the Hardware Model Checking Competition
(HWMCC [9]) suite. Our selection followed the one adopted
by Xu et al. [2], and it consists of 35 benchmarks on which
BDD-based verification showed to have an edge over (or at
least compare very well with) other verification techniques
(such as interpolation and IC3).

Our prototype tool ran on an Intel i7 3370Workstation with
8 MB cache memory, a clock speed of 3.40 GHz, 4 cores,
8 threads, 16 GBytes of main memory DDR III 1333, and
hosting a Ubuntu 12.04 LTS Linux distribution.

Table I shows detailed data for both the MBM and FBF
approaches. For this set of experiments the time limit was set
to 1000 seconds. It essentially compares the base algorithm
(columns Base) with the improved one (columns Gen) in
terms of reachable states. The value of MAXCL, i.e., the
number of generalized cubes, has been selected to obtain a sig-
nificant strengthening without incurring in too high overheads
in terms of CPU time and final BDD node size. In general,
we make MAXCL vary in the range of a few thousands.

As strengthening, at least in some cases, makes the overall
reachability effort heavier, we also report a lighter weight
strengthening experiment (column GenR) where function
SATSTRENGTHEN is not enabled within inner steps but just
at the approximate reachability fix point. Column GenPush
represents the variant with the push operation enabled (see
Section IV). Column Ratio reports the improvements obtained,
i.e., the ratio between the states reached without and with
SAT-based strengthening (a value larger than one thus means
that the number of states is smaller, i.e., strengthening was
successful). To give a schematic overview of the data collected
in Table I all columns Ratio are also plotted in Figure 5. The
graph essentially gives an idea of the relative improvements
obtained by SAT-based refinement, with respect to the purely
BDD-based versions, in terms of number of states. Overall,
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Fig. 5. Improvement achieved with our alternative MBM and FBF ap-
proaches.

results show that our sets of reachable states are often much
stronger, on average from 1 to 2 orders of magnitude, and up
to 12 orders of magnitude in one case.



TABLE I. NUMBER OF STATES REACHED BY STANDARD APPROXIMATE REACHABILITY ANALYSIS AND OUR IMPROVED VERSIONS WITH

GENERALIZATION. ovf MEANS OVERFLOW ON TIME, A DASH (−) MEANS DATA NOT AVAILABLE.

Model #FF MBM FBF

Base Gen Ratio GenR Ratio Base Gen Ratio GenR Ratio GenPush Ratio

6s105 151 3.91E+48 1.69E+46 232.13 4.93E+47 7.93 3.86E+48 2.79E+47 13.84 8.22E+47 4.69 2.14E+48 1.80

6s177 160 2.70E+41 ovf − 2.44E+40 11.07 2.70E+41 ovf − 5.73E+40 4.71 1.94E+41 1.39

6s179 185 1.89E+60 1.37E+60 1.37 1.47E+59 1.28 1.89E+59 1.74E+60 1.09 1.74E+60 1.08 1.81E+60 1.04

6s197 208 3.09E+60 2.22E+58 139.08 4.63E+59 6.67 2.94E+60 ovf − 3.13E+57 9.40 2.61E+60 1.13

6s198 208 3.08E+60 ovf − 8.34E+59 3.69 3.08E+60 ovf − 6.70E+59 4.60 2.63E+60 1.17

6s48p0 66 2.64E+22 4.50E+19 587.60 3.48E+20 7.59 1.49E+22 8.07E+19 18.52 1.40E+20 106.00 1.19E+20 125.00

6s4 202 1.24E+56 ovf − 3.39E+55 3.66 2.82E+56 ovf − 5.60E+54 5.03 2.27E+56 1.24

6s52 208 5.17E+60 4.44E+57 1164.96 6.67E+59 7.75 4.85E+60 ovf − 6.17E+59 7.85 2.81E+60 1.73

6s53 208 3.09E+60 1.57E+55 1.97E+05 4.11E+59 7.51 2.94E+60 ovf − 4.89E+59 6.01 1.92E+60 1.50

bjrb07amba10andenv 63 2.66E+21 2.65E+21 1.005 2.66E+21 1.00 2.66E+21 2.64E+21 1.01 2.65E+21 1.005 2.38E+21 1.11

bjrb07amba7andenv 50 5.33E+17 4.68E+16 1.14 4.71E+17 1.13 5.33E+17 3.23E+17 1.65 3.61E+17 1.47 5.33E+17 1.00

bjrb07amba9andenv 53 2.97E+19 2.97E+19 1.00 2.97E+19 1.00 2.97E+19 2.97E+19 1.00 2.97E+19 1.00 2.97E+19 1.00

boblivear 77 1.27E+24 1.10E+22 115.72 1.34E+23 9.50 1.39E+23 ovf − 1.70E+22 8.21 1.03E+23 1.35

boblivea 102 2.52E+29 5.29E+28 47.59 4.01E+29 6.27 9.08E+29 ovf − 2.03E+29 4.48 8.27E+29 1.10

eijkbs3330 246 6.06E+44 1.27E+39 4.79E+05 1.49E+43 40.74 2.44E+44 ovf − 1.42E+41 1715.91 9.59E+43 2.54

intel055 227 1.35E+42 5.32E+41 2.534 1.34E+42 1.00 1.35E+42 1.34E+42 1.00 1.33E+42 1.01 1.35E+42 1.00

intel059 285 1.05E+47 3.48E+46 3.00 8.71E+46 1.20 8.72E+46 8.72E+46 1.00 4.31E+46 2.02 3.54E+46 2.46

nusmvqueue 84 2.43E+30 9.67E+29 2.51 2.43E+30 1.00 4.86E+30 2.43E+30 2 4.86E+30 1.00 4.86E+30 1.00

pdtfifo1to0 142 6.62E+47 6.62E+47 1.00 6.62E+47 1.00 6.62E+47 6.62E+47 1.00 6.62E+47 1.00 6.62E+47 1.00

pdtpmsgigamax 123 6.81E+18 1.25E+14 5.43E+04 3.36E+17 20.20 6.81E+18 ovf − 2.13E+16 318.00 3.01E+18 2.25

pdtpmsbufferalloc 66 5.73E+24 2.46E+21 2332.28 8.31E+23 6.89 5.73E+24 ovf − 6.29E+22 9.10 2.45E+23 2.33

pdtpmseisenberg 201 1.35E+36 3.43E+30 3.92E+05 3.18E+34 42.27 1.34E+36 ovf − 1.61E+34 83.25 7.39E+35 1.82

pdtpmstimeout 334 5.67E+28 5.67E+28 1.00 5.67E+28 1.00 5.67E+28 5.67E+28 1.00 5.67E+28 1.00 5.67E+28 1.00

pdtswvqis10x6p1 94 4.01E+30 7.00E+28 57.256 3.10E+30 1.29 4.01E+30 3.07E+30 1.31 2.22E+29 1.81 3.68E+29 1.09

pdtswvqis10x6p2 94 2.58E+29 4.35E+27 59.329 1.73E+29 1.497 2.58E+29 2.58E+29 1.00 1.69E+29 1.53 2.58E+29 1.00

pdtswvqis8x8p1 100 8.40E+30 3.57E+31 2.35 6.67E+31 1.259 8.40E+30 6.59E+31 1.28 4.62E+31 1.82 6.42E+31 1.31

pdtswvqis8x8p2 100 6.96E+31 6.96E+31 1.00 6.96E+31 1.00 6.96E+31 6.96E+31 1.00 6.96E+31 1.00 6.96E+31 1.00

pdtswvrod6x8p1 84 5.58E+26 4.69E+27 1.189 5.14E+27 1.09 5.58E+26 5.58E+26 1.00 4.69E+27 1.189 4.69E+27 1.19

pdtswvrod6x8p2 84 3.54E+26 3.54E+26 1.00 3.54E+26 1.00 3.54E+26 3.54E+26 1.00 3.54E+26 1.00 3.54E+26 1.00

pdtswvroz10x6p2 81 1.09E+27 1.09E+27 1.00 1.09E+27 1.00 1.09E+27 1.09E+27 1.00 1.09E+27 1.00 1.09E+27 1.00

pdtswvsam6x8p4 128 2.49E+39 2.49E+39 1.00 2.49E+39 1.00 2.49E+39 1.19E+39 1.25 2.49E+39 1.00 2.49E+39 1.00

pdtswvtma6x4p2 49 1.32E+18 1.32E+18 1.00 1.32E+18 1.00 1.32E+18 1.32E+18 1.00 1.45E+17 91.03 1.02E+17 12.90

pdtswvtma6x4p3 49 1.15E+18 1.04E+18 1.11 1.10E+18 1.05 1.15E+18 1.04E+18 1.11 1.10E+18 1.05 1.04E+18 1.11

pdtvissoap1 220 6.44E+30 2.40E+26 2.68E+04 3.26E+29 19.70 3.25E+29 ovf − 1.21E+28 26.80 2.57E+29 1.26

pdtvsarmultip00 130 1.64E+16 8.19E+03 2.00E+12 1.26E+16 1.30 1.64E+16 1.64E+14 100.00 1.48E+15 11.00 5.20E+15 3.16

To complete the analysis, Figure 6 plots run times of
the Gen, GenR, and GenPush cases (MBM and FBF)
against the Base (MBM and FBF) ones. Approximation with
generalization is usually slower than without. Anyhow, the
difference is often quite small as the majority of the graph
points are around or just above the main diagonal.

As far as verification is concerned, we concentrate on
very hard verification instances on which BDDs perform
extremely well when compared to other techniques. We start
our discussion on verification with a case study. Figure 7
shows data on circuit 6s48p0, which our verification tool
was previously unable to solve with any BDD-based technique
within less that 1 hour of CPU time. The figures plot the
BDD size of reachable states (top) and the CPU time (bottom)
during each single backward traversal iteration, for three
verification methods: Pure backward, forward/backward, and
forward/backward with SAT-based strengthening. The figure
shows that backward reachability, exploiting a strengthened
over-approximate reached set as care set [10] computed in the
forward analysis, could complete the problem in less than one
hour.

Table II shows detailed data on a few very hard-to-prove
verification instances. In this case we extended the time limit to
3600 seconds, i.e., 1 hour. The table reports run times for pure
BDD-based verification based on pure forward (column Fwd),
pure backward (column Bwd), approximate forward followed

by exact backward (column Fwd+/Bwd), and approximate
forward followed by exact backward with our generalization
strengthening. In both Fwd+/Bwd columns we use the best
among the MBM and FBF strategies, and we indicate the
method adopted (column Method) for our improved strategy.
Although the backward approach always runs out of time,
we report it for the sake of completeness. The Fwd+/Bwd
approach (without generalization) is often better than Fwd but
for the first design. Anyhow, our approximate forward and
exact backward approach with generalization improves it up
to a factor of 6. As a last remark, let us notice that the MBM
approach seems to obtain larger benefits than FBF. We are
trying to understand whether this is due to the intrinsic nature
of the algorithms, to our specific implementation, or to the
experiments we ran so far.

TABLE II. PERFORMANCE COMPARISON AMONG STANDARD

APPROXIMATE REACHABILITY ANALYSIS AND OUR IMPROVED VERSIONS

WITH GENERALIZATION. ovf MEANS OVERFLOW ON TIME.

Model Fwd Bwd Fwd+/Bwd Fwd+/Bwd

with generalization

Time Method

6s52 19.83 ovf ovf 24.50 MBM

6s179 ovf ovf 1472.92 989.89 MBM

intel59 131.97 ovf 89.87 2.99 MBM

pdtswvqis10x6p1 402.93 ovf 203.54 2.59 MBM

pdtswvqis10x6p2 294.85 ovf 45.67 2.39 MBM

pdtswvqis8x8p1 42.23 ovf 34.34 6.78 FBF
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Fig. 6. CPU Times (in seconds) required by the reachability algorithms:
Strengthened versions against original ones.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the use of inductive clause
generalization as an additional player in BDD-based reach-
ability. Cube generalization, a core step of the IC3 model
checking algorithm, is used to strengthen BDD-based over-
approximations of state sets, computed modifying standard
algorithm such as the Machine By Machine (MBM) and the
Frame by Frame (FBF) strategies. The resulting approach
benefits from the orthogonal power of BDD and CNF repre-
sentations. Preliminary experimental results confirm that this
approach can provide tighter representations of reachable state
sets and better BDD-based forward/backward verification.

As a last comments, albeit we do not have experimen-
tal results available yet, let us notice that we are in the
process of implementing a tight interaction and exploitation
of strengthened reachable states within interpolation and IC3
based methods.
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