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Abstract

We present a novel, sound, and complete algorithm for deciding

safety properties in programs with static memory allocation. The

new algorithm extends the program verification paradigm using

loop invariants presented in [1] with a counterexample guided

abstraction refinement (CEGAR) loop [2] where the refinement

is achieved by strengthening loop invariants using the QF BV

generalization of Property Directed Reachability (PDR) discussed

in [3, 4]. We compare the algorithm with other approaches to pro-

gram verification and report experimental results.

1 Introduction

Embedded software systems are ubiquitous in today’s life. Prac-

tically every electric device sold nowadays contains microproces-

sors. This inclusion of embedded software systems has come with

enormous savings in development and production costs and al-

lowed for many more features previously infeasible to provide.

However, the development also increased the risk associated with

software failures. In particular in safety-critical applications, bugs

can have grave, possibly fatal consequences. This understanding

and the insight that testing is not sufficient to guarantee absence of

bugs has fueled renewed interest in software verification.

In general, software verification is undecidable. Strategies to

cope with this challenge include restricting the problem such that it

becomes decidable, devising semi-algorithms without termination

guarantee, or a mixture thereof.

As the main contribution of this paper, we present a novel,

sound, and complete algorithm for intraprocedural verification of

safety properties in programs with static memory allocation. This

restriction is relevant as verification problems of this kind are fre-

quent in embedded systems where safety is often critical.

The presented algorithm is based on PDR [5, 6], an efficient al-

gorithm for solving model checking problems (MCP). We leverage

PDR in two ways: First, we use a QF BV generalization of PDR

as backend model checker. Second, the design of the presented al-

gorithm incorporates fundamental principles which motivated the

design of PDR itself [7]. Most importantly, the presented algo-

rithm is also property directed and attempts to decide the overall

verification instance by proving a large number of small lemmata.

The remainder of this paper is structured as follows: In the fol-

lowing section, we discuss previous work we leveraged. Next, in

Section 3, we present the proposed program verification algorithm

followed by a discussion on how it relates to other verification al-

gorithms. In Section 5, we describe details of our implementation

of the presented algorithm and report experimental results. Finally,

we draw conclusions and describe future work in Section 6.

2 Applied Previous Work

The presented verification algorithm leverages various ideas from

previously published work. In the following subsections, we dis-

cuss the main ideas relevant to this work and give references to the

respective publications.

2.1 Property Directed Reachability

PDR was originally introduced in [5] as an algorithm for solving

hardware MCPs. Given an MCP composed of a set of initial states

I, a transition relation T , and a set of bad states B, the objective

of PDR is to check whether or not a bad state is reachable from

an initial state using only valid transitions. In case a bad state is

reachable, PDR returns a counterexample (cex) sequence from an

initial state to a bad state. Otherwise, PDR returns a formula that

encodes a set of Boolean states that is implied by the initial states,

from which no states outside this set can be reached, and which

is disjoint from the bad set, in other words, an inductive invariant

proving that the bad set is not reachable.

PDR is currently considered the most efficient algorithm for

hardware verification [6]. The convincing performance of PDR can

be attributed to several of its design principles such as divide-and-

conquer (the algorithm attempts to construct the overall proof that

bad states are not reachable by solving a number of small lemmata),

property directedness (any lemma to be proved has a clear objec-

tive towards constructing the overall proof), and the ability to take

advantage of parallel computing.

In our program verification framework, we use the generaliza-

tion of the Boolean PDR algorithm to the theory QF BV presented

in [3] with the extension [4] to refine the model of the program

under verification (PUV).

2.2 Program Verification with Loop Invariants

One paradigm to program verification is to transform the control

flow graph (CFG) into an SMT formula that is unsatisfiable only if

the program satisfies all specified properties. Conceptionally, the

biggest challenge associated with this approach are loops that do

not allow an immediate transformation into an SMT formula.

A popular strategy to cope with loops has been proposed in [1]

where all backedges are cut and loop variables are havoc’ed (i.e.

allowed to take arbitrary values). The resulting model overapproxi-

mates the program behavior substantially and properties of interest

often cannot be proved successfully. To alleviate this constriction,

one attempts to capture the semantics of the loop using loop invari-

ants and applies them after the havoc’ing which in turn restricts the

range of values a variable can take after the loop. Given strong loop

invariants, the given approach has proven to be practically useful.

Unfortunately, loop invariants are often not available and despite



arguments from the academic community in favor of program an-

notation (see e.g. [8]), developers are usually not willing or able to

provide loop invariants to the verification system. This instigated

interest for automatic inference of loop invariants.

Previous approaches to automatic inference of loop invariants

include abstract interpretation [9] as well as static [10] and dy-

namic [11] template solutions. In our work, we infer loop invari-

ants using PDR. In addition to leveraging the convincing practical

performance of PDR, the appeal of this approach rests in another

important advantage in contrast to the previous approaches: It is

property directed. Whereas the other approaches attempt to find

generically strong loop invariants, PDR infers loop invariants di-

rected towards the aim to prove the verification condition.

2.3 Counterexample Guided Abstraction Refinement

In our approach to program verification, we use a model of the PUV

which overapproximates the behavior of the actual program. If we

can prove all properties of interest with this model, we can con-

clude that the real program has the properties as well. Otherwise,

we obtain a cex that we use to refine the overapproximation of the

PUV. This CEGAR paradigm was first introduced in the context of

functional hardware verification [2].

3 Program Verification using PDR

In the following, we assume that we are given a program in which

safety properties of interest are encoded as assertions in the source

code. We denote a program as safe if none of its assertions can

be violated, regardless of the program input. Otherwise, we denote

the program as not safe. Given an input program, the problem of

interest is to decide whether or not the PUV is safe.
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Figure 1: 10,000 Foot-View on Proposed Framework.

Figure 1 depicts a high-level view of the proposed algorithm.

In a preprocessing stage, the program is transformed into a model

that overapproximates the behavior of the PUV. Next, the model is

iteratively refined in a CEGAR loop until we prove or disprove that

the PUV safe.

In the following subsections, we discuss details for the indi-

vidual parts of the framework. We begin with discussing the pre-

processing in the next subsection, followed by a discussion of the

CEGAR loop in Subsection 3.2, and finally present the loop refine-

ment using PDR in Subsection 3.3. We illustrate each part using a

concrete example.

3.1 Preprocessing

We assume that the PUV is represented as a control flow graph

(CFG) with basic blocks as nodes containing assumptions, assign-

ments, and assertions and directed edges that allow jumps between

basic blocks. A basic block B1 dominates another basic block B2 if

B1 is on all paths from the entry basic block to B2. For simplicity

of exposition but irrelevant for the correctness of the algorithm, we

also assume the PUV to be structured. Then, every loop l in the

CFG can be uniquely identified by a pair (H,T ) of basic blocks,

where H is the loop head and T is the loop tail. A basic block T is

called a loop tail if it is dominated by the loop head H and there is

a back edge (T,H) in the CFG. For more detailed information on

this notation, please refer to [12].

The loop body of a loop l = (H,T ) (denoted as bodyl ) is the set

composed of all basic blocks that are on any path between H and

T . We associate with l two sets of variables Ul and Rl where Ul is

the set of variables which are updated in loopl and Rl is the set of

variables which are referenced in loopl . Note that Ul ⊆ Rl .

Algorithm 1 preprocess()

1: for each loop l = (H,T ) in PUV do

2: remove back edge (T,H)
3: append LIl(U

′
l ,Rl) to H; set LIl(U

′
l ,Rl) = true

4: passify()

The individual steps of the preprocessing are summarized in Al-

gorithm 1. For each loop l, we cut the associated back edge. Note

that after this step, the CFG becomes a directed acyclic graph that

underapproximates the behavior of the PUV. Next, we append the

loop invariant LIl(U
′
l ,Rl) to the loop header H. The semantic of

LIl(·) is that the variables in U ′
l may take any value after the loop

under the condition that together with the values of the variables in

Rl before the loop, the loop invariant evaluates to true. Initially, we

set all loop invariants to true. Intuitively, this means that after the

loop invariant, all loop variables in U ′
l may take arbitrary values and

that the overall model overapproximates the behavior of the PUV.

In the main loop of our verification algorithm, we will check

whether or not the program is safe using an SMT-solver. To this

end, we construct an SMT formula F that is unsatisfiable only if the

program is safe. We encode the PUV using three sets of constraints.

The first set of constraints assures that a possible solution to

the SMT formula corresponds to a feasible flow through the pro-

gram. Therefore, we associate with each basic block Bi in the CFG

a Boolean variable bi and add a clause

bi ⇒
∨

B j∈Predecessors(Bi)

b j

for each Bi with the exception of the entry basic block. The con-

straints assure that a Bi can only be visited if at least one of the

predecessors is visited, too.

The second set of constraints aims at modeling the data-flow

of the program. Therefore, we translate the PUV into a passive

program using dynamic single-assignment [13]. The principal idea

of this technique is that each time a variable is updated, the new

value is assigned to a new variant of the variable. In our notation,

we indicate the ith variant of variable x with xi. As an example,

a statement such as x = x+ 1 in the PUV would be represented

as xi+1 ≡ xi + 1. To represent a loop invariant LIl(U
′
l ,Rl) in the

passive program, we use the current variant for each variable that

is referenced as current variable x and the next variant for each

variable that is referenced as next variable x′ in the loop invariant.

Then, we increment the variant counter for each variable that is in

Ul . For each passive formula f encoding a statement, assumption,

or loop invariant in a basic block Bi, we add a clause of the form

bi ⇒ f

Intuitively, the clause encodes that if the control flow visits Bi, then

f must be true.

Lastly, in the third set of constraints, we constrain that the model

of the PUV is not safe. For an assertion A in basic block B
π(A) with
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(b) Passive Program

Figure 2: Nested Loops Example

passive formula a as condition to be violated, we must visit block

B
π(A) and a must not hold. The model is not safe if at least one

assertion is violated. Hence, we have formally

∨

A∈Assertions

b
π(A)∧¬a

If the so composed SMT-formula F is unsatisfiable, then the

program is safe.

3.1.1 Example: Nested Loops

Consider the PUV given as CFG in Figure 2a. The numbers in the

upper right corner of basic blocks indicate their numbering that we

will use in the following for reference, e.g. the entry basic block

will be denoted with B1.

The PUV contains two loops l1 = (B2,B7) and l2 = (B5,B6).
We remove the two back edges and append LI1(·) and LI2(·) to the

loop heads B2 and B5, respectively. After passification, this yields

the DAG in Figure 2b.

To check whether the obtained model of the PUV is safe, we

construct an SMT-formula F as follows. We assure that every sat-

isfying assignment corresponds to a valid control flow by adding

the following constraints to F where, for instance, the first con-

straint assures that basic block B2 cannot be visited unless B1 is

also visited.

(b2 ⇒ b1) ∧ (b4 ⇒ b2) ∧ (b6 ⇒ b5)
(b3 ⇒ b2) ∧ (b5 ⇒ b4) ∧ (b7 ⇒ b5)

Next, we add the following data-flow constraints to F where

e.g. the first constraint requires that if basic block B1 is visited,

then condition y1 ≡ x0 must hold.

(b1 ⇒ (y1 ≡ x0)) ∧ (b2 ⇒ LI1(x1, i1,x0, i0))
(b3 ⇒ (i1 ≤ 0)) ∧ (b4 ⇒ (i1 > 0))
(b4 ⇒ (i2 ≡ i1 −1)) ∧ (b5 ⇒ LI2(x2, i3,x1, i2))
(b6 ⇒ (x2 < 2)) ∧ (b6 ⇒ (i4 ≡ i3 +1)
(b6 ⇒ (x3 ≡ x2 +1)) ∧ (b7 ⇒ (x2 ≥ 2))

Lastly, we constrain that the assertion in B3 must be violated.

We enforce this by asserting that

b3 ∧ (x1 < y1)

3.2 Iterative Invariant Refinement Loop

Algorithm 2 summarizes our proposed algorithm for program ver-

ification. After having preprocessed the program and having con-

structed the SMT formula F as discussed in the previous subsec-

tion, we check if F is satisfiable. If this is not the case, then we

return that the program is safe. Otherwise, we obtain a satisfying

assignment to all variables in F , cex c, and check whether c corre-

sponds to a run that violates an assertion. To this end, we interpret

the PUV with the arguments encoded in c. If the interpretation run

violates an assertion, we report the program as not safe. Otherwise,

the observed discrepancy between PUV and its model encoded as

SMT formula is due to the weakness of one or more loop invari-

ants. We scan through the program path admitting c in our abstract

model and search for a loop l where LIl admits the cex but its bodyl

does not. As with determining if a cex is real or spurious, we use in-

terpretation to this end. Once we found such a loop l, we strengthen

its invariant using refine() such that it remains an overapprox-

imation of the loop but no longer admits c.

Algorithm 2 verifyProgram()

1: preprocess()

2: while counterexample c exists do

3: if c real cex then return “Program not safe”

4: let l be a loop whose LIl(·) spuriously admits c

5: refine(l, c)

6: return “Program safe”

Theorem 1. Algorithm 2 is a sound and complete algorithm for in-

traprocedural verification of structured programs with static mem-

ory allocation.

Proof. We sketch the proof of Theorem 1. We start by showing

partial correctness. First note that if verifyProgram() returns

“Program not safe”, then it has found a real cex. To see why the

program is safe if the algorithm returns “Program safe”, note that

at any time, F corresponds to a model that overapproximates the

behavior of the PUV. Hence, safeness of the model implies safeness

of the PUV. It remains to show that the algorithm terminates. As

we assume static memory allocation, there is only a finite number

of cex. As in each iteration of the main loop, at least one cex is

invalidated, the algorithm must eventually terminate. ⊓⊔

3.2.1 Example: Nested Loops (cont’d)

With the loop invariants LI1(·) and LI2(·) being initially true, the

PUV cannot be proved safe. Assume that the SMT-solver returned

the cex

c = {y1 = 0,x0 = 0, i0 = 0,x1 =−1, i1 = 0, . . .} (1)

An interpretation run quickly shows that c is spurious. The cause

is that LI1(·) is too weak. We call the procedure refine()

to strengthen the loop invariant. The details of refine() are

topic of the next subsection. For now, assume that the result of

refine() is the new invariant

LI1(·) = (x0 < 0)∨ (x1 >−1)

In the next iteration of the while-loop, we can find another spu-

rious cex such as

c = {y1 = 1,x0 = 1, i0 = 0,x1 = 0, i1 = 0, . . .} (2)

Again, we refine the invariant for loop 1. This time, we obtain

LI1(·) = (x1 ≥ x0)

as new, strengthened loop invariant. With this invariant for loop 1,

the SMT formula F is no longer satisfiable. This proves that the

program is safe.



It is instructive to note that the derived loop invariant is not the

strongest loop invariant that can be inferred for loop 1 but strong

enough to prove the desired property. In this sense, our algorithm

is also property directed. Also note the achieved abstraction from

the cex. For instance, the inferred loop invariant is independent

from variable i.

3.3 Property Directed Invariant Refinement

Algorithm 3 gives an overview of how LIl is refined given a spu-

rious cex c. After generalizing c, we invoke the QF BV PDR al-

gorithm with the intent to infer a strengthened loop invariant for l

that contradicts c. If the attempt is successful, we update the SMT

formula F to reflect the new loop invariant returned by the back-

end model checker. Note that this can be implemented by simply

adding bH ⇒ LIl(·) to the constraint base because any new loop

invariant implies all previous loop invariants which allows for ef-

fective use of incremental solving.

In the presence of nested loops with weak loop invariants, it is

also possible that PDR returns a spurious cex sequence s. In this

case, it remains to determine an individual spurious transition c′

in s and to find a nested loop l′ whose invariant admits c′ while

bodyl′ does not. These tasks can be performed using interpretation

similar as in Algorithm 2. Once a culprit loop l′ is determined,

refine() is called recursively to strengthen LIl′ . This recursive

strengthening is repeated until all loop invariants of nested loops

are strong enough such that PDR succeeds in disproving c.

In the following subsection, we discuss details of the cex gen-

eralization and in Subsection 3.3.3 we describe the composition of

the MCPs which are fed to PDR for the actual invariant refinement.

3.3.1 Generalization of Counterexamples

The motivation of the generalization of spurious cex at the begin-

ning of the refine() procedure is to promote that the PDR model

checker is finding loop invariants that do not only exclude the cur-

rent cex but also a large number of related spurious cex. As such, it

is a pure optimization that is not required for the correctness of the

algorithm. To some extend, cex generalization mirrors simulation-

based expansion of proof obligations in the PDR algorithm origi-

nally presented in [6].

We propose to generalize cex using abstract interpretation [9]

with the abstract domains of integer intervals and ternary vectors.

The choice for a concrete abstract domain is furnished by the kind

of operation that calculates an abstract value. We use integer inter-

vals if a result is calculated by an operation that interprets bitvectors

as integers (e.g. addition). For all other operations (e.g. conjunc-

tions), we use ternary vectors.

We start abstract interpretation runs at a loop header l and con-

tinue with the interpretation of the loop until a fixpoint is found.

The final value sets at loop header l represent overapproximations

of the reachable values of the variables for the given initial values.

Algorithm 4 gives details of how we use the results of abstract

interpretation runs for the actual generalization. Note that we use

Algorithm 3 refine(l, c)

1: generalizeCex(l, c)

2: while PDR(I,T,c) does not hold do

3: let s be the counterexample sequence

4: let c′ be a spurious transition in s

5: let l′ be a loop which LIl′ admits c′ but bodyl does not

6: refine(l′, c)

7: update F to reflect strengthened LIl(·)

Algorithm 4 generalizeCex(l, c = {cb,ce})

1: r = abstractInterpret(l,cb)
2: for all x ∈Ul do

3: if disjoint(r[x],ce[x]) then

4: expand ce[x] max. preserving disjointedness from r[x]
5: for all y 6= x ∈Ul do ce[y] =⊤
6: for all x ∈ Rl do

7: Substitute cb[x] with largest value set v ⊇ cb[x] s.t.

8: ∃y ∈Ul .abstractInterpret(l,cb/v)[y]∩ ce[y] = /0

cb (ce) to denote the portion of c that corresponds to the values

of the variables before (at the end) of the loop. Lines 1-5 of Al-

gorithm 4 aim at generalizing ce: The program is interpreted with

the initial values given in cb to obtain an overapproximation r of

the reachable value sets for the variables at the loop header. If, for

any variable in x ∈Ul , r[x] is disjoint from the corresponding value

set in ce, the value set ce[x] is expanded maximally while preserv-

ing the disjointedness from r[x]. This procedure guarantees that

the resulting cex remains spurious regardless of the other variables.

Hence, we can enlarge all other value sets in ce to their maxima ⊤.

Lines 6-8 aim at generalizing the value sets for the cb-portion of

the cex: For each x ∈ Rl , we expand cb[x] maximally such that for

at least one y ∈Ul , the overapproximation of its reachable value set

remains disjoint from the corresponding value set in ce.

3.3.2 Example: Nested Loops (cont’d)

We consider the situation when generalizeCex() is called on

loop 1 with the cex in equation (1). Mapping variants to variables,

we have

c = {cb = {x = 0, i = 0},ce = {x =−1, i = 0}}

y = x

[i>0]
i = i-1

[i≤0]
assert x ≥ y

[x<2]
i = i+1

x = x+1

[x≥2]
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x = 0, i = 0

x = 0, i = 0

aaaaaaaaax =⊥, i =⊥

x =⊥,
i =⊥

aaax =⊥, i =⊥

x =⊥, i =⊥

x =⊥, i =⊥

(a) Fixpoint Abstract Interpretation 1
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assert x ≥ y
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x ≥ 0, i =⊤

x ≥ 0, i =⊤

aaaaaaaaax ≥ 0, i = [0,Mi −1]

x ≥ 0,
i =⊤

aaax ≥ 0, i =⊤

x = [1,2], i =⊤

x ≥ 2, i =⊤

(b) Fixpoint Abstract Interpretation 2

Figure 3: Fixpoints during Cex Generalization in Example

An abstract interpretation run with the initial values cb yields the

fixpoint in Figure 3a. The reachable value sets at the loop header

remain r = {x = 0, i = 0}. ce[x] is disjoint from r[x], hence we can

generalize ce as defined in lines 4-5 of Algorithm 4 to obtain

c = {cb = {x = 0, i = 0},ce = {x ≤−1, i =⊤}}

Next, we attempt to expand the value sets for the initial values

cb. For x, decreasing the lower bound causes that the reachable

value sets returned by the abstract interpretation ceases to be dis-

joint from the post-values in ce. However, increasing the upper

bound of x and expanding the value set for i arbitrarily preserve

this condition (see fixpoint in Figure 3b where we denote with Mi

the maximum value i can take). We arrive at the generalized cex

c = {cb = {x ≥ 0, i =⊤},ce = {x ≤−1, i =⊤}} (3)



3.3.3 Invariant Refinement with PDR

Given a loop l = (H,T ) and a cex c, the input MCP (I,T,B) of the

PDR-algorithm for loop l is constructed as follows. For each vari-

able x ∈Ul , denote with xb and xe, respectively, the corresponding

variants at the beginning and at the end of loop l. For each variable

x ∈ Rl \Ul , denote with xb the corresponding variant. As initial

condition I, we require that for each x ∈ Ul , we have that xe ≡ xb.

Intuitively, this means that the values of a variable before and after

the loop are equal before any iterations. The transition relation T is

composed of four parts. First, for each x ∈ Rl , we constrain that the

initial value does not change: x′b ≡ xb. Second, for each x ∈Ul , we

constrain x′e ≡ xT where xT is the last instantiated variant of x in the

loop tail T . Third, we add the SMT formula corresponding to the

part of the CFG that represents loopl . Nested loops are represented

by their loop invariants but their bodies are excluded. Fourth, we

constrain bT , i.e. that each transition requires that the loop tail is

reached. B are the states that are contained in cex c.

This construction guarantees that the size of the MCP is bound

by the size of the loop. Unrolling or “inlining” of nested loops are

purposely avoided.

We preserve the trace constructed for loop l by the PDR algo-

rithm between calls. This avoids that runtime required to prove

that a certain subspace is unreachable in a certain number of steps

is spent more than once and promotes finding stronger loop invari-

ants. This memoization does not compromise the correctness of

PDR: Consider any two successive invocations PDR(I1,T1,B1) and

PDR(I2,T2,B2) for refinement of the same loop. The trace con-

structed during the first call may be reused in the second call, be-

cause we always call PDR with the same initial condition (I1 = I2)

and any refinement of a nested loop invariant leads to a strength-

ening of the transition relation (T2 ⇒ T1). Hence, if a state was

determined unreachable by PDR in the first call, it is also unreach-

able in the second call.

3.3.4 Example: Nested Loops (cont’d)

We use PDR to strengthen the loop invariant of loop 1 with the

generalized cex in equation (3). We have

I = (x1 ≡ x0)∧ (i1 ≡ i0)

T = (x′0 ≡ x0)∧ (i′0 ≡ i0)∧ (x′1 ≡ x2)∧ (i′1 ≡ i3)∧ (b5 ⇒ b4)

∧(b7 ⇒ b5)∧ (b4 ⇒ (i1 > 0))∧ (b4 ⇒ (i2 ≡ i1 −1))

∧(b5 ⇒ LI2(·))∧ (b7 ⇒ (x2 ≥ 2))∧b7

B = (x0 ≥ 0)∧ (x1 ≤−1)

Note that the current version of LI2(·) is used within the transition

relation. As this loop invariant is currently true, this practically

allows any update in one iteration. Assume that PDR returns the

following cex sequence

i0 = 0,x0 = 0, i1 = 0,x1 = 0 → i′0 = 0,x′0 = 0, i′1 = 0,x′1 =−1

As the sequence has only one transition, it is clear that this one must

be spurious. Similarly, as there is only one nested loop within loop

1, it is clear that the current invariant LI2(·) causes the discrepancy

between model and program. We extract the following cex for loop

2 by projecting the variants appropriately:

c′ = {x1 = 0, i2 = 0,x2 =−1, i3 = 0}

and call refine() recursively on loop 2 and c′. The procedure

returns after having refined the invariant of loop 2 to

LI2(·) = (x1 < 0)∨ (x2 >−1)

In the next iteration of the while-loop, we call the PDR-solver

with the same MCP as above but with the updated LI2(·) within

the transition relation. With this strengthening, the cex can be dis-

proved and PDR returns

LI1(·) = (x0 < 0)∨ (x1 >−1)

When refine() is called the second time with the cex in

equation (2), the process of strengthening LI1(·) is similar with one

significant difference: We start PDR with the trace constructed in

the previous invocation. Therefore, the subspace previously deter-

mined as unreachable is available and we will obtain

LI1(·) = (x1 ≥ x0)

which is strong enough to prove the safety of the program. The

specifics of how the inequality is inferred in the backend QF BV

PDR model checker is beyond the scope of this paper. Please refer

to [3] for details.

4 Related Work

The work most similar with respect to the high-level strategy for

verifying assertions is InvGen [14]. InvGen also attempts to infer

invariants and uses them to construct a combinational proof. In

the backend, however, InvGen uses an entirely different strategy to

infer the invariants. While our approach uses PDR, InvGen first

applies a couple of dynamic strategies and then uses the template

method from [10] as main reasoning method to find the invariants.

This hybrid approach yields a relatively robust algorithm but has

three main limitations: First, InvGen commits to conjunctions of

linear inequalities as loop invariants. If the invariant required to

prove a program safe is of any other form, the algorithm fails. Sec-

ond, InvGen models programs using the quantifier free theory of

linear arithmetic (QF LA). Consequently, InvGen does not support

programs with bit-level operations and the verification results are

not guaranteed to be correct, e.g. in the presence of possible over-

flows. Third, InvGen is not able to generate cex. If the verification

fails, it is not clear if the program is unsafe or if InvGen failed.

As our algorithm, TreeIC3 [15] uses PDR for program verifi-

cation. TreeIC3 represents an extension of IMPACT [16] that uses

interpolants to represent reachability information for nodes in an

unrolling of the CFG. In this setup, TreeIC3 applies PDR as a com-

plementary technique to infer the reachability information. This

hybrid solution outperforms the original version with exclusive use

of interpolation on a large fraction of benchmarks, often substan-

tially. There are two main differences between our algorithm and

TreeIC3: First, our algorithm calculates invariants for real loca-

tions in the PUV while TreeIC3 calculates invariants for nodes in

an unrolling of the CFG. Second, as TreeIC3 calculates reachabil-

ity information partially using interpolation, its success rests on the

availability of an efficient interpolation algorithm. Such an inter-

polation procedure is not known for QF BV. To avoid bit-blasting

and the application of a Boolean interpolation algorithm, TreeIC3

contains an interpolation algorithm for the quantifier free theory of

linear rational arithmetic (QF LRA) [17]. This choice gives a very

efficient algorithm, but does not allow for accurate modeling of any

bitvector arithmetic.

5 Implementation and Experimentation

We implemented the presented algorithm in C++ and use function-

ality of the LLVM-framework [18] for parsing, representation, and



Benchmark
LOC

Prop. Directed Prog. Verif. InvGen TreeIC3 Symb.

default -gen. -mem. [14] [15] encod.

(#) Runtime (s)

bind exp var 59 1.38 3.28 1.61 0.47 0.04 timeout

bound 47 0.71 2.3 3.94 0.96 fal. neg. 287.27

disj simple 25 0.52 2.05 timeout failed fal. neg. timeout

gulwani ceg2 42 8.55 timeout timeout failed 0.06 timeout

heapsort1 58 38.47 timeout timeout 1.05 0.12 timeout

id build 34 0.18 2.64 1.65 0.41 fal. neg. 168.81

id trans 43 0.48 1.75 0.5 0.38 0.09 timeout

mergesort 72 0.02 0.01 0.01 timeout 0.41 timeout

nested1 40 0.82 0.22 2.56 0.38 0.05 timeout

nested2 39 0.79 0.23 2.33 0.37 0.05 timeout

nest-if1 28 0.39 0.20 4.51 0.49 0.06 timeout

nest-len 30 0.68 1.16 17.81 0.74 0.31 timeout

NetBSD loop 43 0.32 0.52 0.34 fal. pos. fal. pos. 310.48

NetBSD loop int 47 2.49 0.84 3.39 fal. pos. fal. pos. timeout

sendmail close 104 5.54 26.10 11.12 1.90 fal. neg. timeout

sendmail mime 89 6.73 2.94 timeout failed 0.40 timeout

simple 38 0.54 1.04 527.05 0.19 fal. neg. timeout

simple if 26 0.55 0.44 0.66 failed 0.03 14.95

simple nest 27 18.91 23.80 18.95 0.32 0.18 timeout

up nested 28 0.01 0.01 0.01 0.65 0.05 1.06

drevil 2 21 1.51 2.85 2.15 failed fal. neg. timeout

jain 1 17 1.80 1.53 1.56 failed 0.02 timeout

jain 2 19 3.50 3.40 7.72 failed 0.03 timeout

for bounded lp 28 0.01 0.01 0.01 0.16 0.20 8.44

trex01 safe 50 0.51 1.02 0.98 failed 0.05 timeout

trex01 unsafe 50 0.01 0.01 0.01 failed 0.01 timeout

trex04 44 0.14 0.14 0.13 failed 0.03 timeout

Table 1: Performance of Verification Algorithms

analysis of the PUV. Working with the LLVM intermediate repre-

sentation instead of a custom frontend for a specific language has

the important advantage that we can verify programs of any lan-

guage for which an LLVM-frontend exists. In our experimentation,

we selected a number of C-language examples from the regression

test suite of InvGen and from the bitvector and loop subsets of the

SV-COMP software competition benchmarks [19].

Table 1 summarizes runtimes of the presented algorithm for the

benchmarks. Column 1 gives the name of the benchmark and col-

umn 2 the lines of code as a crude measure of benchmark size. The

next three columns contain runtime statistics of our algorithm once

both with cex generalization and memoization of reachability in-

formation in the PDR trace (default), once without generalization,

and once without memoization. As points of reference, columns

6 and 7 report runtimes when using InvGen and TreeIC3 on these

benchmarks. We report failure if the program terminated without

providing a result (either by giving up or due to a crash), timeout in

case the program did not terminate within 600 seconds, false nega-

tive if the verification tool reported a safe PUV not to be safe, and

false positive if an unsafe PUV is reported as safe.

Our verifier solves all verification tasks within reasonable run-

time limits. Memory requirements are generally low (<100MB),

which is explained by the avoidance of unrolling both in the

frontend and in the backend model checker of the program veri-

fier. Generalization of cex reduces the runtime often substantially.

Without the use of memoization, the algorithm is less stable, doc-

umented by several timeouts. In comparison to our algorithm, In-

vGen terminates faster in the majority of cases. However, InvGen

fails in roughly 40% of the benchmarks and returns a wrong verifi-

cation result in two cases. TreeIC3 is even faster than InvGen but

yields wrong verification results in 30% of the cases.

We also encoded the problems symbolically as QF BV MCPs

and used the model checker [4] directly without the invariant re-

finement proposed in this paper. The results are in the last column

of Table 1; only six benchmarks can be solved within the time limit.

6 Conclusions and Future Work

We presented an algorithm for intraprocedural verification of safety

properties in programs with static memory allocation. The al-

gorithm leverages successfully applied techniques for verification

tasks such as program verification with loop invariants and CE-

GAR. The core of our algorithm consists of the refinement of loop

invariants using a QF BV PDR model checker. We implemented

the proposed algorithm in C++ using LLVM and presented results

from experimentation with the software prototype that demonstrate

overall good performance of the presented verification algorithm

and its merits (correctness) and limitations (performance) in com-

parison with the closest related approaches.

As future work, we are interested in two research directions.

First, we intend to investigate the potential to generalize our veri-

fication algorithm to allow interprocedural verification using func-

tion summaries. To this end, we conjecture that a similar property

directed refinement strategy as applied to loop invariants could be

used for function summaries. Second, we consider to complement

our algorithm with lightweight but incomplete techniques such as

DAIKON [11] to initialize loop invariants before starting property

directed invariant refinement, potentially allowing runtime savings

for the overall verification.
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