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Abstract—High-sigma analysis is important for estimating the
probability of rare events. Traditional high-sigma analysis can
only work for small-size (low-dimension) problems limiting to
10 ∼ 20 random variables, mostly due to the difficulty of finding
optimal boundary points. In this paper we propose an efficient
method to deal with high-dimension problems. The proposed
method is based on performing optimization in a series of low
dimension parameter spaces. The final solution can be regarded
as a greedy version of the global optimization. Experiments show
that the proposed method can efficiently work with problems with
> 100 independent variables.

Index Terms—High-sigma, yield analysis, importance sam-
pling, high dimension

I. INTRODUCTION

As the feature size of MOSFETs enters sub-28nm realm,
process variation caused by random fluctuation of channel
dopants, oxide thickness and mobility becomes a limiting fac-
tor of transistor scaling. Statistical analysis becomes inevitable
to ensure a good production yield.

The most traditional and widely used statistical analysis is
Monte Carlo (MC) analysis. The computational cost of MC
is inverse proportional to the target failure rate, which, for
most circuits, is in the order of 1%. Such method breaks down
for applications that require extremely low failure rates, such
as ∼ 10−6. Such problems are usually called “high-sigma”
problems, and typical applications include those circuits mas-
sively repeated unit cells. As the failure rate of the chip is
approximately proportional to the number of cells, and in order
for the chip to have a moderate failure rate, the failure rate of
the cells must be extremely low.

High-sigma problems in integrated circuits has been studied
for several years. Popular methods for tackling high-sigma
problems includes mixture importance sampling (MIS) [1],
minimum-norm importance sampling (MNIS) [2], Gibbs sam-
pling (GS) [3], Surrogate model assisted importance sampling
[4]. These methods work well for SRAM problems, in which
the number of transistors, and thus the number of random vari-
ables, are small. Typical number of variables in SRAM yield
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analysis problems are between 6 ∼ 24, depending on how
many random variables are considered for each transistors.

In this paper we are tackling a much harder problems
by considering > 100 independent variables. Such problems
are important for circuits with > 20 transistors, as in the
case of D-Flipflops. To the knowledge of the authors, none
of existing methods can work with such high-dimensional
problems. We have notice that in [5] a 403-dimension case
is studied. However, in this work PCA is used to reduce
the variables to 11, indicating that 403 is not the number of
effective independent variables.

The rest of this paper is organized as follows. Section II
gives the mathematical background of the high-sigma analysis
problem. Section III introduce the proposed method for tack-
ling high-dimension problems. Section IV gives experiment
results. And finally conclusions are drawn in Section V.

II. BACKGROUND

A. Standard Monte Carlo Method

Variational process variables such as threshold voltage Vth,
oxide thickness Tox and gate length Leff can be characterized
as a D-dimensional random variable X = [x1, x2, . . . , xD]T .
Furthermore we can assume its joint PDF p(X) as a multivari-
ate Normal distribution, and each random variables in X can
be considered as mutually independent and standard normal
[3], i.e.:

p(X) =
D∏
i=1

[
1√
2π

exp

(
−1

2
x2
i

)]
(1)

The failure rate Pf can be mathematically expressed as

Pf =

∫ ∞

−∞
I(X)p(X)dX (2)

where I(X) represents the indicator function:

I(X) =

{
1 X ∈ Ω
0 X /∈ Ω

(3)

in which Ω denotes the failure region, i.e. the subset of the
variation space where the performance of interest (e.g., read
noise margin, write delay for SRAM cells) do not meet the
required specification.

Monte Carlo (MC) method is one of the most robust
methods for estimating the failure rate Pf . It first generates978-3-9815370-2-4/DATE14/ c⃝2014 EDAA



N random samples {X̃1, X̃2, . . . , X̃N} according to p(X),
then uses SPICE simulation to obtain the corresponding circuit
performance {f̃1, f̃2, . . . , f̃N} and hence the indicator function
{I(X̃1), I(X̃2), . . . , I(X̃N )}. Finally, the failure rate is calcu-
lated as

P̃f
MC

=
1

N

N∑
i=1

I(X̃i) (4)

For high-sigma applications, MC requires a very large
number of samples (e.g. over 109) in order to observe a
few failure samples. As each sample corresponds to one
SPICE simulation, the overall cost is very expensive, or even
infeasible.

B. Importance Sampling through Norm Minimization

Importance Sampling has been proposed to overcome the
above barriers of standard MC. Its key step is to uses an
alternative sampling PDF q(X) to generate M samples. The
failure rate can be estimated as

P̃f
IS

=
1

M

M∑
i=1

I(X̃i)p(X̃i)

q(X̃i)
(5)

Compared with standard MC which sampling globally,
importance sampling method intends to conduct a more “local-
ized” sampling, aim at including as much failure points with
relatively high probability as possible. Literature [2] proposed
a norm minimization framework to determine q(X). Its major
step is to find the most probable failure point (MPFP) Xopt

by solving an optimization problem:

Object : minimize ||X||
Subject to : X ∈ Ω

(6)

Then q(X) is set to be p(X −Xopt).
Hence the overall algorithm consists of two stages. The first

stage is to solve the above norm minimization problem, and
the second stage is sampling with the shifted PDF. To find the
global MPFP one needs to search the whole variation space,
which always considered as a major problem of this framework
[6]. [4] proposed to use surrogate model to substitute SPICE
simulation. It first uniformly sampling K points and using
SPICE to calculate their corresponding circuit performance,
then these points are used for training a surrogate model to
replace SPICE simulations.

When the dimension D grows up, the total computation
suffers from the so-called ”curse of dimensionality”, i.e., as
variation space’s volume grows exponentially with D, search
costs for the MPFP will dramatically increases. In addition,
as the training samples become sparser and sparser, it is very
difficult to construct accurate surrogate models.

III. ROBUST METHOD TACKLING HIGH-DIMENSION
APPLICATION

In this section, we will first introduce a search scheme for
the norm minimization problem to reduce the computational
complexity from exponential to linear. Then we will show
ways to further reduce the required SPICE simulations. Finally

we will illustrate that it is always possible to construct a
“local” surrogate model for the IS stage and hence give a
final hit to the high dimensional application.

A. Subspace Rotation Method for High-Dimension Search

Without loss of generality we consider only the case where
the failure region is defined as

Ω = {X|f(X) < Spec} (7)

where Spec is the pre-given circuit performance specification.
And the boundary of the failure region means ∂Ω, as shown
in Fig 1.
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Fig. 1. Geometric notions about variation space.

The key idea of the proposed method is to avoid global
search directly in a high-dimension space. Instead, the algo-
rithm performs global search in a series of low dimension
subspaces {Sub1, Sub2, . . .}. To construct such a sequence
we first need to define a measurement on each vector starts
from the original point, this measure is used to evaluate the
closeness to the optimum vector Xopt.

Fig 2 shows how the slope of SPICE simulation result re-
flects variation space’s geometric properties. The read current
of SRAM, i.e. Iread, along 4 different directions are plotted,
and the according specification is set as Spec = 0.1, i.e.
Iread < Spec is regarded as a failure. It can be clearly observed
that with larger slope, the boundary point is more likely to have
smaller norm. Even for cases like (b)(d) where no boundary
point is found within the considered range, slope can still
distinguish these two cases as we can foresee that (b) will
be more likely to have a better boundary point than (d) on a
prolonged range.

For practical application,we can simply use the absolute
difference between the one-sigma point and the origin point
as the measurement:

mes(r⃗) = |f(σ · r⃗

||r||
)− f(O)| (8)

With these definitions we can now write the pseudo code
of our proposed search scheme as in Algorithm.1

The proposed algorithm works by first sorting all the D
dimensions according to their measurements in a descending
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Fig. 2. How SPICE curve’s slope reflect geometry structure of variantion
space.

Algorithm 1 Framework of Subspace Rotation Method
Dim = D,Subdim = d
r = 1;
V := Identitymatrix(D);
mes(V ) = {mes(V (1)), . . . ,mes(V (D))};
V = sort(V, ‘descending according to mes(V )′);
while r ≤ D do

if r + d− 1 < D then
Base := {V (r), V (r + 1), . . . , V (r + d− 1)};
Sub := Subspace(Base);
V (r + d− 1) = OptVector(Sub);
r = r + d− 1;

else
Base := {V (r), V (r + 1), . . . , V (end)};
Sub := Subspace(Base);
V (end) = OptVector(Sub);
break

end if
end while

manner which in fact is an order about how effectively each
variable affects circuit performance. During each iteraten we
successively introduce d variables into consideraten and after
the optimization we replace these d vectors with the optimum
vector found in the subspace formed by the d variables.
Thus the whole procedure looks like rotating a d-dimensional
subspace while trying to capture the global MPFP in it.

It is easy to verify that this framework is greedy with
computation complexity O(d), and it can be considered well
escaped from the “curse of dimensionality”. In addition, as
the algorithm sorting in a descending order according to the
measurement, we can usually accelerate the converge speed by
set proper criteria to stop the iteraten when the rest dimensions
make only ignorable effect on circuit performance.

B. Fast Low-Dimension Method Through Interpolation

In the above discussion have reduce the high dimension
search issue into a series of low dimension problems. The
rest of the task is to deal with the global optimization in low-
dimension spaces. To effectively solve the low dimension case
we can borrow tools from interpolation theory.

If we choose d = 2, the variation space can be viewed as
a square bounded by X− < X < X+ (e.g. −9σ ∼ +9σ).
Firstly we discretize the variation space into uniform meshes
as a N × N matrix, and then randomly choose K mesh
points, after SPICE simulation we can obtain a sequence
of points Pknown = {X1, X2, . . . , Xk} with known circuit
performance. The aim is to recover a continuous function’s
response surface from these few known points, which is just
similar to the task of recovering a smooth image from few
known pixels. One of the simplest yet robust method for image
recovery is to minimize the so-called ℓ2-norm of total variation
[7]:

Object : minimize TV =∑
t1,t2

[(g(t1, t2)− g(t1 − 1, t2))
2 + (g(t1, t2)− g(t1, t2 − 1))2]

Subject to : g(Pknown) = f(Pknown)
(9)

here g(X) is the requiring interpolation result of SPICE
function f(X).

The most important advantage of the TV method is that the
optimization problem is convex, which can be quickly solved
with robust convex optimization methods like Interior-point
method [8]. To show the accuracy of this interpolation, we
conduct experiment on four different circuit performances:
read current Iread, write noise margin WNM, static noise
margin SNM and read noise margin RNM of the SRAM cell.
The considered range of variation space is from −9σ ∼ +9σ
and discretized as 91 × 91 uniform meshes, the number of
known points is set as K = 30. Finally the resulted mean-
square error and corresponding specification is shown in Table
I. The above result shows that this interpolation method can

TABLE I
INTERPOLATION ACCURACY.

Performance Mean-square error Spec

Iread 2.013× 10−4 0.1
WNM 1.02× 10−4 0.05
SNM 1.15× 10−4 0.02
RNM 1.02× 10−3 0

provide ∼ 10−4 accuracy, which can be considered accurate
enough for practical application.

Theoretically speaking, the above method can be extended
to a larger d. Considering implementation issue, one must
strike a balance between storage and speed. Fortunately,
d = 2 with above experiment parameters already offers
us a reasonable costs. For application with more than 100
dimensions, roughly 3000 runs of SPICE is enough, and for



low dimensional problem like D = 6, less than 300 runs are
required.

C. IS Using Surrogate Model

Compared with the norm minimization stage, importance
sampling is a more “localized” process which means we do
not need to have the knowledge of a whole D-dimension
space. Furthermore, [4] proposed that by using fine surrogate
model, IS can be accurately done even without any SPICE
simulations.

For most fitting methods, a surrogate model is represented
as linear combination of some basis functions B(X) [9]:

f(X) = a0 +
∑
i

ai ∗Bi(X) (10)

By Taylor expansion, the SPICE function f(X) can be locally
approximated around Xopt as

f(X) = f(Xopt) + c1∆X+ c2∆X⊗2 + . . . (11)

Thus the “localized” property of IS stage enables us to use
simple basis functions like linear or quadratic terms.

Some useful tools such as Lasso [10] can help to improve
the quality of the surrogate model because of its ability
of variable selection for high-dimensional case. Instead of
just focusing on fitting accuracy, Lasso add coefficient terms
into minimization object function, helping to generate a less
sensitive model [9]:

a∗ = minimize ||y−B(X) ∗ a||2 + λ2||a||2 + λ1||a||1 (12)

With the help of local surrogate model, we can always reach
desired accuracy with no more than 102 level of SPICE runs,
much less sensitive to the increase of dimension D.

D. Summarize

Finally, we can summarize the proposed failure rate calcu-
lation method in Algorithm 2.

Algorithm 2 Realization of Failure Rate Estimation
Step 1: Sort all D variables as an descending queue
according to their measurements;
Step 2: Select the first d vectors in the queue as bases, if
the total length is less than d, select all of them.
Step 3: Discretized the d-dimension subspace formed by
the picked vectors, then randomly choose K points in it
and run SPICE simulation;
Step 4: Solving convex optimization problem (9) and obtain
the optimum vector accoding to norm minmization criteria;
Step 5: Substitute the first d vectors with the optimum
vector obtained above and goto Step 2.
Step 6: Draw T points randomly according to PDF q(X) =
p(X −Xopt) and run SPICE simulation;
Step 7: Using these T points to train a surrogate model;
Step 8: Generate M points from q(X), use surrogate model
to evaluate them;
Step 9: Calculate failure rate Pf according to eq.(5);

IV. RESULTS

In this section, the 6-T SRAM cell designed in a commercial
40 nm process is used to demonstrate the accuracy and
efficiency of the proposed method. Fig 3 shows the schematic
of the SRAM cell. In total, 17 variation variables such as
Tox and Vth mismatch of each transistor are considered (thus
D = 6 × 17 = 102). All the process variables are treated
as mutually independent and standard normal. The circuit
performance is chosen as the read noise margin (RNM) to
evaluate the stability of the SRAM cell [11]. When RNM is
less than zero, the data retention failure happens, so we set
Spec = 0. For comparison, all of the following experiments
conducted respectively on four SRAM cells with different
design parameters labeled as SRAM1 ∼ SRAM4.

Fig. 3. The circuit schematic of the 6-T SRAM cells.

A. Procedure of Subspace Rotation Method

As been discussed, the proposed subspace rotation method
intends to find a variation plane (when d = 2, otherwise should
be called subspace) which contains the global MPFP. To do
this, the plane is rotated iteratively with a greedy scheme, in
this example, totally D− 1 = 101 iterations are played. Thus
we can plot the boundaries of these 101 planes and fold them
together into one figure to verify the efficiency of this scheme.
In Fig 4 the first 4 runs are being plotted and in Fig 5 the last
4 are observed.

It can be clearly observed that the boundary is moving
towards the original point with growing iterations, which
means we are getting better MPFP and hence verify the
effectiveness of the proposed rotation scheme for our norm
minimization task. Also we see that boundary moves rapidly
during early iterations but almost come to a halt at later runs,
so actually we don’t need full D − 1 iterations to acquire
convergency, when such kind of stop is observed we can safely
break the iteration because we initially use a descending order
based on their measurements.

B. Validate the Accuracy of the Proposed Method

To evaluate the accuracy of the proposed method, standard
Monte Carlo method on the above four SRAM cells are being
compared. The failure ratio Pf of these SRAM cells vary from
10−5 ∼ 10−3 level, thus the costs of SPICE simulation for
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Fig. 4. How boundary moving towards the original point during the first four iterations for the four SRAM examples. (Variable 1 and variable 2 represents
the bases of subspace in different iterations, they are transformed into the same plane for vision simplicity)
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Fig. 5. How boundary moving towards the original point during the last four iterations for the four SRAM examples.(Variable 1 and variable 2 represents
the bases of subspace in different iterations, they are transformed into the same plane for vision simplicity)

standard Monte Carlo should be no less than 104 ∼ 106 to
ensure convergency.

In contrast, the proposed method only 3235 runs of SPICE
simulations are required (i.e. d = 2, and 205 simulations for
sorting measures, 101 × 30 = 3030 simulations for subspace
rotation method in the worst case) for the norm minimization
stage. While for the IS stage, 200 runs of SPICE simulations
are used for training a local surrogate model, and the rest
sampling and circuit performance calculation job are done with
this model within less than 1s. Thus with the proposed method,
no more than 3500 SPICE runs are needed to obtain the
same accuracy as standard MC, reaching about 100X∼1000X
acceleration. Fig 6 plots failure rate against simulation runs for
the proposed method and standard Monte Carlo. The failure
rate estimation from the two methods closely match each other,
validating the accuracy of the proposed method.

C. Compare with Existing Methods

The main goal of the proposed method is to tackle high-
dimensional applications. The most severe problem of the
existing methods using norm minimization and IS framework
is the “curse of dimensionality” when searching MPFP using
global optimization. One of the fastest method under this
framework found in references was proposed in [4], which
used a global surrogate model using radial basis function
network [12], combined with differential evolution algorithm
(DE) [13] to find MPFP. For reasons we’ve discussed in

Section II, both the construction of a global surrogate model
and the direct-search scheme greatly suffer from large D.
Table II compares the norm of the resulted MPFP using this
method and our proposed one on the four different SRAM
cases.

TABLE II
NORM OF RESULTED MPFP(×σ).

Label Surrogate Model+DE Proposed

SRAM1 8.5137 3.225
SRAM2 7.8606 3.8418
SRAM3 7.7157 4.2426
SRAM4 9.6831 5.5569

It can be clearly observed that the Surrogate Model+DE
method will result in a bad MPFP (deviated more than 3σ)
for high dimensional application, leading to a poor distorted
sampling PDF q(X), and consequently make large estimation
error.

Other methods tackling high-dimension application without
using this framework have also been proposed, but they’ve
only reported to solve cases up to about 20 random variables.
For example, [14] deals with 12-d analysis, [5] considers a
403-dimensional case but using primary component analysis
to reduce the dimension to 11, and [6] solves a 24-dimensional
case. Our proposed method makes no assumption on the
intrinsic dimension of the process variables and the topology
structure of the circuit schematic, thus can be well applied to
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circuits other than SRAM.
For low dimensional cases, the SPICE simulation costs of

the proposed method are about the same level of the best
known methods. For example, with D = 6 application, no
more than 300 runs of SPICE are required, even slightly
less than the best result reported in paper [4], according to
which is far better than the existing MIS [1], MNIS [2],GS
[3] methods which all require more than 2000 runs of SPICE
simulations. Thus the proposed method can well compete with
the best known method for low-dimension case while also
remain feasible for very high dimensional applications, which
can not be well solved with other existing methods.

V. CONCLUSIONS

In this paper we proposed an efficient and robust method
for high-dimensional high-sigma analysis problems. Existing
methods such as the norm minimization importance sam-
pling method suffer from cost explosion when finding the
optimal failure boundary due to “curse of dimensionality”.
We proposed a space rotation method to convert the high-
dimension optimization problem to a series of low-dimension
problems. Each low-dimension problem is formulated as a
convex optimization problem and thus global optimality can
be obtained. The proposed method can easily handle problems
with > 100 random variables.
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