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Abstract—This paper presents a novel Dynamic Reliability Man-

agement System (DyReMS) for on-chip systems that performs 

resilience-driven resource allocation and mapping. It accounts for 

both the tasks’ resilience properties and heterogeneous error 

recovery features of different cores. DyReMS also chooses a reliable 

task version (out of multiple reliability-aware transformed options) 

depending upon the reliability level of the allocated core. In case of 

error detection, rollbacks are performed. Our system provides 

70%-87% improved task reliability compared to a timing reliabil-

ity-optimizing core assignment, i.e. minimizing the probability of 

deadline misses (with EDF scheduling). 

Keywords—Reliability, Dependability, Soft Errors, Aging, Pro-

cess Variations, Compiler, Run-Time Management. 

I. INTRODUCTION AND MOTIVATION 

Continuous transistor scaling in advanced technology nodes has 

enabled high core integration where on-chip systems feature 100s-

1000s of cores [1][2]. However, this resulted in various reliability 

concerns like process variations, aging, soft errors, etc. The process 

variations and aging effects are typically manifested as design-time 

and run-time performance/power variations in different cores, respec-

tively [1][3]. The process variations in the 45nm technology node may 

lead to threshold voltage variations of up to 42% [5]. These variation 

effects are foreseen to aggravate in 32nm and beyond [3]. Fig.1 

illustrates the performance variations of different cores on a chip due 

to (a) process variations [6], and (b) aging [7]. While the above two 

effects are of permanent nature, another important reliability concern 

is soft errors that is transient in nature and manifests as temporary bit 

flips in the system due to, e.g., high energy particle strikes [8][9]. 

Since a real-world system is subjected to all of the above reliability 

issues, joint consideration of these effects is inevitable for designing 

reliable on-chip systems. 

 
Fig.1: Performance variations among different cores on a chip due 

to (a) process variations [6], and (b) aging [7] 

Several techniques have been proposed to combat these reliability 

threats where most of them typically mitigate individual reliability 

threats [3][23]. A compiler assisted approach is used in [10] where the 

workload characteristic is exploited to set different frequencies and 

voltages of different cores. A compiler-based approach is proposed in 

[12] where the stress is uniformly distributed to minimize the aging 

effects in the GPGPU architecture. The run-time approach in [11] 

addresses the non-uniform aging (due to imbalance workload) of 

different cores through regulating their idle time. Towards soft error 

issues, several mitigation techniques have been proposed at the hard-

ware level [3][4] and at the software/compiler level [8][13][14], most 

of which rely on redundancy at different granularities (i.e. hardware 

component, pipeline, code, data, etc.). The works like SRT [15], CRT 

[16], and [17][18] have focused on multi-core based soft error mitiga-

tion where free cores in the multi-core systems are exploited to provide 

redundancy either at process-level or at thread-level. In CRT, two 

processor cores execute redundant threads. In presence of performance 

variations, one core may produce the output later than the other core. 

Eventually, both outputs will not synchronize for the comparison and 

an error may be detected due to delayed output from one of the cores. 

Alternatively, if a synchronization mechanism is designed for that, it 

may lead to severe performance degradation. Recent trends explore 

flexible approaches like providing instruction set architecture compli-

ant cores with different error recovery functionalities [19]. These 

techniques assume that excessive area is available in multi-/many-core 

systems. However, in case of area-constrained embedded systems, 

there may be scenarios where not all applications may be supported 

with full DMR or TMR due to resource competition. 

Problem Statement: First, given a many-core architecture under 

performance variation effects with heterogonous error recovery 

functionalities (i.e. fully protected, partially protected or un-protected 

cores), the problem is to allocate a set of cores with heterogeneous 

error recovery functionalities to the tasks of concurrently executing 

applications. The problem is intricate in resource competing scenarios 

where the total applications’ demands may exceed the available 

resources to ensure full system reliability. Afterwards, given multiple 

task versions each exhibiting a unique resilience and performance 

characteristic, the problem is to choose an appropriate task version to 

map on the allocated core. The goal is to maximize the overall system 

reliability while meeting tasks’ deadlines. 

A. Our Novel Contributions 
We propose a novel Dynamic Reliability Management System 

(DyReMS) for on-chip systems that performs resilience-driven resource 

allocation to the tasks of concurrently executing and resource compet-

ing applications. Depending upon the allocated core and its hardware-

level error recovery features, DyReMS chooses an appropriate task 

version generated through a reliability-driven compiler while exploiting 

their variable resilience properties. It also performs execution and 

recovery control in case errors are detected. 

II. SYSTEM MODELS 

Hardware Architecture Model: We consider a many-core processor 

with homogenous RISC cores that are instruction set architecture 

compliant but exhibit performance variations. The cores have hetero-

geneous error recovery functionality, i.e. some cores are fully protect-

ed cores (FPC) with hardware-level protection techniques like TMR 

or pipeline protection etc. [4], some are partially protected cores 

(PPC), e.g., offering information redundancy by ECC based memories 

[20], and some are un-protected cores (UPC), i.e. with no error 

recovery features. The unprotected cores can be utilized in pair to 

achieve modular redundancy, i.e. DMR. Partially protected cores with, 

e.g., ECC can only recover from memory faults. 



Application Model: The application software is composed of n tasks 

given in a list T. Each task t has multiple task versions composed of a 

different set of function versions fak that are generated using reliabil-

ity-aware transformations [8]. A transformed task version ti has 

certain performance (in terms of execution time of a version on a 

particular core type) Pi, reliability (in terms of resilience [21]) Ri, and 

reliability-timing penalty [22] RTPi characteristics. A task dependence 

graph (TDP) is also given as an input to our system to find the best 

possible cores to map a task while taking its dependent tasks into 

account. 

Fault and Reliability Estimation Models: We consider transient 

faults/soft errors, single and multiple bit upsets in both the combinato-

rial and sequential logic. The process variations and aging effects are 

considered as performance variations following the data and model of 

[6][7]. We employ the resilience model of [19][21] that quantifies an 

application’s resilience as the probabilistic measure of functional 

correctness in terms of the output quality in the presence of faults. In 

order to jointly account for the functional and timing reliability we 

employ the Reliability-Timing (RT) penalty model of [22]. It is given 

as the linear combination of the functional reliability (i.e., resilience 

R) and the timing reliability (i.e. D_missRate, the percentage of 

deadline violations). For a user-defined parameter 0 ≤ α ≤ 1, the RT 

penalty is given as: 

         (   )           

III. SYSTEM OVERVIEW AND DYNAMIC RELIABILITY MANAGEMENT 

Fig.2 presents our overall system overview showing the design-time 

and run-time steps. The following two design-time steps provide inputs 

to our novel Dynamic Reliability Management System (DyReMS, 

shown in orange-filled box). 
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Fig.2 System Overview showing Design-Time and Run-Time Steps 

a) Reliability-Aware Core Customization: In a many-core processor, 

different cores can be enhanced with specialized reliability features 

under a given area constraint. As discussed in the system model, the 

processor under consideration has some cores that are fully-

protected (FPC), some cores that are partially protected (PPC), and 

some cores that are un-protected (FPC). Our selection of a certain 

reliability-aware customization follows the methodology of the 

DHASER approach presented in [19]. Note, in such architecture, all 

the cores have the same instruction set architecture (ISA). 

b) Reliability-Driven Compilation: We leverage the concept of 

multiple compiled versions of a task (similar to the one proposed in 

[8]), such that different compiled versions have diverse resili-

ence/reliability and performance (executing time) properties. 

Given such an architecture with heterogeneous reliability features and 

multiple compiled versions of tasks with reliability vs. performance 

tradeoff, the challenge is to manage the system resources to jointly 

maximize the reliability of the executing tasks. Such a technique needs to 

be run-time adaptive in order to react to the run-time performance 

variations due to aging effects or workload variations and unpredictable 

application scenarios (i.e. which set of tasks executes concurrently is 

unknown at design time). 

To address the above-discussed challenges, we propose a Dynamic 

Reliability Management System (DyReMS) that performs the following 

three key operations at run time: 

1) Resilience-Based Reliable Core Assignment: Depending upon the 

resilience of a task, DyReMS assigns an appropriate core with certain 

reliability features. For instance, a task with very low resilience may 

get a fully protected core (FPC) as it has a high susceptibility towards 

program errors. However, a task with a very high resilience will get 

unprotected core (UPC) because a fault during the execution of this 

task will most probably be masked and will not result in a program 

error. Such a resilience-based core allocator needs to account for the 

deadlines and execution time of tasks along with the performance 

variations in the underlying hardware, especially when assigning cores 

with temporal redundancy. 

In case FPCs and PPCs are all allocated to some low-resilience 

tasks, and there are still more low-resilience tasks that need further 

protection, our DyReMS uses multiple UPCs to realize spatial redun-

dancy. Depending upon the number of remaining tasks that are yet to 

be executed, the number of cores available for spatial redundancy 

might be limited. In case of insufficient resources, the priority is to 

assign at least one core to all the remaining tasks to ensure their 

execution rather than engaging the cores in spatial redundancy for 

only a few tasks and not facilitating others. 

Finally, after choosing a version (here with the highest perfor-

mance) for each task, the tasks are sorted by their RT penalty values in 

the descending order. The task with the highest RT penalty value (the 

first entry in the list) will be assigned to the fastest core of the core 

type with the highest protection-level, i.e. FPC, followed by DMR 

using UPCs, PPC, and then UPC without any redundancy support. 
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Fig.3 An example scenario illustrating the flow of our DyReMS. 

An Example: Fig.3 illustrates the flow of our resilience-based 

core allocator in DyReMS. A processor with 9 cores in 3x3 organiza-

tion with 3 FPCs, 3PPCs, and 3 UPCs is given along with a task 

dependence graph. Three tasks (t01-t03) have just finished execution 

while two tasks (t6-t7) are still executing. Five tasks (t1-t5) are going 

to start execution and future tasks are t8-t9. Core properties are: 

type={FPC;PPC;UPC}, id/position in “x.y” format, and speed. The 

task version list with different tradeoffs (reliability/performance) per 

task sorted by performance is shown. The task list (initially unsorted) 

is sorted by RT-penalty. The number of sets per protection level {FPC, 



DMR, PPC, UPC} is computed. The final protection level assignment 

is shown in L and the allocation is given as: 2xFPC, 1xDMR is 

possible, 2x PPC → 1xUPC free (no task available for that). 

2) Choosing Reliable Task Version: Depending upon the allocated 

core and task deadline, an appropriate task version is chosen, while 

taking into account the application’s deadline. It is important to match 

up the task version’s execution characteristic with the core performance 

properties. For the cores offering full protection (i.e. FPC), the perfor-

mance-wise best version can be selected because the task resilience 

plays a minor role due to the hardware protection mechanisms provided 

by FPCs. In case of the other protection-levels (i.e. PPCs and DMR 

using multiple UPCs), we select the version that meets the deadline and 

offers the highest possible reliability in terms of resilience. 

3) Reliable Execution and Rollback Control: For input replication 

and output comparison, we deploy the method presented in [15]. 

Fig.4(a) illustrates the procedure; the inputs are  replicated using Load 

Value Queue (LVQ) such that the data is fetched by the thread 

executing on the faster core C1 and placed in the buffer for the slower 

thread running on C2. Output comparison is done using the store 

buffer. Both outputs and the addresses for storing the output data are 

kept for checking prior to the actual store operation. Finally, the store 

instruction is executed using the address (computed two times through 

redundant execution). Fig.4(b) presents a scenario where outputs from 

two UPCs (used for DMR) are compared. It shows different reaction 

scenarios in case an error is detected. Let us assume two potential 

cases of output mismatch: 

(i) Delay Faults due to Performance Variations: two UPCs have 

performance variation, e.g. C2 is a slower core and C1 is a faster 

core such that core C2 produces a delayed output. When com-

paring C2’s output with C1’s output, a potential mismatch may 

happen due to timing delay and insufficient synchronization 

margin, thus leading to a detected error. 

(ii) Soft Errors: core C1 experiences a soft error producing an incor-

rect output, while C2 produces a correct output within time. 

Both outputs are synchronized but an error is detected due to a 

soft error in C1. 
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In case an error is detected, our DyReMS selects one of the follow-

ing options for recovery or continues execution. 

Option 1: Ignore the error and “blindly” select the output of C1 

executing a soft error-resilient task version. The confidence level of 

selecting C1’s output as the correct result depends upon the resilience 

level of this task version. An error in a highly resilient task may not 

affect the quality of service for the end-user. 

Option 2: “Only” rollback/re-execute the task on core C2 that pro-

duced the delayed output and re-compare with previous output of C1, 

i.e. generated in the previous execution. This will curtail the power 

overhead of computing the recovery. 

Option 3: In case an error is again detected due to aging of C2, re-

execute on an un-aged core C1 which has better reliability and 

performance. C2 is completely disabled, since repeated execution on 

C2 may further deteriorate the core and cause problems for future 

executions. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 
An in-house reliability-aware many-core simulator is employed 

(see Fig.5). It simulates the SPARC V-8 instruction set architecture. 

The simulator is equipped with a fault generation engine that uses 

various parameters for generating different fault scenarios. An inte-

grated fault injection engine then injects different transient faults 

depending upon the generated fault scenario during the application 

execution at the ISS level. Important fault generation parameters are: 

fault models (i.e. single or multiple bit flips), fault distribution 

properties (random, correlated, evenly distributed), process area 

results obtained from an ASIC synthesis flow. The fault rates for 

experiments are obtained using the neutron flux calculator [24] and 

city coordinates/altitudes. In our experiments multiple fault rates are 

considered (10-6-10-8), to obtain coverage from terrestrial to aerial 

operational scenarios. From the reliability-driven compiler [8], 

multiple transformed task versions are generated which are forwarded 

to our reliability-aware processor simulator for evaluation. We use the 

state-of-the-art H.264 video encoder and multiple non-multimedia 

applications from MiBench application suite [25] like “SHA”, “CRC”, 

“AES”, “ADPCM”, and “SUSAN”. For evaluation we generate 

multiple application mixes following a random combination of tasks 

or representative application scenarios (like secure image processing 

and secure video conferencing). 
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Fig.5: Our experimental setup 

The resilience values are also estimated at task level using the 

methods of [21][19] and are forwarded to the simulator. After the fault 

injection experiments are performed, the erroneous and error free data 

is forwarded to the application analysis unit, to evaluate task reliabil-

ity. 

B. Comparison to State-of-the-Art 
Fig. 6 illustrates a comparison between our DyReMS and the tim-

ing reliability-optimizing core assignment, i.e. minimizes the probabil-

ity of deadline misses (with EDF scheduling). The task reliability 

improvements of our system are presented when running a different 

number of application scenarios on the many-core processor (where 

an application scenario is a sequence of applications, e.g., ADPCM 

giving input to CRC). The reliability improvements for a 4x4, 5x5 and 

6x6 core configuration are shown for two different ranges of variation. 

For all configurations it is visible that for a higher number of tasks the 

reliability improvement is lower as more tasks have to be assigned to 



the PPCs or UPCs. However, the tasks still benefit significantly from 

the joint consideration of functional reliability and timing reliability 

for core allocation and the different compiled versions provided. For 

the 4x4 case the reliability improvement is around 70% on average for 

the lower frequency variation. When moving to a 5x5 configuration, 

more FPCs are available and are selected by DyReMS, while the 

timing reliability-optimizing core assignment also selects PPCs and 

UPCs in case they offer a better performance than the remaining 

FPCs. Consequently, the reliability improvement increases when 

comparing the “10” scenarios cases for the different core configura-

tions. In the 6x6 configuration the 100% improvement can be ex-

plained by the fact that all tasks can be assigned to FPCs, while an 

average improvement of 87% is achieved. 

V. CONCLUSIONS 

We propose a novel Dynamic Reliability Management System 

(DyReMS) for on-chip systems. Our DyReMS performs resilience-

driven resource allocation and mapping considering both the distinct 

resilience properties of tasks and the heterogeneous error recovery 

functionality of different cores. Afterwards, it chooses an appropriate 

soft-error tolerant compiled version based on the selected core. In case 

of error detection, rollbacks are performed. Our system provides a 

70%-87% improved task reliability compared to a timing reliability-

optimizing core assignment that minimizes the probability of deadline 

misses. 
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Fig. 6 Task reliability improvements of our DyReMS compared to the timing reliability-optimizing core assignment. 


