
978-3-9815370-2-4/DATE14/©2014 EDAA

Compiler-Driven Dynamic Reliability Management

for On-Chip Systems under Variabilities
Semeen Rehman, Florian Kriebel, Muhammad Shafique, Jörg Henkel

Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

rehman@ira.uka.de, {florian.kriebel, muhammad.shafique, henkel}@kit.edu

Abstract—This paper presents a novel Dynamic Reliability Man-

agement System (DyReMS) for on-chip systems that performs

resilience-driven resource allocation and mapping. It accounts for

both the tasks’ resilience properties and heterogeneous error

recovery features of different cores. DyReMS also chooses a reliable

task version (out of multiple reliability-aware transformed options)

depending upon the reliability level of the allocated core. In case of

error detection, rollbacks are performed. Our system provides

70%-87% improved task reliability compared to a timing reliabil-

ity-optimizing core assignment, i.e. minimizing the probability of

deadline misses (with EDF scheduling).

Keywords—Reliability, Dependability, Soft Errors, Aging, Pro-

cess Variations, Compiler, Run-Time Management.

I. INTRODUCTION AND MOTIVATION

Continuous transistor scaling in advanced technology nodes has

enabled high core integration where on-chip systems feature 100s-

1000s of cores [1][2]. However, this resulted in various reliability

concerns like process variations, aging, soft errors, etc. The process

variations and aging effects are typically manifested as design-time

and run-time performance/power variations in different cores, respec-

tively [1][3]. The process variations in the 45nm technology node may

lead to threshold voltage variations of up to 42% [5]. These variation

effects are foreseen to aggravate in 32nm and beyond [3]. Fig.1

illustrates the performance variations of different cores on a chip due

to (a) process variations [6], and (b) aging [7]. While the above two

effects are of permanent nature, another important reliability concern

is soft errors that is transient in nature and manifests as temporary bit

flips in the system due to, e.g., high energy particle strikes [8][9].

Since a real-world system is subjected to all of the above reliability

issues, joint consideration of these effects is inevitable for designing

reliable on-chip systems.

Fig.1: Performance variations among different cores on a chip due

to (a) process variations [6], and (b) aging [7]

Several techniques have been proposed to combat these reliability

threats where most of them typically mitigate individual reliability

threats [3][23]. A compiler assisted approach is used in [10] where the

workload characteristic is exploited to set different frequencies and

voltages of different cores. A compiler-based approach is proposed in

[12] where the stress is uniformly distributed to minimize the aging

effects in the GPGPU architecture. The run-time approach in [11]

addresses the non-uniform aging (due to imbalance workload) of

different cores through regulating their idle time. Towards soft error

issues, several mitigation techniques have been proposed at the hard-

ware level [3][4] and at the software/compiler level [8][13][14], most

of which rely on redundancy at different granularities (i.e. hardware

component, pipeline, code, data, etc.). The works like SRT [15], CRT

[16], and [17][18] have focused on multi-core based soft error mitiga-

tion where free cores in the multi-core systems are exploited to provide

redundancy either at process-level or at thread-level. In CRT, two

processor cores execute redundant threads. In presence of performance

variations, one core may produce the output later than the other core.

Eventually, both outputs will not synchronize for the comparison and

an error may be detected due to delayed output from one of the cores.

Alternatively, if a synchronization mechanism is designed for that, it

may lead to severe performance degradation. Recent trends explore

flexible approaches like providing instruction set architecture compli-

ant cores with different error recovery functionalities [19]. These

techniques assume that excessive area is available in multi-/many-core

systems. However, in case of area-constrained embedded systems,

there may be scenarios where not all applications may be supported

with full DMR or TMR due to resource competition.

Problem Statement: First, given a many-core architecture under

performance variation effects with heterogonous error recovery

functionalities (i.e. fully protected, partially protected or un-protected

cores), the problem is to allocate a set of cores with heterogeneous

error recovery functionalities to the tasks of concurrently executing

applications. The problem is intricate in resource competing scenarios

where the total applications’ demands may exceed the available

resources to ensure full system reliability. Afterwards, given multiple

task versions each exhibiting a unique resilience and performance

characteristic, the problem is to choose an appropriate task version to

map on the allocated core. The goal is to maximize the overall system

reliability while meeting tasks’ deadlines.

A. Our Novel Contributions
We propose a novel Dynamic Reliability Management System

(DyReMS) for on-chip systems that performs resilience-driven resource

allocation to the tasks of concurrently executing and resource compet-

ing applications. Depending upon the allocated core and its hardware-

level error recovery features, DyReMS chooses an appropriate task

version generated through a reliability-driven compiler while exploiting

their variable resilience properties. It also performs execution and

recovery control in case errors are detected.

II. SYSTEM MODELS

Hardware Architecture Model: We consider a many-core processor

with homogenous RISC cores that are instruction set architecture

compliant but exhibit performance variations. The cores have hetero-

geneous error recovery functionality, i.e. some cores are fully protect-

ed cores (FPC) with hardware-level protection techniques like TMR

or pipeline protection etc. [4], some are partially protected cores

(PPC), e.g., offering information redundancy by ECC based memories

[20], and some are un-protected cores (UPC), i.e. with no error

recovery features. The unprotected cores can be utilized in pair to

achieve modular redundancy, i.e. DMR. Partially protected cores with,

e.g., ECC can only recover from memory faults.

Application Model: The application software is composed of n tasks

given in a list T. Each task t has multiple task versions composed of a

different set of function versions fak that are generated using reliabil-

ity-aware transformations [8]. A transformed task version ti has

certain performance (in terms of execution time of a version on a

particular core type) Pi, reliability (in terms of resilience [21]) Ri, and

reliability-timing penalty [22] RTPi characteristics. A task dependence

graph (TDP) is also given as an input to our system to find the best

possible cores to map a task while taking its dependent tasks into

account.

Fault and Reliability Estimation Models: We consider transient

faults/soft errors, single and multiple bit upsets in both the combinato-

rial and sequential logic. The process variations and aging effects are

considered as performance variations following the data and model of

[6][7]. We employ the resilience model of [19][21] that quantifies an

application’s resilience as the probabilistic measure of functional

correctness in terms of the output quality in the presence of faults. In

order to jointly account for the functional and timing reliability we

employ the Reliability-Timing (RT) penalty model of [22]. It is given

as the linear combination of the functional reliability (i.e., resilience

R) and the timing reliability (i.e. D_missRate, the percentage of

deadline violations). For a user-defined parameter 0 ≤ α ≤ 1, the RT

penalty is given as:

 ()

III. SYSTEM OVERVIEW AND DYNAMIC RELIABILITY MANAGEMENT

Fig.2 presents our overall system overview showing the design-time

and run-time steps. The following two design-time steps provide inputs

to our novel Dynamic Reliability Management System (DyReMS,

shown in orange-filled box).

Resilience-Based Core

Allocation

(a) Reliability-Aware Core Customization

PPC: Partially

Protected Core

FPC: Fully

Protected Core

UPC: Un-

Protected Core

Run-Time

FPC FPCPPC PPC

...UPC UPC

FPC FPCPPC PPC

... ...UPCUPC

(b) Reliability-Driven Compilation

Design-Time

(c) DyReMS: Dynamic Reliability Management System

Apply Reliability-

Aware Software

Transformations

T1a ...T1b T1m

...

Multiple

compiled

versions

User defined
Tolerable

Performance
Overhead
Constraint

A
p

p
li
c

a
ti

o
n

s

Choosing an Appropriate

Task Version

Task Execution and

Error Recovery Control

Fig.2 System Overview showing Design-Time and Run-Time Steps

a) Reliability-Aware Core Customization: In a many-core processor,

different cores can be enhanced with specialized reliability features

under a given area constraint. As discussed in the system model, the

processor under consideration has some cores that are fully-

protected (FPC), some cores that are partially protected (PPC), and

some cores that are un-protected (FPC). Our selection of a certain

reliability-aware customization follows the methodology of the

DHASER approach presented in [19]. Note, in such architecture, all

the cores have the same instruction set architecture (ISA).

b) Reliability-Driven Compilation: We leverage the concept of

multiple compiled versions of a task (similar to the one proposed in

[8]), such that different compiled versions have diverse resili-

ence/reliability and performance (executing time) properties.

Given such an architecture with heterogeneous reliability features and

multiple compiled versions of tasks with reliability vs. performance

tradeoff, the challenge is to manage the system resources to jointly

maximize the reliability of the executing tasks. Such a technique needs to

be run-time adaptive in order to react to the run-time performance

variations due to aging effects or workload variations and unpredictable

application scenarios (i.e. which set of tasks executes concurrently is

unknown at design time).

To address the above-discussed challenges, we propose a Dynamic

Reliability Management System (DyReMS) that performs the following

three key operations at run time:

1) Resilience-Based Reliable Core Assignment: Depending upon the

resilience of a task, DyReMS assigns an appropriate core with certain

reliability features. For instance, a task with very low resilience may

get a fully protected core (FPC) as it has a high susceptibility towards

program errors. However, a task with a very high resilience will get

unprotected core (UPC) because a fault during the execution of this

task will most probably be masked and will not result in a program

error. Such a resilience-based core allocator needs to account for the

deadlines and execution time of tasks along with the performance

variations in the underlying hardware, especially when assigning cores

with temporal redundancy.

In case FPCs and PPCs are all allocated to some low-resilience

tasks, and there are still more low-resilience tasks that need further

protection, our DyReMS uses multiple UPCs to realize spatial redun-

dancy. Depending upon the number of remaining tasks that are yet to

be executed, the number of cores available for spatial redundancy

might be limited. In case of insufficient resources, the priority is to

assign at least one core to all the remaining tasks to ensure their

execution rather than engaging the cores in spatial redundancy for

only a few tasks and not facilitating others.

Finally, after choosing a version (here with the highest perfor-

mance) for each task, the tasks are sorted by their RT penalty values in

the descending order. The task with the highest RT penalty value (the

first entry in the list) will be assigned to the fastest core of the core

type with the highest protection-level, i.e. FPC, followed by DMR

using UPCs, PPC, and then UPC without any redundancy support.

A
L

L
O

C
A

T
IO

N

Deadlines: t1: 100 | t2: 90 | t3: 70 |

t4: 80 | t5: 85

Finished tasks: t01→1.1 | t02→2.2 | t03→3.1
PPC

PPC

UPC

(1.1,98)

(2.1,91)

(3.1,100)

PPC

FPC

UPC

(1.2,89)

(2.2,97)

(3.2,85)

FPC

FPC

UPC

(1.3,100)

(2.3,80)

(3.3,100)

Running tasks: t6→2.3 | t7→1.2

Approaching tasks: t1 | t2 | t3 | t4 | t5

Future tasks: t8 | t9

LFPC

LPPC

LUPC

1.3 2.2

1.1

3.3 3.1 3.2

Version lists:

task t1: Vt1

#FPC=2 #PPC=2 #UPC=3

t1C t1A t1B

task t2: Vt2 t2A t2B

task t3: Vt3 t3A t3C t3B

task t4: Vt4 t4B t4A

Task list: TL t1C t2A t3A t4B

t4Bt1C t3A t5Bsort(RT_pen)

Task dependence graph:

t01 t02 t03 t4

t1

t8

t2 t3

→ #DMR=1

Assigned: L

FPC FPC DMR PPC

t4t1 t3 t5
task t5: Vt5 t5B t5A

t2C

t5C

→ #UPC=1

t2

t5B

t2A

PPC

Core type
(id,speed)

Free cores:

2.1

t5

t9

Fig.3 An example scenario illustrating the flow of our DyReMS.

An Example: Fig.3 illustrates the flow of our resilience-based

core allocator in DyReMS. A processor with 9 cores in 3x3 organiza-

tion with 3 FPCs, 3PPCs, and 3 UPCs is given along with a task

dependence graph. Three tasks (t01-t03) have just finished execution

while two tasks (t6-t7) are still executing. Five tasks (t1-t5) are going

to start execution and future tasks are t8-t9. Core properties are:

type={FPC;PPC;UPC}, id/position in “x.y” format, and speed. The

task version list with different tradeoffs (reliability/performance) per

task sorted by performance is shown. The task list (initially unsorted)

is sorted by RT-penalty. The number of sets per protection level {FPC,

DMR, PPC, UPC} is computed. The final protection level assignment

is shown in L and the allocation is given as: 2xFPC, 1xDMR is

possible, 2x PPC → 1xUPC free (no task available for that).

2) Choosing Reliable Task Version: Depending upon the allocated

core and task deadline, an appropriate task version is chosen, while

taking into account the application’s deadline. It is important to match

up the task version’s execution characteristic with the core performance

properties. For the cores offering full protection (i.e. FPC), the perfor-

mance-wise best version can be selected because the task resilience

plays a minor role due to the hardware protection mechanisms provided

by FPCs. In case of the other protection-levels (i.e. PPCs and DMR

using multiple UPCs), we select the version that meets the deadline and

offers the highest possible reliability in terms of resilience.

3) Reliable Execution and Rollback Control: For input replication

and output comparison, we deploy the method presented in [15].

Fig.4(a) illustrates the procedure; the inputs are replicated using Load

Value Queue (LVQ) such that the data is fetched by the thread

executing on the faster core C1 and placed in the buffer for the slower

thread running on C2. Output comparison is done using the store

buffer. Both outputs and the addresses for storing the output data are

kept for checking prior to the actual store operation. Finally, the store

instruction is executed using the address (computed two times through

redundant execution). Fig.4(b) presents a scenario where outputs from

two UPCs (used for DMR) are compared. It shows different reaction

scenarios in case an error is detected. Let us assume two potential

cases of output mismatch:

(i) Delay Faults due to Performance Variations: two UPCs have

performance variation, e.g. C2 is a slower core and C1 is a faster

core such that core C2 produces a delayed output. When com-

paring C2’s output with C1’s output, a potential mismatch may

happen due to timing delay and insufficient synchronization

margin, thus leading to a detected error.

(ii) Soft Errors: core C1 experiences a soft error producing an incor-

rect output, while C2 produces a correct output within time.

Both outputs are synchronized but an error is detected due to a

soft error in C1.

Trailing Thread
Input

Replicate

SRT

STORE

Shared Store Buffer

Tail.ptrTail.ptr

No fault detected

Data

Cache

Leading Thread

ADDR,VAL ADDR,VAL

If (tail entry un-initialized)à write the

ADDRESS and DATA VALUE in STORE

BUFFER

Else (CMP ADDR and VAL with the stored

one)

COMPARE

ADDRESSES

and DATA

C1

(faster)

C2

(slower)

STORE

t1

t2

t3

t4

Buff1 Buff2

Rollback

t5

Cmp

Error detected

... Time

Soft error

Correct but delayed ouput by 2 cycles

with respect to C1's output time (t2)

Incorr vs. Corr

Corr vs. Incorr

Leading

Thread

Trailing

Thread

C2

(slower)

C1

(faster)

a

(a) (b)
Fig.4 (a) Input replication & output comparison mechanism,

(b) Output comparison issues under variability

In case an error is detected, our DyReMS selects one of the follow-

ing options for recovery or continues execution.

Option 1: Ignore the error and “blindly” select the output of C1

executing a soft error-resilient task version. The confidence level of

selecting C1’s output as the correct result depends upon the resilience

level of this task version. An error in a highly resilient task may not

affect the quality of service for the end-user.

Option 2: “Only” rollback/re-execute the task on core C2 that pro-

duced the delayed output and re-compare with previous output of C1,

i.e. generated in the previous execution. This will curtail the power

overhead of computing the recovery.

Option 3: In case an error is again detected due to aging of C2, re-

execute on an un-aged core C1 which has better reliability and

performance. C2 is completely disabled, since repeated execution on

C2 may further deteriorate the core and cause problems for future

executions.

IV. RESULTS AND DISCUSSION

A. Experimental Setup
An in-house reliability-aware many-core simulator is employed

(see Fig.5). It simulates the SPARC V-8 instruction set architecture.

The simulator is equipped with a fault generation engine that uses

various parameters for generating different fault scenarios. An inte-

grated fault injection engine then injects different transient faults

depending upon the generated fault scenario during the application

execution at the ISS level. Important fault generation parameters are:

fault models (i.e. single or multiple bit flips), fault distribution

properties (random, correlated, evenly distributed), process area

results obtained from an ASIC synthesis flow. The fault rates for

experiments are obtained using the neutron flux calculator [24] and

city coordinates/altitudes. In our experiments multiple fault rates are

considered (10-6-10-8), to obtain coverage from terrestrial to aerial

operational scenarios. From the reliability-driven compiler [8],

multiple transformed task versions are generated which are forwarded

to our reliability-aware processor simulator for evaluation. We use the

state-of-the-art H.264 video encoder and multiple non-multimedia

applications from MiBench application suite [25] like “SHA”, “CRC”,

“AES”, “ADPCM”, and “SUSAN”. For evaluation we generate

multiple application mixes following a random combination of tasks

or representative application scenarios (like secure image processing

and secure video conferencing).

Erroneous
Executions

Error-Free
Execution

E
rro

r T
y
p

e

D
is

trib
u

tio
n

Appli-
cation

Resilience
Estimation

Reliability-Driven
Compiler

Configurable
Fault

Generator

Fault
Files

Error

Characterization

Resilience

Evaluation

Application Analysis Unit

Fault

Injector

Error

Logging

Many-core ISS
FPC FPCPPC PPC

.....UPC

FPC FPCPPC

...UPC ...

PPC

UPC

UPC ...

F
u

n
c
tio

n
/T

a
s
k

R
e

s
ilie

n
c
e Reliability-Aware Many-core Simulator

Fig.5: Our experimental setup

The resilience values are also estimated at task level using the

methods of [21][19] and are forwarded to the simulator. After the fault

injection experiments are performed, the erroneous and error free data

is forwarded to the application analysis unit, to evaluate task reliabil-

ity.

B. Comparison to State-of-the-Art
Fig. 6 illustrates a comparison between our DyReMS and the tim-

ing reliability-optimizing core assignment, i.e. minimizes the probabil-

ity of deadline misses (with EDF scheduling). The task reliability

improvements of our system are presented when running a different

number of application scenarios on the many-core processor (where

an application scenario is a sequence of applications, e.g., ADPCM

giving input to CRC). The reliability improvements for a 4x4, 5x5 and

6x6 core configuration are shown for two different ranges of variation.

For all configurations it is visible that for a higher number of tasks the

reliability improvement is lower as more tasks have to be assigned to

the PPCs or UPCs. However, the tasks still benefit significantly from

the joint consideration of functional reliability and timing reliability

for core allocation and the different compiled versions provided. For

the 4x4 case the reliability improvement is around 70% on average for

the lower frequency variation. When moving to a 5x5 configuration,

more FPCs are available and are selected by DyReMS, while the

timing reliability-optimizing core assignment also selects PPCs and

UPCs in case they offer a better performance than the remaining

FPCs. Consequently, the reliability improvement increases when

comparing the “10” scenarios cases for the different core configura-

tions. In the 6x6 configuration the 100% improvement can be ex-

plained by the fact that all tasks can be assigned to FPCs, while an

average improvement of 87% is achieved.

V. CONCLUSIONS

We propose a novel Dynamic Reliability Management System

(DyReMS) for on-chip systems. Our DyReMS performs resilience-

driven resource allocation and mapping considering both the distinct

resilience properties of tasks and the heterogeneous error recovery

functionality of different cores. Afterwards, it chooses an appropriate

soft-error tolerant compiled version based on the selected core. In case

of error detection, rollbacks are performed. Our system provides a

70%-87% improved task reliability compared to a timing reliability-

optimizing core assignment that minimizes the probability of deadline

misses.

ACKNOWLEDGMENT
This work is supported in parts by the German Research Foundation

(DFG) as part of the priority program "Dependable Embedded

Systems" (SPP 1500 - spp1500.itec.kit.edu).

REFERENCES
[1] Int’l technology roadmap for semiconductors, 2009.

[2] A. Singh, M. Shafique, A. Kumar, J. Henkel, “Mapping on multi/many-core
systems: Survey of current and emerging trends”, ACM/IEEE DAC, 2013.

[3] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M.
Tahoori, N. Wehn, “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends”, ACM/IEEE DAC, 2013.

[4] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, K.
Flautner, “Razor: circuit-level correction of timing errors for low-power
operation,” IEEE MICRO, vol. 24, no. 3, pp. 10-20, 2004.

[5] L. Lin, W. Burleson, “Analysis and Mitigation of Process Variation
Impacts on Power-Attack Tolerance,” IEEE DAC, pp. 238-243, 2009.

[6] K.K. Rangan, M.D. Powell, G.-Y. Wei; D. Brooks, “Achieving Uniform
Performance and Maximizing Throughput in the Presence of Heterogene-
ity,” IEEE HPCA, pp. 3-14, 2011.

[7] R. Zheng, J. Velamala, V. Reddy, V. Balakrishnan, E. Mintarno, S. Mitra,
S. Krishnan, Y. Cao, “Circuit Aging Prediction for Low Power Opera-
tion,” IEEE CICC, pp. 427- 430, 2009.

[8] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “Reliable software for
unreliable hardware: embedded code generation aiming at reliability”,
CODES+ISSS, pp. 237–246, 2011.

[9] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE TDMR, vol. 5, no. 3, pp. 305-316, 2005.

[10] I. Kadayif, M. Kandemir, I. Kolcu, “Exploiting processor workload
heterogeneity for reducing energy consumption in chip multiprocessors,”
IEEE DATE, vol. 2, pp. 1158 – 1163, 2004.

[11] F. Paterna, L. Benini, A. Acquaviva, F. Papariello, A. Acquaviva, M.
Olivieri, “Adaptive Idleness Distribution for Non-Uniform Aging Toler-
ance in Multiprocessor Systems-on-Chip,” IEEE DATE, 2009.

[12] A. Rahimi, L. Benini, R.K. Gupta, “Aging-Aware Compiler-Directed
VLIW Assignment for GPGPU Architectures,” IEEE DAC, pp. 1-6,
2013.

[13] G.A. Reis, J. Chang, D.I. August, “Automatic instruction-level software
only recovery”, IEEE MICRO, pp. 36–47, 2007.

[14] N. Oh, P.P. Shirvani, E.J. McCluskey, “Error detection by duplicated
instructions in super-scalar processors”, IEEE Transaction on Reliability,
51-1, pp. 63-75, 2002.

[15] S.K. Reinhardt, S.S. Mukherjee, “Transient Fault Detection via Simulta-
neous Multithreading,” ISCA, pp. 25-34, 2000.

[16] S.S. Mukherjee, M. Kontz, S.K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” IEEE ISCA, pp.
99–110, 2002.

[17] A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, D.A. Connors, “Using
Process-Level Redundancy to Exploit Multiple Cores for Transient Fault
Tolerance,” DSN, pp. 297 – 306, 2007.

[18] C. Bolchini, M. Carminati, A. Miele, “Self-Adaptive Fault Tolerance in
Multi-/Many-Core Systems,” IEEE Journal of ET, vol. 29, pp. 159-175,
2013.

[19] T. Li, M. Shafique, S. Rehman, J. A. Ambrose, J. Henkel, S. Parameswa-
ran, “DHASER: Dynamic Heterogeneous Adaptation for Soft-Error Re-
siliency in ASIP-based Multi-core Systems,” IEEE ICCAD, 2013.

[20] R. Teodorescu, J. Nakano, J. Torrellas, “SWICH: A prototype for
efficient cache-level check pointing and rollback,” IEEE MICRO, vol.
26, no. 5, pp. 28-40, 2006.

[21] S. Rehman, M. Shafique, P.V. Aceituno, F. Kriebel, J.J. Chen, J. Henkel,
“Leveraging Variable Function Resilience for Selective Software Relia-
bility on Unreliable Hardware”, DATE, pp. 1759-1764, 2013.

[22] S. Rehman, A. Toma, F. Kriebel, M. Shafique, J.-J. Chen, J. Henkel,
“Reliable Code Generation and Execution on Unreliable Hardware under
Joint Functional and Timing Reliability Considerations,” IEEE RTAS,
pp. 273-282, 2013.

[23] A. Rajendiran, S. Ananthanarayanan, H. D. Patel, M. V. Tripunitara, S.
Garg, “Reliable computing with ultra-reduced instruction set co-
processors”, IEEE DAC, pp. 697-702, 2012

[24] Flux calculator: www.seutest.com/cgi-bin/FluxCalculator.cgi.

[25] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.
Brown, “MiBench: A free, commercially representative embedded
benchmark suite”, IEEE Workload characterization, pp.3-4, 2001.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20 22 24 26 28 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20 22 24 26 28 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20 22 24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20 22 24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16

100%
80%

20%

10 12 14 16

80%
60%
40%
20%

0% 0%

100%
80%

40%

0%

4x4 Cores 5x5 Cores 6x6 Cores

10 14 18 22 10 14 18 22 26 30

Number of Scenarios

R
e

li
ab

il
it

y
Im

p
ro

ve
m

e
n

t
[%

]

60%

100%
80%

20%

100%

60%
40%
20%

0% 0%

80%

40%

0%

60%

Variation:
12.5%

Variation:
25%

40%

40%

80%

12 16 20 24

100%

12 16 20 24 28

60%

20%

20%

60%

100%

Fig. 6 Task reliability improvements of our DyReMS compared to the timing reliability-optimizing core assignment.

