
Recovery-Based Resilient Latency-Insensitive
Systems

Yuankai Chen†, Xuan Zeng‡, and Hai Zhou†

† EECS Department, Northwestern University, Evanston, IL, U.S.A.
‡ Microelectronics Department, Fudan University, China

Abstract—As the interconnect delay is becoming a larger
fraction of the clock cycle time, the conventional global stalling
mechanism, which is used to correct error in general synchronous
circuits, would be no longer feasible because of the expensive
timing cost for the stalling signal to travel across the circuit. In
this paper, we propose recovery-based resilient latency-insensitive
systems (RLISs) that efficiently integrate error-recovery tech-
niques with latency-insensitive design to replace the global
stalling. We first demonstrate a baseline RLIS as the motivation
of our work that uses additional output buffer which guarantees
that only correct data can enter the output channel. However this
baseline RLIS suffers from performance degradations even when
errors do not occur. We propose a novel improved RLIS that
allows erroneous data to propagate in the system. Equipped with
improved queues that prevent accumulation of erroneous data,
the improved RLIS retains the system performance. We provide
theoretical study that analyzes the impact of errors on system
performance and the queue sizing problem. We also theoretically
prove that the improved RLIS performs no worse than the global
stalling mechanism. Experimental results show that the improved
RLIS has 40.3% and even 3.1% throughput improvements
compared to the baseline RLIS and the infeasible global stalling
mechanism respectively, with less than 10% hardware overhead.

I. INTRODUCTION

The evolution of the silicon industry over past decades has
been fueled by continued scaling. However, in contrast to
the increasing transistor speed, the interconnect speed suffers
from the reduced wire cross-sectional area and the conductor
spacing [1]. This issue exacerbates due to the ever-increasing
operating frequency, chip size and average interconnect length.
The interconnect delay is becoming a larger fraction of the
clock cycle time, and some global wires may need to be
pipelined into multiple clock cycles [2].

Latency-insensitive system (LIS) [3] has been proposed in
recent years to relieve the designers of concerning interconnect
delays in early design stage. An LIS can be derived from the
original synchronous system, by partitioning the system into
individual modules and encapsulating each module with a shell
that implements the latency-insensitive protocol. Any number
of wire-pipelining registers (relay stations) can be inserted
between modules without affecting circuit functionality. More
details about LIS will be reviewed in Section III.

Runtime errors are also another critical design concern in
the modern silicon industry. With aggressive timing designs
and the faster transition speed, effects such as power-voltage-
temperature (PVT) variations and alpha particle radiation
would cause the circuit behavior no long deterministic. More

978-3-9815370-2-4/DATE14/©2014 EDAA

explicitly, PVT variations cause fluctuation in circuit speed,
which leads to timing violation. If the alpha particle radiation
hits a register at its transition time, an erroneous value may
be stored and as a consequence occurs a transient error.

Recovery-based principle is widely adopted in many exist-
ing techniques to enable the circuit to correct runtime errors,
such as Razor [4] and TRC [5]. The general idea of the
error-recovery technique is that once an error is detected,
the corresponding component takes additional clock cycles to
recompute the correct data. Traditionally, in order to maintain
the computation sequence, applying error-recovery techniques
to general circuits requires stalling the whole circuit to wait for
the errant component to recover from its error. In the rest of
this paper, we refer such mechanism as global stalling. In the
global stalling mechanism, the error signals must be collected
within a clock cycle time, and also the stalling signals must
reach each component in the same clock cycle. This global
stalling mechanism is infeasible in modern circuits where
the interconnects take different number of clock cycles, as
it cannot guarantee that the stalling across the whole circuit is
synchronized within one clock cycle, whereas asynchronous
stalling may lead to a disorder of computation sequence.

Latency-insensitive protocol in the LIS provides non-
deterministic nature to the system: the computation sequence
can be flexible as each module carries out its computa-
tion independently of the others. We believe that this non-
deterministic nature can be exploited to avoid the global
stalling if the strict computation sequence can be relaxed.
In this work, we consider extending LIS with error-recovery
techniques to overcome the fore-mentioned drawback of the
global stalling mechanism within a single framework, resilient
latency-insensitive system (RLIS). The contributions of our
work are as follows:
• We first demonstrate a baseline RLIS that is abstracted

from an existing technique [6]. The baseline RLIS uses
additional output buffer such that only validated data
is allowed to enter the output channel. An analysis is
presented to show that the baseline RLIS suffers from
performance degradation even when errors do not occur.

• We propose a novel improved RLIS where erroneous
data is allowed to propagate in the system, but with a
“signature bit” erroneous data can be distinguished from
correct data. The error correction in the improved RLIS
is not confined to an individual module, but it is done by
the whole system collectively in a more efficient manner.
We design improved queues to prevent erroneous data
from accumulating in the system.



• We present thorough theoretical analysis of the improved
RLIS. We study the impact of erroneous data on the
system performance and the queue sizing problem. We
compare the improved RLIS with the global stalling
mechanism, and conclude that the improved RLIS per-
forms no worse than the infeasible global stalling mech-
anism.

The rest of this paper is organized as follows. Section II
summarizes existing related work on resilient designs and LIS.
Section III introduces assumptions and useful background con-
cepts in our model. Section IV describes the baseline RLIS as
the motivation of our work. Section V presents our improved
RLIS design and its theoretical analysis. Experimental results
are shown in section VI in terms of the system performance
and the hardware overhead. The work is concluded in section
VII.

II. RELATED WORK

Error resiliency have been studied at different design levels.
For instance, at circuit level, S. Mitra proposed a c-element
based circuitry to eliminate radiation-induced soft errors at
register level [7]. Razor [4] and TRC [5] are architectural level
approaches that employ additional circuitries to detect timing
errors. ANT [8] is a system level approach that permits error
to occur in a signal processing block and later on corrects
it via an error correction block constructed based on case-
by-case computation properties. It is worth mentioning that
[6] proposes “recovery islands” that buffer outputs and enable
different components of SoC to recover separately. Although
the context of their work is different from ours and the
communication is implemented with system bus, their idea
can be abstracted as an error-recovery methodology, which is
taken as a baseline RLIS and the motivation of our work.

Component-based design and optimization, where the sys-
tem is modeled as a set of interconnecting modules, have
been prevailing to cope with the ever-increasing complexity in
modern circuits [9]. One of those models is LIS, first proposed
by L. P. Carloni et al. in [3], as a design methodology which
effectively overcomes interconnect-sensitive issues induced
by long wires among modules. Theoretical analysis of LIS
was originally presented in [10], based on the assumption
of infinite queue sizes. Several works followed to consider
the impact of finite queue sizes on the system performance,
and propose algorithms to solve the queue sizing problem.
In particular, R. Lu and C. K. Koh formulated the queue
sizing problem as a mixed integer linear programming problem
(Mixed ILP) [11]. R. Collins et al. [12] proposed marked graph
model for analyzing the relationship between queue sizes and
system performance. They studied the optimal queue sizes for
different graph topologies and proved that the queue sizing
problem for general topology is NP-complete. A heuristic
algorithm was also proposed to solve the problem efficiently.
In a recent work [13], J. D. Huang et al. proposed compacted
quantitative graph (CQG) to represent original LIS graph,
where the number of nodes and edges are reduced by path
condensation and edge unification. ILP is performed on CQG

to find the optimal queue sizes. Their approach is able to find
optimal solution with a smaller size of ILP.

III. PRELIMINARIES: MODELS, BACKGROUND AND
ASSUMPTIONS

A. Error-Recovery Model

We define critical modules as the modules where runtime
error would occur with a certain rate. The critical modules are
equipped with certain error detection circuitry. The circuitry
is able to notify the module at the early stage of every clock
cycle that if any error occurred during the last computation.
If an error is detected, recomputation should be carried out
immediately, and the new computation is delayed until the
correct output of the last computation is produced. We believe
that this model assumption is general enough and applicable
to many error-recovery techniques such as Razor and circuit
replica. Note that, although Razor does not need physical
“recomputations”, it matches our model because it does take
additional clock cycle to produce the correct output.

B. Latency Insensitive System

An LIS consists of a set of computation modules and a
set of channels that connect the modules and deliver data
between them. Each module is encapsulated with a shell
that implements latency-insensitive protocol. The latency-
insensitive protocol ensures that the module only carries out
the computation when all of its inputs are available. The shell
will clock-gate the module when some of its input channels
do not have data ready or a stalling request is received.

Channel is basically a queue of buffers that delivers data
from its producer to its consumer. In practice the queue size
is finite, therefore when a queue is full, the queue issues a stall
signal to its source module to avoid overflow. If the intercon-
nect is longer than a clock cycle time, pipelining registers,
referred as relay stations, are inserted into the channel. The
relay stations are initialized with void data τ .

Fig. 1. Marked graph representation of LIS.

The performance of LIS is usually measured by its through-
put. Marked graph [12] is used to analyze the throughput
(Fig. 1). Each channel is transformed into a forward edge and
a backward edge. Modules and relay stations are transformed
into transitions (vertical bars in Fig. 1). For each incoming
channel of a module, the initial number of tokens on the
forward edge is one, and it is equal to the channel queue
size on the backward edge. For each incoming channel of a
relay station, the forward edge has no initial tokens, and the
backward edge has two tokens initially. The throughput of a
given LIS is equal to the minimum cycle mean of the marked



graph. The mean of a cycle in the marked graph is the number
of tokens in the cycle divided by the number of edges.

IV. MOTIVATION: BASELINE RESILIENT LIS
We first introduce a baseline RLIS design that is abstracted

from the recovery islands proposed in [6]. In the baseline
RLIS, every output of critical modules is buffered for one
additional clock cycle for validation. Only validated data
are allowed to enter the channel and be delivered between
modules. Our analysis will show that the baseline RLIS suffers
from a performance degradation caused by the additional
buffer if the system graph contains cycles.

Fig. 2 illustrates the baseline RLIS. For each critical module,
in addition to the shell, a buffer is inserted in between the shell
and the output channel. Every output datum will first be stored
in the buffer for one clock cycle. If no error is reported in the
next cycle, the datum is pushed to the output channel. Other-
wise, recompute signal triggers recomputation in module, the
erroneous datum is discarded and a bubble is pushed to the
output channel instead. It guarantees that every datum sent to
the communication channel is correct. Obviously, the system
retains correctness-by-construction property.

Fig. 2. A module in the baseline RLIS.
However, the baseline RLIS suffers from a performance

degradation even when error does not occur. An example
system is shown in Fig. 3(a), where the system is composed
of three modules and three channels. Suppose that module
B is a critical module. With baseline RLIS wrapping, the
equivalent LIS is shown in Fig. 3(b). Note that the buffer
between the shell and output channel CH2 of module B in the
baseline RLIS design is equivalent to inserting an additional
relay station between B and C. With four channels and one
relay station, the throughput of the system is decreased to 3/4,
from original 1.0.

(a) (b)

Fig. 3. Illustration of performance degradation. (a) Original LIS. (b) Equiv-
alence of baseline RLIS.

V. IMPROVED RESILIENT LIS
In this section, we propose an improved RLIS with an

improved queue mechanism that overcomes the performance
degradation of the baseline RLIS. A thorough theoretical study
of the improved RLIS will be presented, which studies the
queue sizing problem in improved RLIS, and makes theoretical
comparison with the global stalling mechanism.

A. Design

The performance degradation in the baseline RLIS mainly
comes from the conservative strategy that requires all data
entering the channel be correct. As a consequence, correct
data also need to be buffered additionally for one clock cycle.

Fig. 4. A module in the improved RLIS.

Fig. 4 illustrates the improved RLIS. The additional output
buffer being removed from the system means that every
produced datum enters the output channel. In order to distin-
guish correct data and erroneous data, each module attaches a
“signature bit (sig bit)” to every datum that it produces. The
signature bit only flops when a new computation is carried out.
In other words, in the events of recomputation, the signature bit
remains the same. In hardware, the signature bit can be easily
generated with a recompute signal and a flip-flop recording
its previous value (sig bit′ is the value of the signature bit of
the previous clock cycle):

sig bit = recompute xnor sig bit′ (1)
In the improved LIS, the recomputation is not required only

when an error is detected in the computation, but also when
the module receives erroneous input data. Erroneous input data
can be easily detected by checking their signature bits. If two
consecutive data received from the same input channel possess
the same signature bit, the first datum must be erroneous and
a recomputation is required. Therefore, the recompute signal
in the improved RLIS can be expressed as:

recompute = err ∨ IS1 ∨ IS2 ∨ · · · ∨ ISn (2)
where err is the signal indicating whether error is detected
from the computation of the previous cycle, and ISi is the
signal generated from input channel i, indicating whether the
datum at the head of the channel has the same signature bit
as the previous received one:

ISi = sig biti xnor sig bit′i (3)
The inputs to the module computation are first processed by
an input selector. For every channel, the input selector has
additional register to store the datum used in the previous clock
cycle. Each input to the module is selected from two sources:
the datum at the head of the input channel and the previous
datum. When recompute is zero, the system works the same
as the original LIS. If recompute is one and some ISi equals
to one, it means that the recomputation is needed because
the previous datum of channel i is erroneous, therefore the
datum at the head of the channel is popped-out and used in
the recomputation. Otherwise, the previous datum is used and
datum does not pop out from channel i.



With allowing erroneous data entering system channels,
the erroneous data may accumulate in the system, taking up
buffers and degrading the system performance. It happens
when the erroneous datum enters a cycle, it will circulate
in the cycle and never get out. We design an “improved
queue” to resolve this issue in the improved RLIS. Because
every series of erroneous data will always be followed by
a correct datum which possesses the same signature bit as
the previous erroneous data, the basic idea of the improved
queue is called “data replacement”: when a datum enters a
channel, the previous datum in the channel will be replaced if
it possesses the same signature bit as the incoming datum. The
storage element of the improved queue is illustrated in Fig. 5.
The XNOR gate compares the signature bits of the incoming
datum and its stored datum. If the output of XNOR gate is
true (signature bits are the same), and the element is the tail
of the queue (isEnd is true), it replaces the stored datum with
the incoming datum. In other cases, the improved queue works
the same as normal queues.

The effect of the improved queue on the system perfor-
mance will be presented in the next subsection. An immediate
observation can be made is that, with the data replacement
function, each channel will contain at most one erroneous
datum, preventing the unlimited accumulation of erroneous
data.

Data_in

Data_next

clk clk

D Q

sig_bit
sig_bit

isEnd

Fig. 5. Storage element of the improved queue.

B. Theoretical Analysis

In this subsection we analyze the performance of the im-
proved RLIS. We will prove that the system will restore to
its original performance eventually, therefore there is no need
to adjust queue sizes for erroneous data. At the end, we will
prove that the improved RLIS performs no worse than the
global stalling mechanism.

We employ the marked graph to analyze the throughput of
the system. In the improved RLIS, the number of tokens in a
cycle can only change when one of the following two events
happens:
• Channel stuttering: We define channel stuttering as the

event that the sink module of a channel does not consume
data in the channel. It happens when the sink module
carries out recomputation and the channel does not hold
erroneous datum at its head. The effect on token changes
is illustrated in Fig. 6. In the circles are the actual changes
when this event happens, and in the parenthesis are the
changes in the normal situation. The forward edge has
one more token than usual, while the backward edge has

one less. This results that any cycle that contains the
forward edge has one more token, and any cycle that
contains the backward edge has one less token.

• Data replacement: Data replacement happens when the
incoming datum replaces the previous datum in the
improved queue. The effect on token changes is also
illustrated in Fig. 6. The forward edge has one less
token than usual, while the backward edge has one more.
This results that any cycle that contains the forward
edge has one less token, and any cycle that contains the
backward edge has one more token. Data replacement can
be viewed as the reversed operation of channel stuttering.

Fig. 6. Illustration of token changes of channel stuttering and data replace-
ment.
There are three types of cycles in the marked graph: forward
cycles that contain forward edges only, backward cycles that
contain backward edges only and mixed cycles that contain
both forward and backward edges. We will examine the
throughput of each of these three types of cycles in the
improved RLIS.

First we examine a forward cycle C with m channels.
Because tokens on forward edges represent actual data, the
tokens in C represent either correct data (correct tokens) or
erroneous data (erroneous tokens). Suppose the number of
correct tokens is n1 and the number of erroneous tokens is
n2. We consider the following two cases:
• n1 > m: There is at least a channel that has more than

one token. Any erroneous datum in C will travel to that
channel. When an erroneous datum enters the channel,
and because the following datum must have the same
signature, the erroneous datum will be replaced when the
next datum enters. Therefore any erroneous data in C will
be eventually eliminated. In this case, the throughput of
C restores eventually.

• n1 ≤ m: Cycle C will eventually have n1 + n2 ≤ m,
otherwise, the extra erroneous token will be replaced
by the improved queue as in the previous case. Since
processing erroneous data does not count for throughput,
the throughput of C retains n1/m.

Backward cycles have the same throughputs as their corre-
sponding forward cycles, because they share the same set
of transitions (modules). Therefore their throughputs will
eventually restore too.

Mixed cycles in the marked graph represent reconvergent
paths in the original system graph. We consider a backward
edge where channel stuttering just happened. As a result, the
number of tokens of the cycle decreases by one. Because
it is a mixed cycle, going backward along backward edges
one will eventually reach a reconvergent node where the next



edge is forward edge. Taking Fig. 7 for example, where
a reconvergent node is depicted, consider the mixed cycle
containing backward edge of CH1 and forward edge of CH2.
Suppose channel stuttering has happened on a channel in the
same cycle and in the upstream of CH1. There are three
scenarios:
• If data replacement has happened before the resulted

erroneous data reaches the reconvergent node, the number
of tokens in this cycle has restored to its original value.

• If no data replacement has happened, and when the
resulted erroneous data reaches the reconvergent node,
CH2 holds a correct datum at its head, channel stuttering
will occur on CH2 and cause the number of tokens on
the forward edge of CH2 one more than usual, which
therefore increases and restores the number of tokens in
the cycle.

• If no data replacement has happened, and when the
resulted erroneous datum reaches the reconvergent node,
CH2 holds an erroneous data at its head, it means that
another channel stuttering has occurred in the upstream
of CH2 in the cycle. There must exist the a forward edge
in the upstream of CH2 in the cycle where the channel
stuttering occurred, which has already restored the num-
ber of tokens of the cycle. Note that it is impossible for
the channel stuttering to occur on a upstream channel
with a backward edge in the cycle, since erroneous data
cannot pass from that channel to a downstream channel
with a forward edge in the cycle.

We have proved that in each of these three scenarios, the
number of tokens in the cycle will eventually restore. The same
reasoning can be applied to a cycle that contains a forward
edge where channel stuttering just happened. Therefore the
number of tokens in mixed cycles also restores to its original
value.

Fig. 7. Reconvergent node and channel stuttering happens on CH2 when the
erroneous data arrives on CH1.

Based on the above analysis, we can make the following
claim:

Claim 1: The performance of the improved RLIS will
eventually restore to the performance before error occurrence.

As the performance of improved RLIS is not degraded by
erroneous data, there is no need to adjust queue sizes:

Claim 2: Optimal queue sizing of original LIS without
considering erroneous data retains optimal in improved RLIS.

Last we make the comparison between the improved RLIS
and global stalling.

Claim 3: The performance of improved RLIS is no worse
than global stalling system.

Proof: In the global stalling system, once an error occurs,
the whole circuit is stalled for one clock cycle and recompu-
tation is carried out on those errant parts. Therefore we are
going to prove that in the improved RLIS, each module at
most “wastes” one clock cycle when an error occurs.

In the improved RLIS, suppose module A produces an
erroneous datum. First we consider the modules in the same
strongly connected component (SCC) with A. If that erroneous
data will be eliminated eventually, it will goes through each
module at most once before it enters a channel with more than
two tokens. Therefore each module in the SCC processes the
erroneous datum at most once, which is equivalent to being
stalled for a clock cycle. If that erroneous datum stays in a
cycle forever, it actually takes the place of a bubble and it
does not affect the system performance.

Second, we consider other modules which are not in the
same SCC with A. Since the graph is a DAG after contracting
each SCC into a single node, the erroneous datum will enter
other succeeding SCCs at most once. As the same as the
above analysis, the effect on succeeding SCCs is equivalent
to stalling each module in those SCCs for a clock cycle. The
preceding SCCs of A may be affected by back-pressure effect
(some channel queue in between is full). Because of the DAG
structure, back-pressure will enter those SCCs at most once
too. We conclude that each module in the improved RLIS will
be affected for at most one clock cycle.

VI. EXPERIMENTAL RESULTS

A. Performance Evaluation

We simulate three systems and compare their performances:
baseline RLIS, improved RLIS and global stalling. Systems are
implemented in C++ on Linux platform. We first simulate the
systems on a real-world design, MPEG encoder, whose system
graph is adopted from [10] with relay stations are inserted on
channel a13, a15 and a19. We treat every module as critical
module except the source and the sink. To test the systems
on larger graphs with higher complexity, we also randomly
generated some system graphs. In each graph, we randomly
pick 5% of the modules as critical modules. A random error
rate between 1e-4 and 5e-4 (probability per cycle) is assigned
to each critical module. The throughput of the system is
calculated by dividing the number of correct data processed
by the sink node by the number of total clock cycles. We
implemented heuristic algorithm in [12] to assign queue sizes
to channels.

Table I shows the results of the simulation. We simulated
1 million cycles for each test case. In the table, the number
of modules, the number of channels, the number of critical
modules and the original throughput without errors are listed
to reflect graph structures. We list the throughputs of the three
systems and compare the improved RLIS with the other two.
From the table we can see that the improved RLIS has 40.3%
performance improvement over baseline RLIS on average, and
it performs 3.1% better than global stalling on average, as
expected from Claim 3.



TABLE I
SIMULATION RESULTS OF BASELINE RLIS, IMPROVED RLIS AND GLOBAL STALLING.

Tests
Graph Properties Throughputs Improvements of improved RLIS

#Modules #Channels #Critical Modules Ori. Throughput Baseline(TPbs) Improved(TPim) Global Stalling (TPgs) TPim−TPbs
TPbs

TPim−TPgs

TPgs

MPEG 17 22 15 0.875 0.452 0.820 0.800 81.4% 2.5%
T50 50 250 9 0.75 0.498 0.745 0.735 49.5% 1.3%
T100 100 1000 23 0.6 0.485 0.59 0.575 21.6% 2.6%
T150 150 2250 32 0.529 0.386 0.525 0.503 36.0% 4.3%
T200 200 4000 50 0.428 0.373 0.421 0.403 12.8% 4.4%

Average 40.3% 3.1%

B. Area Evaluation
We implemented the improved RLIS in RTL to measure

its area overhead against the original LIS. The overhead is
compared in two parts: the overhead of the improved queue
and the overhead of the module wrapping. In the queue
comparison, we implemented an original queue of 8 elements
and each element is 8-bit in width. Therefore the improved
queue has the same size, but each element has 9 bits, including
the signature bit. In the module wrapping comparison, we
wrapped a multiplier module chosen from an MPEG decoder
implementation [14]. The multiplier takes two 16-bit numbers
and a 2-bit code as inputs. The module selects two IDCT
coefficients depending on code, and multiplies the input num-
bers by the two IDCT coefficients respectively. The products
are the outputs of the module. Because IDCT coefficients are
constant, the multiplication is decomposed into a set of shifting
and adding operations and completed within one clock cycle.
We wrapped the module for both the original LIS and the
improved RLIS. We assume that the improved RLIS is resilient
against timing errors caused by PVT variations, and thus we
integrated Razor flip-flop [4] to detect errors.

TABLE II
AREA OVERHEAD OF IMPROVED RLIS. THE UNIT OF AREA IS µm2

Original LIS Improved RLIS Overhead
Queue 551.45 597.34 8.32%

Multiplier 1465.60 1579.40 7.76%

Table II shows the area overheads of the improved RLIS.
The area is measured by Synopsys Design Compiler with
45nm technology node. The overheads are both small: the
improved queue has an overhead of 8.32% and the module
wrapping has an overhead of 7.76%. The overhead of the
improved queue mostly comes from the additional signature
bit. The overhead of the module wrapping depends on the
complexity of the original module. The multiplier is a rel-
atively simple module. For modules with the same sizes of
inputs and outputs but more complex computation, we expect
the the overhead would be relatively smaller.

VII. CONCLUSION

In this work, we proposed recovery-based resilient latency-
insensitive system that extends latency-insensitive design with
error-recovery technique to overcome the infeasibility of tradi-
tional global stalling mechanism in modern circuits. We were
motivated by a baseline RLIS design with additional output

buffers that suffers from severe performance degradation is-
sues. We proposed an improved RLIS with improved queues
that retains the system performance. We provided theoretical
studies that analyze the queue sizing problem and system
throughput. Experimental results show that the improved RLIS
has 40.3% and 3.1% throughput improvements compared to
the baseline RLIS and the global stalling mechanism respec-
tively, with less than 10% hardware overhead.

VIII. ACKNOWLEDGEMENT

This work is supported by NSF CCF-1115550 and NSFC-
61228401.

REFERENCES

[1] R. Havemann and J. Hutchby, “High-performance interconnects: an
integration overview,” Proceedings of the IEEE, vol. 89, no. 5, pp. 586
–601, may 2001.

[2] M. Bohr, “Silicon trends and limits for advanced microprocessors,”
Commun. ACM, vol. 41, no. 3, pp. 80–87, Mar. 1998.

[3] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive design,”
in IEEE Proc. ICCAD, 1999, pp. 309 –315.

[4] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” Micro, IEEE, vol. 24, no. 6, pp. 10 –20, nov.-
dec. 2004.

[5] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De,
and S. Borkar, “Circuit techniques for dynamic variation tolerance,” in
Proceedings of the 46th Annual Design Automation Conference, ser.
DAC ’09, 2009, pp. 4–7.

[6] V. Kozhikkottu, S. Dey, and A. Raghunathan, “Recovery-based design
for variation-tolerant SoCs,” in IEEE Proc. DAC, 2012, pp. 826–833.

[7] S. Mitra, M. Zhang, N. Seifert, T. Mak, and K. S. Kim, “Soft error
resilient system design through error correction,” in Very Large Scale
Integration, 2006 IFIP International Conference on, oct. 2006, pp. 332
–337.

[8] N. Shanbhag, “Reliable and energy-efficient digital signal processing,”
in Proceedings of the 39th annual Design Automation Conference, ser.
DAC ’02, 2002, pp. 830–835.

[9] Y. Lu and H. Zhou, “Efficient design space exploration for component-
based system design,” IEEE Proc. ICCAD, 2012.

[10] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in IEEE Proc. DAC,
2000, pp. 361–367.

[11] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels,” in
IEEE Proc. ICCAD, 2003, pp. 227–231.

[12] R. Collins and L. Carloni, “Topology-based performance analysis and
optimization of latency-insensitive systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 27, no. 12,
pp. 2277 –2290, dec. 2008.

[13] J.-D. Huang, Y.-H. Chen, and Y.-C. Ho, “Throughput optimization for
latency-insensitive system with minimal queue insertion,” in Design
Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific,
jan. 2011, pp. 585 –590.

[14] MPEG decoder, http://www.ece.mcmaster.ca/∼nicola/mpeg.html.


