Time-Critical Computing on a Single-Chip
Massively Parallel Processor

Duco van Amstel
Kalray S.A.

Benoit Dupont de Dinechin
Kalray S.A.
benoit.dinechin @kalray.eu

Abstract—The requirement of high performance computing at
low power can be met by the parallel execution of an application
on a possibly large number of programmable cores. However, the
lack of accurate timing properties may prevent parallel execution
from being applicable to time-critical applications. We illustrate
how this problem has been addressed by suitably designing the
architecture, implementation, and programming model, of the
Kalray MPPA®-256 single-chip many-core processor.

The MPPA®-256 (Multi-Purpose Processing Array) processor
integrates 256 processing engine (PE) cores and 32 resource
management (RM) cores on a single 28nm CMOS chip. These
VLIW cores are distributed across 16 compute clusters and
4 I/O subsystems, each with a locally shared memory. On-
chip communication and synchronization are supported by an
explicitly addressed dual network-on-chip (NoC), with one node
per compute cluster and 4 nodes per I/O subsystem. Off-chip
interfaces include DDR, PCI and Ethernet, and a direct access
to the NoC for low-latency processing of data streams.

The key architectural features that support time-critical
applications are timing compositional cores, independent memory
banks inside the compute clusters, and the data NoC whose
guaranteed services are determined by network calculus. The
programming model provides communicators that effectively
support distributed computing primitives such as remote writes,
barrier synchronizations, active messages, and communication
by sampling. POSIX time functions expose synchronous clocks
inside compute clusters and mesosynchronous clocks across the
MPPA®-256 processor.

I. INTRODUCTION

Multi-core or many-core platforms are motivated by appli-
cations that require high performance, low power, and software
programmability. However, such computing platforms appear
difficult to exploit for time-critical applications. These appli-
cations can be defined by the association of time constraints
with information manipulation activities such as acquisition,
processing, transport, storage, coordination, and delivery [1].

On time-critical applications, the main issue with multi-
core or many-core platforms is ensuring timeliness of compu-
tation and communication, given the logical (e.g. code critical
sections) or physical interference (e.g. memory hierarchy re-
sources) of tasks that execute concurrently. Addressing this
issue involves relying on suitable models of computation
to describe applications, and the selection of a computing
platform whose run-time software, architecture and implemen-
tation support to some extent the following properties:

978-3-9815370-2-4/DATE14/(©2014 EDAA

duco.van-amstel @kalray.eu

Marc Poulhies
Kalray S.A.
marc.poulhies @kalray.eu

Guillaume Lager
Kalray S.A.
guillaume.lager @kalray.eu

e Deterministic computations: given the same system
environment, inputs, and event timing, computation
results should be the same.

e Deterministic response times: given the same system
environment, inputs, and event timing, computing out-
put should take the same time.

e Predictable response times: given the same system
environment, inputs, and event timing, time for com-
puting output should be predictable.

e Composable execution and communication times: up-
dates of the system functionality should have com-
mensurable effects on timing properties.

e High utilization of system resources: the benefits of
multi-core or many-core platforms are realized at high
utilization of system resources.

e Graceful degradation of properties: over-subscribing
system resources should only lead to a gradual loss of
timing properties.

In Section II, we present the architecture and implemen-
tation features of the MPPA®-256 many-core processor that
support time-critical computing. In Section III, we introduce a
MPPA® programming model inspired by the POSIX process,
IPC, and threads, which is currently used for several time-
critical applications including a mixed-criticality use case.

II. ARCHITECTURE AND IMPLEMENTATION
A. MPPA®_256 Processor Overview

The MPPA®-256 processor integrates 288 cores on a single
28nm CMOS chip, and has been designed for applications
that require high performance, low power, and software pro-
grammability. The distinguishing architectural features of the
MPPA®-256 processor are:

e a single VLIW instruction set architecture (ISA) for
all the cores, whether used for resource management
(RM), or as processing engines (PE);

e a distributed memory organization, based on compute
clusters with 16 PE cores and one RM core sharing
a local memory, without any direct addressing of the
other memory spaces whether on-chip or external;

e a dual network-on-chip (NoC), whose services can
be guaranteed by the selection of routes and flow

regulation at the source, and that can be extended
across processors;

e and 4 I/O subsystems for the control of peripherals,
each of them managed by a quad core CPU based
on the same VLIW ISA, that sees the attached DDR
memory in the local address space.

An overview of the MPPA®-256 processor global archi-
tecture appears in Figure 1, where the grey and blue areas
represent the local memory spaces of the compute clusters and
the I/O subsystems respectively. Each square box corresponds
to a switching node and interface of the dual network-on-
chip (NoC), for a total of 32 nodes: one per compute cluster
and four per I/O subsystem. The four I/O subsystems are
represented on the four sides, two of them include the Ethernet
10G controllers and the two others the PCle Gen3 controllers.
The dual NoC topology is based on a 2D torus augmented with
direct links between I/O subsystems, and with NoC extension
(NoCX) links that are used for tiling MPPA® processors
together or connecting them to a companion FPGA.

PCI0A/O Subsystem

r ﬂi@ ’
W I‘ 531;; W
umgaau
mRER
RO R R
PCINJ/O Subsystem

EthC I/O Subsystem
Eth1 1/O Subsystem

Fig. 1. MPPA®_-256 processor memory spaces and dual network-on-chip.

The 16 compute clusters and the 4 I/O subsystems of the
MPPA®-256 processor are connected by two parallel NoC
with bi-directional links, one for data (D-NoC), and the other
for control (C-NoC). Each NoC node is associated with a D-
NoC router and a C-NoC router. The two NoC are identical
with respect to the nodes, the 2D torus topology, and the worm-
hole route encoding. They differ at their device interfaces,
and by the amount of packet buffering in routers. NoC traffic
through a router does not interfere with the memory buses of
the underlying I/O subsystem or compute cluster, unless the
NoC node is a destination for the transfer.

Each NoC packet is composed of a header and a payload.
The header contains a bit-string that encodes the route as
direction bits for each NoC node, a ‘tag’ that is similar to
an Internet port number, a EOT (end-of-transfer) bit, and an
optional offset. The route bit-string encodes unicast, multicast,
or broadcast transfer. For multicast, additional bits in the route
trigger packet delivery at any NoC node on the route to the
underlying compute cluster or I/O subsystem. All multicast

ITC —_
16 lines.
EVC
192 lines ALUs
RTC

2 tmers
1 watchdog

|
|
|
oce I
|
|
|

G reg
1RD
awR AL MAU
muL][acc |
FPU
LY ming FIFO !

=z
|

Fig. 2. MPPA® VLIW core instruction pipeline.

or broadcast targets receive the same payload, tag, EOT bit,
and offset. The D-NoC and the C-NoC both ensure reliable
delivery, and messages that follow the same route arrive in
order. However, there is no acknowledgment at the source node
that a message has been received at the destination node(s).

B. VLIW Architecture and Core

The choice of a VLIW architecture for the cores of the
MPPA®-256 processor was initially motivated by the objective
to maximize the exploitation of instruction-level parallelism
under constrained power and chip area. The other design ob-
jective of this VLIW architecture was to meet the needs of both
application code and system software, in order to keep a single
ISA for all cores on the MPPA®-256 processor. Application
code considered is primarily from numerical, signal, and bit-
level processing domains. System software that must execute
efficiently includes run-time for the programming models,
operating system kernels, device drivers, and I/O stacks.

Running such system software efficiently and safely man-
dates a full-featured memory management unit (MMU). In
turn, this constrains the core to be fitted with a single access
port to data memory. Another design principle of the MPPA®
VLIW core architecture is to maximize the use of the multi-
ported register file and associated bypass logic, which is
an expensive resource. As a result, all data types, whether
predicates, addresses, integers, floating-point, share the same
32-bit registers, and register pairs are used for the 64-bit data
types. Predication only applies to data move and memory
access instructions, with their predicate being computed by
an implicit 32-bit comparison of a register operand to zero.

The instruction pipeline of the MPPA® VLIW core is dis-
played in Figure 2. Up to five RISC-like instructions may issue
every cycle: branch/control (BCU); load/store (LSU); multiply-
accumulate or floating-point (MAU); and two general-purpose
32-bit ALUs that can be paired to operate as a single 64-bit
ALU. A subset of the 32-bit ALU instructions may also be
executed on the LSU or the MAU. On the instruction side,
the core is connected to memory through a prefetch buffer
and a private instruction cache. The data side connection goes
through a private write-through data cache with a write buffer.

A significant benefit of VLIW architecture with regards
to time-critical computing is that a core can be implemented
so that timing anomalies are limited or eliminated. A timing

anomaly is a situation where a local worst-case execution
time does not contribute to the global worst-case [2]. Timing
anomalies prevent accurate static timing analysis at the core
level, as a result execution times may no longer be predictable
or composable within manageable margins. The MPPA®
VLIW core implementation eliminates timing anomalies and
supports accurate static timing analysis by the following:

e instruction and data caches implement the LRU re-
placement policy, which is free of timing anomalies
and performs best for static timing analysis [3];

e instruction pipeline and execution pipelines do not
have hazard, except for the double-precision floating-
point multiply which stalls one cycle irrespective of
the values processed;

e there is no branch prediction, except for a hardware
looping feature that branches back to the loop header
with zero overhead and has constant initial penalty;

e other sources of non-deterministic or data-dependent
timing, such as OoO execution in a superscalar core,
do not exist in a VLIW implementation.

In fact, preliminary work done by AbsInt! in the setting of
the CERTAINTY FP7 project? has concluded that the Kalray
VLIW core qualifies as fully timing compositional, that is, does
not exhibit timing anomalies. As a result, timing analysis can
safely follow local worst-case only [2].

C. Compute Cluster Memory System

The MPPA®-256 compute cluster (Figure 3) is a multi-
core whose local memory (SMEM) is shared by 17 identical
VLIW cores without cache coherency. The 16 first cores,
referred to as processing elements (PEs), are dedicated to
application code processing. The 17th core, referred to as
the resource manager (RM), is distinguished by its privileged
connections to the NoC interfaces through event lines and
interrupts. The other bus masters on the cluster shared memory
are the NoC Rx (receive) interface, the NoC Tx (transmit)
interface, and the debug support unit (DSU).

The compute cluster shared memory comprises 16 inde-
pendent memory banks of 16384 x64-bit words (not including
ECC bits), for a total capacity of 2MB. Each memory bank
is associated with a dedicated request arbiter that serves 12
bus masters: the D-NoC Rx (receive) interface, the D-NoC Tx
(transmit) DMA engine, the DSU, the resource manager (RM),
and 8 PE cores pairs (Figure 4). The 16 memory banks are
arranged in two sides of 8 banks, called left and right. The
connections between the memory bus masters are replicated
in order to provide independent access to the two sides.

The access path from a PE core to a memory bank starts
with a path private to a PE core pair. Access to this private
path is arbitrated round-robin among four possible sources: the
instruction cache (IC) and the data cache (DC) of each core in
the PE core pair. The private paths of the 8 PE core pairs are
connected to the 16 memory bank arbiters. Other bus masters
(D-NoC Rx, D-NoC Tx, DSU, RM) have their own private
path also connected to the 16 memory bank arbiters.

'http:///www.absint.com/
2http:///www.certainty-project.eu/

Network
Interfaces

o
e
RE 7

()
—

Shared Memory
Shared Memory

0]
—

O] O o5
— —

Fig. 3. MPPA®-256 compute cluster overview.

processor \Round

pair 7 T_)g'{‘ 4
[x]

7 other processor pairs +
Noc Rx, Noc Tx, DSU, RM

Round Robin
12->1
memory bank
arbiter

Register

<®mO=EZmMZX

Cache refill or
preload queue | I:FIFO

Register |——

4-cycle 4->1 path

3-cycle multi master path

Fig. 4. SMEM memory request arbitration.

The SMEM address mapping can be configured either as
interleaved or as blocked. In the interleaved configuration,
bits 6 to 9 of the byte address select the memory bank, so
sequential addresses move from one bank to another every 64
bytes (8 x64-bit words) as illustrated in Figure 5. In addition,
side selection depends on the 6th bit of the byte address, so
the selection by sequential addresses alternates between the left
side and the right side every 64 bytes. In the blocked address
configuration, each bank spans 128KB consecutive addresses
as illustrated in Figure 6. The high-order bit of the address
selects the side, so the right side covers addresses from O to
IMB, and left side covers addresses above 1MB.

0x1F_FCo0 |64 bytes Ox1F_FC40 64 bytes OX1F_FC80 64 bytes Ox1F_FFCO 64 bytes

64 bytes 64 bytes 64 bytes 64 bytes

0x00_07CO2= Y
0x00_03C0| 64 bytes

Bank #15

0x00_0400 |04 byte
0x00_0000

Bank #0

0x00_044084BYEES) 0,00 045064 Bytes|
0x00_0040| 84 BYEES) 0 ogo|O4BYLES

Bank #1 Bank #2

Fig. 5. SMEM interleaved address mapping.

The SMEM address mapping configuration has no func-

0x01_FFCO 0x03_FFCO| 0x04_FFCO Ox1E_FFCO

128 K 128 K 128 K 128 K
bytes bytes bytes bytes
0x00_0040 0x02_0040 0x04_0040 0x1E_0040
0x00_0000 0x02_0000 0x04_0000 0x1E_0000
Bank #0 Bank #1 Bank #2 Bank #15

Fig. 6. SMEM blocked address mapping.

tional effects but has significant performance and timing ef-
fects. The interleaved configuration is better suited to parallel
code regions, where memory references tend to spread evenly
across the memory banks so the overall memory throughput is
maximized [4]. The blocked configuration is used for time-
critical applications to control interference between cores.
Precisely, by locating the private code and data of each PE on
a different memory bank, and by ensuring that the two banks
associated to the two PE in a core pair are on different sides
of the SMEM, it is guaranteed that no interference between
PE cores occurs on the buses, arbiters, or memory banks.

D. D-NoC Guaranteed Services

The D-NoC is dedicated to high bandwidth data transfers
and may operate with guaranteed services, thanks to non-
blocking routers and flow regulation at the source node [5].
The flow regulation is currently founded on the (o, p) network
calculus [6], which defines a set of linear constraints on the
individual link bandwidths (‘“‘capacity constraints) and on the
router buffer sizes (“backlog constraints”). A flow service
obeys (o, p) if for any time interval [u,v] the amount of data
serviced is not greater than o + p(v — u). An example of such
a flow can be observed in figure 7.

Data sent
L
L~ o
_____ -~
-
-
___________ T
-
-
-
g
Flow —— P - p+0—.—.. Time

Fig. 7. Flow constrained by a (o, p) model.

In the MPPA®-256 processor, each connection is as-
sociated with a bandwidth quota which is enforced at the
source node by a regulator also known as packet shaper. This
regulator is configured via two parameters allowing the user
to configure a (o, p) flow:

e window_length (1), global for the NoC node;
e bandwidth_quota (8), set for each regulator;

At each cycle, the regulator compares the length of a packet
scheduled for injection plus the number of flits sent within the
previous 7 cycles to 3. If not greater, the packet is injected at
the rate of one flit per cycle.

The initial (o, p) is thus set at the source node through 7
and S (all measured in units of 32-bit flits, including header
flits). We link these parameters with the (o, p) model by
observing that p = (/7. This corresponds to the fact that
no regulator may let through more than [flits over any
duration 7. On the other hand, the regulator is allowed to
emit continuously until having sent 5 flits within exactly
cycles. This defines a point on the p 4 o linear function and
by regression the value of the function at ¢ = 0 (corresponding

to o) is: o = B(1 — B/7).

The MPPA® NoC routers multiplex flows originating from
different directions without back-pressure. Each originating
direction has its own FIFO buffer at the output interface, so
flows interfere on a node only if they share a link to the next
node. This interface performs a round-robin (RR) arbitration
at the packet granularity between the FIFOs that contain data
to send on a link (Figure 8). The NoC routers have thus been
designed for simplicity while inducing a minimal amount of
perturbations on (o, p) flows. Since RR arbitration is a special
case of the weighted fair queuing (WFQ) discipline, the worst-
case delay of any flow can be computed as [7]:

o+ (n—1)Psize
p

delay = + n(d + Psjze)

Here, Ps;,. is the maximum packet size, n is the number of
hops between source and sink, and d is a fixed router delay.

FromL FromS FromE FromW
From N FromN From N
Froms Tal
ToE _@Pﬁom s FromS Tow
P From E Y

_mﬁE_rmm L Erom FromE

From L

arbiter

From W FromL

FromN FromS FromE From W
v, v

\4

¥ Tos

Fig. 8. MPPA®-256 NoC router model.

Configuring the MPPA® D-NoC for guaranteed services
is primarily dependent on the selection of routes between
nodes. Once the routing phase of all existing flows has been
performed, the next step is to express the constraints on the
flow rates ' = (p;) only, given that on the MPPA® NoC the
(0;) values at the source nodes are fixed to o; = p;(1 — p;)7:

e Application constraints: Some flows require a minimal
injection rate py.

e Link capacity constraints: » ser Py < 1 for any link
[shared by a set of flows F.

e Queue backlog constraints:) cF cr} < Qsize for any
FIFO in front of the router arbiter of link [, with Q ;..
the maximum FIFO size.

Assuming that djf is the local delay bound for flow f on
link j, the maximum burst size values Jﬁc to consider at link [
arbitration grow monotonically along the flow path P} as [7]:

1 _ J
op=0or+ > pdy
jePt

On the MPPA® NoC, &} = (m;—1) Py;zc with m;; the number
of directions merging into the router arbiter of link j.

The queue backlog constraints involve the non-linear terms
Y05 = > ps(l — py)7. These can be upper bounded by
constants ’”n:lT, because) py < 1 holds for the n; flows
sharing link [. This allows to linearize the queue backlog
constraints, while the link capacity constraints are also linear.
The full system of linear constraints on flow rates I' = (p;) is
then optimized to obtain a solution that guarantees services.

III. POSIX-LEVEL PROGRAMMING
A. Design Principles

The MPPA® POSIX-level programming model principles
are that processes on the I/O subsystems spawn sub-processes
on the compute clusters and pass arguments through the tradi-
tional argc, argv, and environ variables. Inside compute
clusters, classic shared memory programming models such as
POSIX threads or the OpenMP language extensions supported
by GCC are used to exploit more than one PE core. The main
difference between the MPPA® POSIX-level programming
and classic POSIX processes & threads programming appears
on inter-process communication (IPC).

Precisely, MPPA® IPC is only achieved by operating
on special files, whose pathname is structured by a naming
convention that fully identifies the NoC resources used when
opening in either read or write mode (Table I). Like POSIX
pipes, those communication objects have distinguished trans-
mit (Tx) and receive (Rx) endpoints that must be opened in
modes O_WRONLY and O_RDONLY respectively. Unlike pipes
however, they may have multiple Tx or Rx endpoints, and
support POSIX asynchronous I/O operations with call-back.
Following the canonical ‘pipe-and-filters’ software component
model where POSIX processes are the atomic components, we
call these communication objects connectors.

B. NoC Connectors Summary

Sync A 64-bit word in the Rx process that can be OR-ed
by N Tx processes. When the result of the OR equals -1, the
Rx process is notified so a read () returns non-zero.

Portal A memory area of the Rx process where N Tx
processes can write at arbitrary offsets. The Rx process is not
aware of the communication except for a notification count
that unlocks the Rx process when the trigger supplied to
aio_read() is reached.

RQueue Atomic enqueue of msize-byte messages from
several Tx processes, and dequeue from a single Rx process.
The RQueue connector implements the remote queue [8], with
the addition of flow control. This is an effective N : 1
synchronization primitive, by the atomicity of the enqueue
operation [9].

Channel A communication and synchronization object
with two endpoints. Default behavior is to effectuate a rendez-
vous between the Tx process and the Rx process, which
transfers the minimum of the sizes requested by the read and
the write without intermediate copies.

Sampler Message broadcast from one Tx process to several
Rx processes. A Rx process is not aware of the communication
but is ensured to find a valid and stable pointer to the latest
message sent. This connector is provided to implement the
communication by sampling (CbS) mechanism [10].

C. Support of Distributed Computing

Split Phase Barrier The arrival phase of a master-slave
barrier [11] is directly supported by the Sync connector, by
mapping each process to a bit position. The departure phase
of a master-slave barrier [11] is realized by another Sync
connector in 1 : M multi-casting mode.

Active Message Server Active messages integrate com-
munication and computation by executing user-level handlers
which consume the message as arguments [12]. Active mes-
sage servers are efficiently built on top of remote queues
[8]. In case of the RQueue connector, the registration of an
asynchronous read user call-back enables to operate it as an
active message server.

Remote Memory Accesses One-sided remote memory
access operations (RMA) are traditionally named PUT and
GET [12], where the former writes to remote memory, and the
latter reads from remote memory. The Portal connector directly
supports the PUT operation on a TX process by writing to a
remote D-NoC Rx buffer in offset mode. The GET operation is
implemented by active messages that write to a Portal whose
Rx process is the sender of the active message.

D. Support of Time-Critical Computing

A first requirement for the support of time-critical com-
puting is establishing a time reference between tasks. On
the MPPA®-256 processor, every compute cluster and I/O
subsystem is fitted with a debug support unit (DSU), which
includes a 64-bit timestamp counter. Each counter is address-
able in the local memory space and can be read by any core.
Global initialization of these counters is typically performed
by a broadcast message on the C-NoC, resulting in time
base offsets between clusters of about a dozen cycles. As the
whole MPPA®-256 processor is driven by a single hardware
clock, all these counters are mesosynchronous. Each core also
implements its own real-time clock, which supports an accurate
and lightweight implementation of POSIX timers.

Assuming an initial mapping of tasks to compute clusters
has been determined, porting a time-critical application to the
MPPA®-256 processor requires engineering in the areas of:

e Controlled execution of tasks on the compute clusters.

Type Pathname Tx:Rx | aio_sigevent.sigev_notify
Sync /mppa/sync/rx_nodes:cnoc_tag N: M

Portal /mppa/portal/rx_nodes:dnoc_tag N : M | SIGEV_NONE, SIGEV_CALLBACK
RQueue | /mppa/rqueue/rx_node:dnoc_tag/tx_nodes: cnoc_taglcredits .msize | N : 1 SIGEV_NONE, SIGEV_CALLBACK
Channel | /mppa/channel/rx_node:dnoc_tag/tx_node: cnoc_tag 1:1 SIGEV_NONE

Sampler | /mppa/sampler/rx_nodes:dnoc_tag 1: M | SIGEV_NONE

TABLE I.

e Intra-processor communication and synchronization
through NoC connectors.

e Controlled sharing of resources on the I/O subsystems,
starting with DDR memory accesses.

e Local connection to low-latency, high speed I/O data
streams through NoC extensions.

e Global communication over synchronized or determin-
istic variant of Ethernet.

The direct port to the MPPA®-256 processor of a cockpit
flight management system (FMS), a time-critical application
proposed by the CERTAINTY FP7 project as its motivating use
case, illustrates how some of these issues may be addressed.

Task Interference On the compute clusters, the POSIX ex-
tension primitive pthread_attr_setaffinity_np en-
forces explicit mapping between threads and PE cores. The
blocked SMEM configuration is used in combination with
linker scripts to position code and data including stack of each
thread on non-interfering memory paths and banks.

Periodic Tasks These tasks are activated at a given period.
At thread creation, the current date of CLOCK_REALTIME is
read thanks to the POSIX primitive clock_gettime. At the
end of the computation, the period is added to the start time
and the POSIX primitive pthread_cond_timedwait is
called with the resulting time as timeout parameters. That way
the task waits until the period expires.

Pseudo-Periodic Tasks These tasks are restarted with a
dynamic delay, which may be selected during the computation
of the task. At the end of computations, the task has to wait
the selected amount of time for restart. This waiting is simply
performed with the POSIX primitive nanosleep.

Sharing of I/O Resources The sharing of I/O resources,
in particular DDR access, can be controlled by implementing
a global time-triggered task scheduling approach, as proposed
for mixed-criticality cases such as this FMS application [13].
This approach relies on barrier synchronizations, whose imple-
mentation is efficient on the MPPA®-256 processor thanks to
the Sync connector. A simpler approach applicable when there
is a single level of criticality is the sliced execution model [14].

IV. SUMMARY AND CONCLUSIONS

The distinguishing architectural features of the Kalray
MPPA®-256 processor include a single VLIW ISA for all
the cores, clusters of cores that share a multi-banked local
memory system, and an explicitly routed dual NoC with flow
regulation at the source. Combining these features was origi-
nally motivated by the objectives of energy-efficient computing
and architectural scalability. While developing this processor,
it became apparent that excellent support for time-critical

NOC CONNECTOR PATHNAMES, SIGNATURE, AND ASYNCHRONOUS I/O SIGEVENT NOTIFY ACTIONS.

applications could be provided as well with limited adaptations
of the implementation. We believe that the resulting MPPA®-
256 processor is ideally positioned for a new generation of
applications where high-performance, energy-efficient parallel
processing is required to implement time-critical functions.

REFERENCES

[1] J. D. Northcutt and E. M. Kuerner, “System support for time-critical
applications,” in Proceedings of the Second International Workshop on
Network and Operating System Support for Digital Audio and Video.
London, UK, UK: Springer-Verlag, 1992, pp. 242-254.

[2] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Transaction on
Computer-Aided Design, vol. 28, no. 7, pp. 966-978, Jul. 2009.

[3] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability
of cache replacement policies,” Real-Time Systems, vol. 37, no. 2, pp.
99-122, Nov. 2007.

[4] D.Y. Chang, D.J. Kuck, and D. H. Lawrie, “On the effective bandwidth
of parallel memories,” IEEE Trans. Comput., vol. 26, no. 5, pp. 480—
490, May 1977.

[5] Z.Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and T. Hen-
riksson, “Flow regulation for on-chip communication,” in Proceedings
of the Conference on Design, Automation and Test in Europe, ser. DATE
’09, 2009, pp. 578-581.

[6] R. L. Cruz, “A calculus for network delay, part i: Network elements
in isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1,
pp. 114-131, 1991.

[71 H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proceedings of the IEEE, vol. 83, no. 10,
pp. 1374-1396, 1995.

[8] E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma, and J. D. Kubia-
towicz, “Remote queues: exposing message queues for optimization and
atomicity,” in Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, ser. SPAA 95, 1995, pp. 42-53.

[9] M. G. Katevenis, E. P. Markatos, P. Vatsolaki, and C. Xanthaki, “The
remote enqueue operation on networks of workstations,” International
Journal of Computing and Informatics, vol. 23, no. 1, pp. 29-39, 1999.

[10] A. Benveniste, A. Bouillard, and P. Caspi, “A unifying view of loosely
time-triggered architectures,” in Proceedings of the tenth ACM interna-
tional conference on Embedded Software, ser. EMSOFT 10, 2010, pp.
189-198.

[11] O. Villa, G. Palermo, and C. Silvano, “Efficiency and scalability
of barrier synchronization on noc based many-core architectures,”
in Proceedings of the 2008 international conference on Compilers,
Architectures and Synthesis for Embedded Systems, ser. CASES 08,
2008, pp. 81-90.

[12] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
Messages: a Mechanism for Integrated Communication and Computa-
tion,” in Proceedings of the 19th annual International Symposium on
Computer architecture, ser. ISCA 92, 1992, pp. 256-266.

[13] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore sys-
tems,” in International Conference on Embedded Software (EMSOFT),
Montreal, Oct 2013.

[14] F Boniol, H. Cassé, E. Noulard, and C. Pagetti, “Deterministic execu-
tion model on cots hardware,” in Proceedings of the 25th International
Conference on Architecture of Computing Systems, ser. ARCS’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 98-110.

