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EXTENDED ABSTRACT

Multi-core processors are increasingly considered as exe-
cution platforms for embedded systems because of their good
performance/energy ratio. Many applications implemented on
multi-core platforms are safety- and some also time-critical. A
critical issue for these applications is the reduced predictability
of such systems resulting from the interference of different
applications on shared resources. These interferences can be at
least of two kinds: Several applications may request a resource
at the same time, but the resource can only admit one access
at a time. As a consequence, an arbitration mechanism may
delay the request of all but one application, thus slowing down
the other applications. This is the case of resources like buses,
typically called bandwidth resources. On the other hand, one
application may also change the state of a shared resource such
that another application using that resource will suffer from a
slowdown. This is the case with shared memories, such as
shared caches and shared dynamic random-access memories,
which fall into the class of storage resources.

Interference on shared resources makes worst-case exe-
cution time (WCET) analysis of applications more difficult
since a task or a thread can no longer be analyzed for its
timing behavior in isolation. All potential interferences slowing
down (or speeding up) the task under analysis have to be
considered. This leads to a combinatorial explosion of the
analysis complexity, as all possible interleavings of different
threads have to be analyzed.

The survey [1] considers several aspects of the execution of
sets of tasks on multi-core platforms that have to do with the
interference of the tasks on shared resources. One question is
how the actual performance of tasks is slowed down by other
co-running tasks. Another is how to compute bounds on the
slow-down in order to derive sound guarantees for the timing
behavior. A major problem is the increased complexity of this
task compared to the single-task single-core case. This has led
to the situation that industry is developing embedded systems
for multi-core platforms while there exist no timing-analysis
methods and tools that are both sound and precise.

A. Storage resources

Caches are a particular case of storage resources. Several
approaches exist for the treatment of shared caches in attempts
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to derive timing guarantees. Cache partitioning eliminates the
interference between tasks. Static analysis of non-partitioned
shared caches attempts to safely bound the interference. The
definite comparison between these two approaches has yet to
be done.

B. Bandwidth resources

Buses are instances of bandwidth resources. Several pro-
tocols exist for the arbitration of shared buses, which can
be classified as either time-driven, event-driven, or hybrid
combinations of both. Static analysis can be used to determine
good slot assignments in time-driven protocols like TDMA,
and it can be used to determine bounds on the access delays in
event-driven state-based protocols like FCFS and round robin.

C. Ways to derive guarantees

In order to guarantee the timeliness of tasks in a hard
real-time system, one needs upper bounds on the execution
times of the tasks. As long as a task executes in isolation,
i.e., without (interference on) shared resources, on a multi-
core system, existing techniques for timing estimation can be
applied. In case of an execution with co-running tasks using
shared resources, a sound approach for timing analysis has to
take into account the interferences on the shared resources.

Approaches to determine upper bounds on execution times
of tasks on multi-core platforms can be classified into two
groups:

e Approaches achieving performance isolation by elim-
inating interference using hardware and/or software
techniques. Performance isolation implies timing com-
posability and permits the use of standard single-core
timing analysis techniques with minor modifications.

e  Approaches analyzing the mutual effects of co-running
tasks on each others execution time. Such approaches
require new timing analysis techniques that differ
greatly from those employed in the single-core single-
task case.

a) Achieving Performance Isolation: In single-core ar-
chitectures, integrated modular avionics (IMA) according to
ARINC 653 [3] attempts to achieve performance isolation by
temporal and spatial partitioning [4]. Spatial partitioning pro-
tects the memory space (both code and data) of one application



against access by another application. It is realized by avoiding
sharing of memory resources. Temporal partitioning has to
ensure that the activities in one (activation of an) application
do not affect the timing of the activities in (an activation
of) another application. It is implemented by static periodic
scheduling and by flushing resources, such as caches, between
invocations of different tasks.

However, such a partitioning solution is inefficient and
cannot easily be extended to multi-core architectures, in which
different tasks execute concurrently. In such cases, hardware
support for resource partitioning is required. Examples are
TDMA arbitration of busses and partitioning of caches. In
addition, not all shared resources can (easily) be flushed.

The challenge in these approaches is to make efficient use
of shared resources by partitioning them appropriately for the
given workload. In the survey [1], we review software- and
hardware-based mechanisms to partition shared caches and to
determine good partition sizes.

b) Analyzing the Impact of Interference: Different
methods have been proposed or are pursued to derive guar-
antees for the timeliness of sets of tasks in a parallel workload
setting when performance isolation is not given. First, there is
the classification according to whether the software is analyzed
or executed.

e The static analysis of a whole set of concurrently
executed applications may deliver a sound and precise
guarantee for the timing behavior. The problem is the
huge complexity of this approach.

o  Measurement-based methods are in general not able
to derive guarantees, neither in the single-core nor in
the multi-core case.

The particular contribution to the execution-time bounds of the
interference on shared resources can be dealt with in different
ways:

1. The Murphy approach assumes maximal interference on
each access to a shared resource. This assumption can be easily
integrated into existing single-core timing analysis techniques.
The Murphy approach will clearly give sound, but the most
pessimistic execution-time bounds.

2. The slowdown factor approach attempts to explicitly
quantify the worst-case impact of the interferences on shared
resources on the timing of a task caused by co-running tasks.
The obtained slowdown factor could then be used to obtain an
estimate on the execution times of a task in a parallel workload
from an estimate in the isolated case. Existing approaches
aim at quantifying the slowdown of a task in the worst case
by measurement-based techniques. These measurement-based
approaches employ so-called resource-stressing benchmarks,
which are constructed for particular resources to produce the
maximal slowdown on co-running tasks due to conflicts on
this resource [6]. In the survey [1], we claim that attempts
in this direction may be both unsound and overly pessimistic.
Resource-stressing benchmarks are, in general, independent of
the application that is slowed down by co-running these bench-
marks. Therefore, one single resource-stressing benchmark
can hardly slow down the application in the worst way. The
fact that resource-stressing benchmarks might not be sound

is demonstrated by an imaginary application-specific worst
companion.

3. Finally, static analysis of a whole set of concurrently ex-
ecuted applications may deliver a sound and precise guarantee
for the timing behavior. The problem is the huge complexity
of this approach. To reduce analysis complexity, existing static
analysis approaches separate analysis into two phases: The
first phase determines a bound on the execution time of
each task in isolation and a characterization of its resource-
access behavior. The second analysis phase then uses this
characterization to bound the impact of interference on the
execution times of all tasks. The sum of the two bounds
for each task then yields an estimate of the task’s worst-
case execution time. For soundness, all of these approaches
rely on timing compositionality [S], which permits to account
for the cost of interference in such a compositional way.
Unfortunately, many existing hardware architectures exhibit
domino effects and timing anomalies and are thus out of the
scope of such an approach.

Different abstraction levels for characterizing the resource
behavior may yield different precision of the result and may
require different analysis effort. One popular abstraction is
the superblock task model, where tasks are structured as a
sequence of superblocks for which bounds on the execution
time and on the resource behavior are known. A major problem
with this approach is that the resource behavior, e.g. bus
accesses for cache reloads, may depend on the interference
of the tasks on the shared cache (if this is not partitioned),
which depends on the relative speed of the different tasks,
which again depends on the cache performance.
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