
Lifetime Holes Aware Register Allocation for
Clustered VLIW Processors

Xuemeng Zhang∗, Hui Wu† and Haiyan Sun∗ and Jingling Xue†
∗School of Computer, National University of Defense Technology, Changsha, China

Email: {xuemengz,shy}@hotmail.com
†School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia

Email: {huiw,jingling}@cse.unsw.edu.au

Abstract—This paper presents an on-the-fly register allocator
which dynamically detects and utilises lifetime holes for clustered
VLIW processors. A lifetime hole is an interval in which a
variable does not contain a valid value. A register holding a
lifetime hole can be allocated to another variable whose live
range fits in the lifetime hole, leading to more efficient utilisation
of registers. We propose efficient techniques for dynamically
utilising lifetime holes and incorporate these techniques into
our on-the-fly register allocator. We have simulated our register
allocator and a linear scan register allocator without considering
lifetime holes by using the MediaBench II benchmark suite. Our
simulation results show that our register allocator reduces the
number of spills by 12.5%, 11.7%, 12.7%, for three different
processor models, respectively.

Index Terms—register allocation; lifetime hole; live range;
clustered VLIW processor; inter-cluster communication

I. INTRODUCTION

Register allocation is an important component of an op-
timising compiler for VLIW (Very Long Instruction Word)
processors. Traditionally, register allocation is performed sepa-
rately from instruction scheduling, causing the phase ordering
problem. For clustered VLIW processors, since clusters are
connected by an inter-cluster communication network, per-
forming register allocation before instruction scheduling may
cause unnecessary inter-cluster communications. To alleviate
the phase ordering problem, it is desirable to integrate register
allocation and instruction scheduling into a single phase.

Clustering is a well-known technique for improving the
scalability and energy consumption of VLIW processors.
However, clustered VLIW processors make register allocation
more challenging. Firstly, new live intervals may be created
dynamically when values are transferred to different clusters.
Secondly, the exact live range of a variable depends on when
the operations of its first definition and last use are scheduled,
which cannot be determined by traditional liveness analysis
for static code. In addition, bad cluster assignment may cause
unnecessary inter-cluster communications, thus increasing the
schedule length of a basic block.

A lifetime hole of a variable is an interval during which
the variable does not hold a valid value. If a register R0 is
assigned to a variable v and v has a lifetime hole, R0 can
still be allocated to another variable w, provided that w’s live
range fits in the lifetime hole of v. Registers can be reused

during lifetime holes to improve the utilisation of registers
effectively.

We propose an on-the-fly register allocator which detects
and utilizes lifetime holes for clustered VLIW processors.
To our knowledge, our register allocator is the first one
considering lifetime holes for clustered VLIW processors. Our
register allocator is integrated with a priority based instruction
scheduler [1], [2]. When the instruction scheduler schedules
an operation of a basic block, the instruction scheduler calls
the register allocator to assign physical registers to the virtual
registers of the operation. We have simulated our register
allocator and compared it to a linear scan register allocator
without considering lifetime holes proposed in [3] using the
MediaBench II benchmark suite [4] based on three different
processor models. On average, our register allocator reduces
the number of spills by 12.5%, 11.7%, 12.7% compared to the
linear scan register allocator for the three processor models,
respectively.

II. RELATED WORK

Two common approaches used in modern compilers are
graph colouring and linear scan. Graph colouring is suitable
when compilation time is not a major concern, while lin-
ear scan is faster and therefore frequently used for just-in-
time compilers. Chaitin et al. [5] introduce the first a graph
colouring register allocator based on an interference graph G.
The problem of allocating k registers to the variables is to
look for a k-colouring of G such that adjacent nodes always
have distinct colours. Matula et al. [6] and Briggs et al. [7]
improve on Chaitin’s work. Chow et al. [8] present a scheme
to colour the graph using a priority ordering. Poletto et al.
[3] propose a linear scan register allocation algorithm, which
allocates registers to variables in a single linear-time scan of
the variables’ live ranges. Traub et al. [9] propose a more
complex linear scan algorithm, which utilises lifetime holes
by assigning two variables to the same register if the live
range of one register is entirely contained in a lifetime hole of
the other. Sarkar and Barik [10] propose two extended linear
scan algorithms that retain the compile-time efficiency of the
previous linear scan algorithms, while delivering performance
that can match or surpass that of graph colouring. Wimmer and
Mössenböck [11] present an optimised implementation of the
linear scan algorithm for the Java HotSpotTM client compiler.978-3-9815370-2-4/DATE14/@2014EDAA

III. LIFETIME HOLES

Given a program P , let B0, B1, · · · , Bn−1 be a list B of
all the basic blocks of the program, sorted in reverse postorder
[12] which can reduce the lifetime holes [9] and improve the
quality of register allocation. Define the rank of each basic
block Bi, denoted rank(Bi), as its position in the list, i.e.,
rank(Bi) = i. Let α(v) be the start time of an operation v.
Define an exact lifetime hole h(x) of a variable x as a two
dimensional interval: h(x) = [ranki(x), rankj(x)] (i ≤ j),
where ranki(x) = (rank(Bi), α(v)): x is live at operation v
and not live after operation v in the basic block Bi, rankj(x)
= (rank(Bj), α(w): x is live after operation w in the basic
block Bj), and x is not live between v and w. Initially, h(x) is
set to [(rank(Bi), 0), (rank(Bj),−1)], or [(rank(Bi),−1),
(rank(Bj),−1)], or [(rank(Bi),−1), (rank(Bj), ϵ)], where
−1 indicates an unknown cycle, 0 indicates the start of a basic
block, and ϵ indicates the end of a basic block. h(x) will be
updated when the corresponding operations are scheduled.

Fig. 1: An example CFG

Fig. 2: Reverse postorder of the example CFG in Fig. 1 and
the lifetime holes

To ensure that the value in the register allocated to a live
range is valid, we utilise a lifetime hole of the live range only

after its start operation is scheduled. In addition, we reuse
the register with the lifetime hole only for another variable
whose lifetime ends earlier than the end of the lifetime hole.
Consider Fig. 2. Initially H3(x) is [(5,−1), (5, ϵ)]. Assume
that USE1(x) is scheduled at cycle 20, H3(x) = [(5, 20),
(5, ϵ)]. Any operation whose live range is between (5, 20) and
(5, ϵ) can reuse x’s register.

IV. LIFETIME HOLE DETECTION

Algorithm 1 HolesDetection(B, in, out,H)

Require:
A list B of all the basic blocks of the CFG sorted in reverse postorder
A list in of the variables live-in at each basic block
A list out of the variables live-out at each basic block

Ensure:
The lifetime holes H(x) of each variable x

1: Let defl be the set of variables defined by each basic block Bl in B
2: Let usel be the set of variables used in each basic block Bl in B
3: Let use = ∪usel, l ∈ (0, |B| − 1)
4: Let α(v) be the start time of operation v
5: for each variable x ∈ use do
6: Let [(rankmin(x),−1), (rankmax(x),−1)] be x’s live range
7: i = rankmin(x)
8: while i ≤ rankmax(x) do
9: i++;

10: if x /∈ ini then
11: bstart = i;
12: i++;
13: while i ≤ rankmax(x) ∧ x /∈ ini do
14: i++;
15: end while
16: bend = i− 1;
17: Add lifetime hole [(bstart, 0), (bend, ϵ)] into H(x)
18: end if
19: i++;
20: end while
21: for each basic block Bl in the list B do
22: if x ∈ usel then
23: if x /∈ outl ∧ l < rankmax(x) then
24: Let w be the last use of x in Bl

25: Add h(x) = [(l, α(w)), (l, ϵ)] into H(x)
26: end if
27: else if x ∈ defl ∧ l > rankmin(x) then
28: Let v be the first definition of x in Bl

29: Add h(x) = [(l, 0), (l, α(v))] into H(x)
30: end if
31: end for
32: Merge the adjacent lifetime holes into a single lifetime hole
33: end for

As our register allocator is performed in the same phase
as instruction scheduling, lifetime holes cannot be known and
utilised based on static code. Our register allocator detects
lifetime holes dynamically during instruction scheduling. The
algorithm for detecting lifetime holes is shown in Alg. 1. This
algorithm has three parts. The first part (line 5 to line 20)
detects lifetime holes which are longer than one basic block.
The second part (line 21 to line 29) detects lifetime holes
that are within one basic block. These lifetime holes are
created by multiple last uses or multiple first definitions in
the different branches. The last part (line 32) merges all the
adjacent lifetime holes into a single lifetime hole.

Assume that all the live ranges are known by traditional
liveness analysis [13] and it takes O(1) time to check each

of the conditions: x ∈ usel, x /∈ outl, and x ∈ defl. Each
of the three parts takes O(|B| ∗ n) time, where |B| is the
number of basic blocks of the CFG and n is the number of
variables in the CFG. Therefore, the time complexity of the
algorithm is O(|B| ∗ n). After lifetime holes are detected, the
exact live range of a variable can be computed by removing
all the lifetime holes from the original live range.

Given a variable x, let rankmin(x)=min{rank(Bi): Bi

contains a definition of x}, rankmax(x)=max{rank(Bi):Bi

contains a use of x}, β(x) be the start time of the operation
of x’s first definition in B, and γ(x) be the start time of
the operations of x’s last use in B. If the operation of x’s
first definition in B is not scheduled yet, β(x) is set to −1.
Similarly, if the operation of x’s last use in B is not scheduled
yet, γ(x) is set to −1. A live range of a variable x is a
two dimensional interval defined as τ(x)=[start(x), end(x)],
where start(x)=(rankmin(x), β(x)). For the definition of
end(x), we need to distinguish the following two cases.

1) The live range of x is not in a loop, or the live range of
x is in a loop, but does not contain the entire loop. We
define end(x) as follows: end(x)=(rankmax(x), γ(x)).

2) The live range of x is in a loop, and contains the
entire loop. Let loopmax=max{rank(Bi):Bi is inside
the loop}. In this case, end(x)=(loopmax, ϵ) , where ϵ
indicates the end of a basic block.

Initially, the live range τ(x) of a variable x is set to
[(rankmin(x), −1), (rankmax(x), −1)] or [(rankmin(x),
−1), (loopmax, ϵ)]. It will be updated when the corresponding
operations are scheduled. Consider w and x in Fig. 1, initially
τ(w) = [(0,−1), (8, ϵ)] and τ(x) = [(2,−1), (7,−1)]. Assume
that DEF (w) is scheduled at cycle 1 in the schedule of B0,
the operation of x’s first definition is scheduled at cycle 5
in the schedule of B2, and the operations of x’s last use is
scheduled at cycle 10 in the schedule of B7. We have τ(w)
= [(0, 1), (8, ϵ)] and τ(x) = [(2, 5), (7, 10)] .

As lifetime holes are detected dynamically, our on-the-fly
register allocator utilises lifetime holes in a conservative way
according to the dynamical scheduling, which guarantees that
each register always holds a valid value. Given a lifetime
hole h(x) = [(i, t1), (j, t2)] (i < j), of a variable x, for
any variable y with a live range τ(y) = [(m, t3), (n, t4)]
(m ≤ n), h(x) can be reused by y if both of the following
two constraints are satisfied:

1) y’s live range starts later than the starting point of h(x),

a) i < m holds, or
b) i = m and t3 > t1 hold.

2) y’s live range ends earlier than the end point of h(x),

a) n < j holds. Or
b) n = j and t2 = ϵ hold. In this case, h(x) ends

in the end of the basic block and τ(y) ends at an
operation within this basic block. Or

c) n = j holds, and x is data dependent on y in Bj .
In this case, τ(y) definitely ends earlier than h(x).

V. REGISTER ALLOCATION WITH LIFETIME HOLES

Alg. 2 shows our on-the-fly register allocator considering
lifetime holes. When scheduling each ready operation vi, if
vi needs a value produced by another operation vj , and the
value has been spilled or vj is not on the same cluster as vi,
we allocate a register to store the value by finding a lifetime
hole long enough, as shown from line 1 to line 26. After that,
from line 27 to line 33, we allocate a register to the destination
virtual register of vi if necessary, by finding a lifetime hole
long enough for the entire live range of the destination virtual
register. Otherwise, a register will be spilled for vi. As free
registers can be viewed as holding a very long lifetime hole
until it is allocated, allocating registers to variables can be
viewed as allocating lifetime holes to variables. Therefore, our
register allocator is also called lifetime hole allocator.

Our lifetime hole allocator allocates registers efficiently
according to the following two rules. Firstly, our lifetime hole
allocation strategy not only allocates free registers to variables,
but also allocates registers holding lifetime holes long enough
to variables. Either of the following two cases show that a
register can be allocated to variable:

1) The bit in TA that is corresponding to the register is
−1, which means the register is free.

2) Or the bit in TA which is corresponding to the register is
not −1, and the bit in TH which is related to the register
is 1, which means the register is holding a lifetime hole.

When a lifetime hole is utilised, the corresponding bit in TH
is updated to be 0. Secondly, selecting a register equals to
selecting a lifetime hole long enough for a variable to fit in.
Our lifetime hole allocation strategy chooses the lifetime hole
which ends the earliest among all the lifetime holes that end
later than the variable’s live range.

VI. SIMULATION RESULTS

To evaluate the performance of our register allocator, we
have integrated it into a priority based instruction scheduler
[1], [2]. When scheduling an operation of each basic block,
the scheduler calls register allocator to assign physical registers
to virtual registers of the operation. We have also integrated
a linear scan register allocator without considering lifetime
holes proposed in [3] into the scheduler. To compare both
register allocators, we use the MediaBench II benchmark suite
[4]. The hardware platform for the simulation is an Intel(R)
Core(TM)2 Quad CPU Q9400 with a clock frequency of
2.66GHz, 3.5 GB memory, and 3MB cache. We use three
different clustered VLIW processor models, Processor (a), (b),
and (c), with 4, 3, and 2 clusters, respectively. All the three
processor models are based on the TMS320C6X processor
[14]. All the clusters of each processor model are identical.
Each cluster has a L, a S, a D, and a M unit. The instruction
set is the same as that of the TMS320C6X processor. The
inter-cluster communication latency is 3 cycles. The latencies
of load, multiply and branch operations are 4, 1 and 5 cycles,
respectively. The latencies of other operations are 0 cycles. In
addition, the register file of each cluster has 16 registers.

Algorithm 2 HoleAllocator(M,Vi, TA, TS, TR, TH)

Require:
A clustered VLIW processor M with |R| registers on each cluster
A ready operation Vi to be scheduled on cluster Cm

A register availability table TA
A spill table TS
A register allocation table TR
A lifetime hole table TH of all the registers on M

Ensure:
A updated register availability table TA
A updated spill table TS
A updated register allocation table TR
A updated lifetime hole table TH of M

1: if Vi needs the results of a set P of other operations then
2: for j = 0 to |P | − 1 do
3: if Pj is in the memory then
4: if there is a lifetime hole for Pj on Cm then
5: Allocate the register holding the lifetime hole to Pj , and

update TR, TA, TH
6: else
7: Choose a register to spill for Pj , and update TS
8: Add a store operation on Cm

9: Allocate the register to Pj , and update TR, TA and TH
10: end if
11: Add a load operation to reload Pj on Cm

12: end if
13: if P [j] is not on Cm then
14: if there is a lifetime hole for Pj on Cm then
15: Allocate the register holding the lifetime hole to Pj , and

update TR, TA, TH
16: else
17: Choose a register to spill for Pj , and update TS
18: Add a store operation on Cm

19: Allocate the register to Pj , and update TR, TA and TH
20: end if
21: end if
22: if Pj ’s live range ends at Vi then
23: Free Pj ’s register and update TA
24: end if
25: end for
26: end if
27: if there is a lifetime hole for Vi then
28: Allocate the register holding the lifetime hole to Vi, and update TR,

TA and TH
29: else
30: Choose a register to spill for Vi and update TS
31: Add a store operation on Cm

32: Allocate the register to Vi, and update TR, TA and TH
33: end if

The total number of spills in each benchmark is shown in
Fig. 3. The simulation results shown in Fig. 3(i) are obtained
by using Processor (i). In each figure, a vertical axis represents
the total number of spills of a benchmark on a specific
clustered VLIW processor. The column Hole indicates our
register allocator, and the other column NoHole indicates
the linear scan register allocator without considering lifetime
holes. For all the benchmarks, our register allocator has fewer
spills than the linear scan register allocator. On average, our
register allocator reduces the number of spills by 12.5%,
11.7%, 12.7% for the three processor models, respectively.
The key reason is that our register allocator detects and utilises
lifetime holes, reducing the register pressure.

VII. CONCLUSION

We have proposed a lifetime holes aware, on-the-fly register
allocator for clustered VLIW processors. Our register allocator

0

50

100

150

200

250

H
.2
6
3

M
P
E
G
2

M
P
E
G
4

H
.2
6
4

JP
E
G

JP
G
2
0
0
0

H
.2
6
3

M
P
E
G
2

M
P
E
G
4

H
.2
6
4

JP
E
G

JP
G
2
0
0
0

H
.2
6
3

M
P
E
G
2

M
P
E
G
4

H
.2
6
4

JP
E
G

JP
G
2
0
0
0

(a) (b) (c)

NoHole Hole

Fig. 3: Total number of spills for each benchmark

detects and utilises lifetime holes dynamically, leading to
better register utilisation. When allocating a physical register
to a virtual register, the lifetime hole allocator selects the
physical register holding the lifetime hole which ends the
earliest among all the registers holding lifetime holes that are
long enough. The simulation results show that our register
allocator effectively reduces the number of spills for a set of
benchmarks from the MediaBench II benchmark suite.

VIII. ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science
Foundation of China under Grant No.61303072.

REFERENCES

[1] X. Zhang, H. Wu, and J. Xue, “An Efficient Heuristic for Instruction
Scheduling on Clustered VLIW Processors,” in Proceedings of 2011
International Conference on Compilers, Architectures and Synthesis of
Embedded Systems, 2011.

[2] X. Zhang, H. Wu, and J. Xue, “Instruction Scheduling with K-successor
Tree for Clustered VLIW Processors,” The Journal of Design Automa-
tion for Embedded Systems, 2013.

[3] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” in ACM
Transactions on Programming Languages and Systems, vol. 21, 1999.

[4] mediabench, “Mediabench II Benchmark,”
http://euler.slu.edu/ fritts/mediabench/.

[5] G. J. Chaitin, “Register Allocation and Spilling via Graph Coloring,”
in Proceedings of the ACM SIGPLAN 82 Symposium on Compiler
Construction, S. Notices, Ed., vol. 17(6), 1982, pp. 98–105.

[6] D. W. Matula and L. L. Beck, “Smallest-last Ordering and Clustering
and Graph Coloring Algorithms,” in Journal of the Association for
Computing Machinery, vol. 30, 1983, pp. 417–427.

[7] P. Briggs, K. D. Cooper, and L. Torczon, “Improvements to Graph
Coloring Register Allocation,” in ACM Transactions on Programming
Languages and Systems, vol. 16, 1994, pp. 428–455.

[8] F. Chow and J. Hennessy., “The Priority-based Coloring Approach to
Register Allocation,” in ACM Transactions on Programming Languages
and Systems, vol. 12, 1990, pp. 501–536.

[9] O. Traub, G. Holloway, and M. D. Smith, “Quality and Speed in
Linear-scan Register Allocation,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
1998, pp. 142–151.

[10] V. Sarkar and R. Barik, “Extended Linear Scan: An Alternate Foundation
for Global Register Allocation,” in Proceedings of the International
Conference on Compiler Construction, 2007, pp. 141–155.

[11] C. Wimmer and H. Mössenböck, “Optimized Interval Splitting in a
Linear Scan Register Allocator,” in Proceedings of the ACM/USENIX
International Conference on Virtual Execution Environments, 2005.

[12] J. B. N. Kam and J. D. Ullman, “Global Data Flow Analysis and Iterative
Algorithms,” Journal of the Association for Computing Machinery,
vol. 23, no. 1, pp. 158–171, 1976.

[13] M. S. Hecht and J. D. Ullman, “A Simple Algorithm for Global Data
Flow Analysis Problems,” SIAM Journal on Computing, vol. 4, no. 4,
pp. 519–532, 1975.

[14] “TI TMS320C64xx DSPs,” http://www.ti.com.

