
A Wear-Leveling-Aware Dynamic Stack for PCM

Memory in Embedded Systems

Qingan Li∗†, Yanxiang He∗, Yong Chen∗, Chun Jason Xue†, Nan Jiang∗, and Chao Xu∗

∗School of Computer Science, Wuhan University, China
†Department of Computer Science, City University of Hong Kong, Hong Kong

ww345ww@gmail.com, {yxhe,cyong}@whu.edu.cn, jasonxue@cityu.edu.hk, {nanjiang,xuch}@whu.edu.cn

Abstract—Phase Change Memory (PCM) is a promising
DRAM replacement in embedded systems due to its attractive
characteristics such as extremely low leakage power, high storage
density and good scalability. However, PCM’s low endurance
constrains its practical applications. In this paper, we propose a
wear leveling aware dynamic stack to extend PCM’s lifetime when
it is adopted in embedded systems as main memory. Through a
dynamic stack, the memory space is circularly allocated to stack
frames, and thus an even usage of PCM memory is achieved.
The experimental results show that the proposed method can
significantly reduce the write variation on PCM cells and enhance
the lifetime of PCM memory.

I. INTRODUCTION

Due to increasing ubiquitous computing demands, Micro
Controller Units (MCUs) have been widely adopted in ev-
eryday service devices, such as temperature sensors and MP3
players. MCUs usually integrate a very limited size of internal
RAM on top of external Flash storage, which exposes Flash
to heavy write traffic. Recent works have proposed to deploy
emerging Phase Change Memory (PCM) as an universal mem-
ory to replace internal RAM and external Flash [1] [2] [3].
Compared to DRAM, PCM has better scalability, comparable
read latency and lower leakage power consumption. Compared
to Flash, PCM enjoys faster read/write access speed and much
longer cell endurance. Previous works [4] [5] [6] have shown
that a PCM main memory can achieve significant energy
saving with comparable performance to that of a DRAM main
memory.

However, PCM cells suffer from limited lifetime. Further-
more, the non-uniformity in writes to different PCM cells can
marvellously reduce the achievable lifetime. A system built on
pure PCM based memory may fail after several days because
of the broken PCM cells. To address this issue, researchers
have proposed lots of methods which can be classified into two
classes. The first class is to reduce the total number of bit-level
writes. Differential writes methods are proposed in [7] [8] [9].
Upon each write request, these methods compare the new value
with the old value, and re-write only the different bits. The
second class is wear leveling [5] [10]. Wear leveling techniques
distribute write operations evenly among PCM cells to avoid
the phenomenon that a small proportion of PCM cells become

This work was partially supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 123210,
CityU 123811], and the National Natural Science Found of China [Project No.
61170022, 61373039, 91118003].

too hot to wear out at an early stage. All these works require
customized hardware design.

Many MCUs are configured without Memory Manage-
ment Unit (MMU) to achieve better trade-offs among cost,
performance and energy efficiency, such as Cortex-M0 and
Cortex-M1 [11]. For these MCUs, a software enabled wear
leveling method is proposed by Hu et al. [12]. Their method
targets to reduce the write variation in static storage space.
The basic idea of this method is to re-allocate the data objects
at the entry and exit of each code region (a function or a
loop). This method employs an array to record the number of
writes for each memory address, and re-allocates an object to
a memory address if the total write count in this address is not
over a threshold value. However, this method works well only
for situations when the memory addresses can be known at
compilation time. It is not applicable for stack space. This is
because, the address of a function’s frame is only determined
at run time. The uneven usage of stack space leads to uneven
usage of PCM cells. We conducted a set of experimental
evaluation of the usage of PCM cells, and observed that
the uneven usage of stack space is mainly due to the stack
allocation mechanism itself. Based on this observation, this
paper proposes a wear leveling aware dynamic stack for PCM
memory in embedded systems to achieve an even usage of
stack space.

The reminder of this paper is organized as follows. Section
II discusses the background as well as the motivation. Section
III introduces the Wear Leveling aware Dynamic Stack (WLD-
S) method. Section IV discusses the experimental evaluation.
Section V concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present a brief introduction to the
conventional stack memory allocation, and discuss the reasons
for the uneven usage of stack space. Then, we present a brief
discussion on dynamic memory allocation. Finally, a motivat-
ing example is presented to show the potential optimization
via dynamic stack allocation.

A. Stack memory allocation

Each function instance is associated with a frame (also
called active record) to store the context information for this
function. Local data, including local variables and compilation
temporary variables, are stored in this frame. A conventional
stack based allocator works as follows:978-3-9815370-2-4/DATE14/ c©2014 EDAA

1) A specific memory address is assigned to the main
function’s frame, which can be viewed as the start
point of the stack.

2) Upon a function is called, the callee function’s frame
is allocated on top of the caller function’s frame.

3) Upon a function returns, the callee function’s frame
is deallocated from the top of caller function’s frame.

The composition of the allocated frames constitutes the
stack area. Since frame allocation/deallocation is always con-
ducted on the top of stack, some memory regions may be
used by a large number of frames, while others are rarely
used. Furthermore, due to the conservative reservation of stack
space, a proportion of memory space, sometimes a sizeable
proportion, at the low end of the reserved space are never used.
Therefore, the stack allocation mechanism itself contributes
much to the uneven usage of stack space.

Fig. 1 shows the memory usage with the conventional stack
allocation. It shows the number of writes to each memory
region within the stack area, as well as the number of frames
mapped to each memory region. There are two observations.
First, the stack area is used extremely unevenly, which is
harmful to PCM memory’s lifetime. Second, if a memory
region receives lots of writes, the writes often come from lots
of frames. In other words, since multiple frames are mapped
to a single region, the write count is large. If these frames
are mapped more evenly to regions, the memory usage can
be much more even. Based on this observation, this paper
proposes a Wear Leveling aware Dynamic Stack (WLDS)
method to evenly use the memory space.

B. Dynamic memory allocation

The proposed WLDS method relies on dynamic memory
allocation to evenly map frames to memory regions. Here we
present a brief discussion on dynamic memory allocation. A
typical dynamic allocator works as follows:

1) A free block list is maintained to record the unused
memory blocks.

2) Upon a memory allocation request, the allocator does
a search of the free list and chooses a block that fits.
There are several selection policies. The first fit policy
searches the free list from the beginning and chooses
the first free block that fits. The next fit policy is
similar to first fit, but starts search where the previous
search stops. The best fit policy examines every free
block and chooses the one with the smallest size that
fits. Since this policy requires an exhaustive search
of the list, it is usually slow.

0

1

2

3

4

5

1 3 5 7 9 11131517192123252729313335373941434547495153555759

x
 1

0
0

0
0

0

Memory regions in stack area

frames writes

(a)

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

x
 1

0
0

0
0

0

Memory regions in stack area

frames writes

(b)

Fig. 1. Uneven memory usage in stack area. It shows the number of writes as
well as frames over stack area. (a). Memory usage of basicmath. (b). Memory
usage of FFT.

3) Upon a request of deallocation of a block, the al-
locator inserts the block back to the free list and
optionally coalesces it with its adjacent blocks.

The best fit policy is rarely used in practice due to its
high cost. On the contrary, the first fit policy is widely used in
many allocators, such as the buddy system allocator. However,
the first fit policy leads to a higher use of the blocks at the
beginning of the free list and a lower use of the blocks at the
end of the free list. As a result, the first fit policy is not suitable
for wear leveling. In contrast, the next fit policy searches the
free block list circularly to find free blocks that fits, which can
provide an even memory usage. This paper employs the next
fit policy to design the wear leveling aware dynamic stack.

C. A motivating example

As stated above, the uneven usage of stack space is mainly
due to the stack allocation itself. This issue can be addressed
by replacing this stack allocator with a dynamic stack allocator
which uses the memory space in a circular fashion.

Here a motivating example is presented to show the poten-
tial optimization space. A sample code is illustrated in Fig. 2,
where the main function invokes function f, and then invokes
function g, which further invokes function h three times.
Assume that all function frames are of the same size. Fig. 3(a)
shows the situation when the conventional stack allocator is
applied. The frame of the main function is allocated first. Then
the frames of function f and g share the same memory space.
Note that the frames of f and g can share the same memory
address, since f and g have disjoint life ranges. Finally, three
frames of function h share the same memory addresses. The
shared addresses are prone to be write intensive since they are
written by more function instances.

Alternatively, each function frame can use disjoint memory
space, as illustrated in Fig. 3(b). Using a dynamic stack allo-
cator, each memory region is allocated to at most one function
frame, and thus the wear leveling is improved. However, this
allocator assumes a large enough stack space.

As a comparison, Fig. 3(c) shows a dynamic allocator
which provides a better trade-off between wear leveling and
stack space requirement. Assuming that the design reserves
a stack space of four frames. This dynamic allocator can
circularly allocate the free stack space to function frames.
With this allocator, each memory region is allocated to at most
two function frames, with a controllable expansion of memory
footprint.

1 void main ()
2 {
3 f () ;
4 g () ;
5 }
6 void g ()
7 {
8 i n t i = 0 ;
9 f o r (; i < 3 ; i ++)

10 h () ;
11 }

Fig. 2. A sample code.

Stack

space

(a) (b) (c)

Fig. 3. Comparison of stack allocators. (a). The conventional stack allocator.
(b). The dynamic stack allocator assuming unlimited stack space. (c) The
dynamic stack allocator with stack space limitation.

III. WEAR LEVELING AWARE DYNAMIC STACK

As stated above, it is common that the stack space is
unevenly used due to the stack allocation itself as well as
the various application features. This section proposes a Wear
Leveling aware Dynamic Stack (WLDS) method to evenly use
the stack space. This method employs a customized dynamic
stack allocator to achieve a uniform mapping from function
frames to stack space. Together with a re-allocation technique,
which maps a hot local data to different addresses in different
code regions to achieve an even usage within a function
frame, this method can obtain a significant reduction in write
variation. In this section, we first discuss the dynamic stack
allocator in detail. Then we discuss the application of this
allocator to stack area. Finally, we present a brief discussion on
applying the re-allocation technique to achieve an even usage
within a function frame.

A. Dynamic stack allocator

The desired dynamic stack allocator works as follows.
Immediately before a function f executes, there is a memory
request for f ’s frame. Upon this request, the allocator searches
the free block list for f ’s frame using a next fit policy. The
next fit policy is employed to use the stack space circularly.
Immediately after a function f finishes its execution, its frame
is deallocated and the corresponding memory block is released
back to the free block list. A coalescing operation is optionally
conducted to coalesce continuous free blocks.

In other words, the dynamic stack allocator implements
two functions, alloc and dealloc. The alloc(int nSize) function
allocates stack space to a frame with the size of nSize via a next
fit search of the free list. Upon each memory request, it starts
the search of the free block list from the position where the
previous search stops. Before checking whether a block fits,
it first recursively coalesces this block with the succeeding
neighbours. The dealloc(int nAddr) frees the memory block
with the address of nAddr and inserts the corresponding block
back into the free block list in order of addresses.

B. Application to stack area

To apply the dynamic stack allocator to function frames,
the function invocation needs to be wrapped with additional
operations. An extra entry, control link (CL), should be added
to the frame to store the frame address of the caller function.
The wrapping works as follows. Assume that there is a caller
function f invoking a callee function g, and the (highest)
memory address for the caller function f ’s frame is α.

1) Immediately before the invocation of g, the alloc
function is employed to obtain the highest memory
address of g’s frame, β.

2) The value of α is stored in g’s frame, which is used
later for searching function g’s frame. To support the
storage of the frame address of the caller function,
α, an extra entry, CL, is added into the frame.

3) The ebp’s content is updated with β. Here ebp
represents the register holding the stack base pointer.
With this operation, g’s frame is layout at address β.

4) Function g executes afterwards.
5) Immediately after g returns, before any other oper-

ations, ebp’s content is updated with the CL value,
α,to point back to f ’s frame.

6) Finally, the dealloc function is employed to free the
block used by g’s frame.

C. Even memory usage within a function frame

With the dynamic stack technique proposed above, the
memory space can be circularly used by function frames
during run time. As a result, a uniform mapping from function
frames to memory space can be achieved. However, the non-
uniformity of writes within the local stack area may still cause
an uneven usage of stack space. For example, a hot local data
in a function frame imposes an intensive usage of a small
fraction of memory cells. To deal with this issue, we apply
the method proposed in [12] to re-allocate hot local data into
multiple addresses among the frame for different code regions.

IV. EXPERIMENT

This section discusses the experimental evaluation. First,
the experimental methodology and setup are introduced. Then,
the experimental results are presented.

A. Experimental methodology

The objective of wear leveling is to reduce memory write
variation and uniformly distribute write traffic. To quantify the
memory write variation, we define the coefficient of variation
(CoV) based on standard deviation. The CoV is defined as
follows:

CoV =
1

E
·

√

√

√

√

√

N
∑

i

(wi − E)
2

N − 1
(1)

where wi is the write count of a memory line labelled i,
E is the average write count defined using Equation 2, and
N is the total number of memory lines. As it is defined,
a smaller CoV indicates a better wear leveling or a smaller
write variation among memory cells. An ideal wear leveling
technique makes the write count the same among all memory

lines, and thus CoV is zero. This definition of CoV is employed
in the following experiments to evaluate the proposed wear
leveling method.

E =
1

N
·

N
∑

i

wi (2)

B. Experimental setup

This paper evaluated three methods.

• The first method (SA) is the baseline which employs
the conventional stack allocation.

• The second method (RA) is similar to the SA method,
but it employs the software technique proposed in [12]
to re-allocate data objects for each code region in
purpose of evenly using the space within a frame.

• The third one is the proposed Wear Leveling aware
dynamic stack method (WLDS), which employs a
customized dynamic stack allocator to circularly map
frames to stack space, together with the re-allocation
technique to evenly use the space intra a frame.

We have developed a pin [13] based tool to imple-
ment all three methods mentioned above. Applications from
MiBench [14] are used for the experimental evaluation.

C. Experimental results

Fig. 4 shows the CoVs for each benchmark under stack
space limitation of 512 KB. Note that a smaller CoV indicates
better wear levelling or a more even memory usage. The results
show that, the conventional SA method always leads to the
largest write variation. The RA method, which re-allocates
local data within a function frame can significantly reduce the
write variation. The proposed WLDS method, which achieves
a uniform mapping from function frames to memory space via
a customized dynamic stack and achieves a uniform local stack
area usage via re-allocating local data, can obtain the smallest
write variation in most cases.

It is a little strange that for bitcount and susan, the RA
method works a little better than the WLDS method. The
reason is that, for these benchmarks, there are extremely hot
frames. In the RA method, a memory region is allocated to

0

0.2

0.4

0.6

0.8

1

1.2

SA RA WLDS

N
o

r
m

a
li

z
e

d
 c

o
e

ff
ic

ie
n

t
 o

f
v

a
r
ia

t
io

n

Fig. 4. CoVs under stack space limitation of 512 KB. All results are
normalized to the SA method.

the hot frames alone. But, in the WLDS method, to achieve
a uniform mapping, this memory region is also allocated to a
small number of other frames, which makes this region hotter.

V. CONCLUSION

This paper proposes a pure software wear leveling method
to reduce the write variation on PCM memory in embedded
systems without MMU. This method employs a customized
dynamic stack to achieve a uniform mapping from function
frames to memory space. This technique, together with the
intra-frame re-allocation technique, obtains a significant reduc-
tion in write variation.

REFERENCES

[1] T. Liu, Y. Zhao, C. J. Xue, and M. Li, “Power-aware variable partition-
ing for dsps with hybrid pram and dram main memory,” in Proceedings

of the 48th Design Automation Conference, ser. DAC ’11. ACM, 2011,
pp. 405–410.

[2] J. Hu, C. Xue, Q. Zhuge, W.-C. Tseng, and E.-M. Sha, “Towards energy
efficient hybrid on-chip scratch pad memory with non-volatile memory,”
in Design, Automation Test in Europe Conference Exhibition (DATE),

2011, 2011, pp. 1–6.

[3] P. Zhou, Y. Zhang, and J. Yang, “The design of sustainable wireless
sensor network node using solar energy and phase change memory,”
in Design, Automation Test in Europe Conference Exhibition (DATE),

2013, 2013, pp. 869–872.

[4] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and
dram main memory system,” in Design Automation Conference, 2009.

DAC’09. 46th ACM/IEEE. IEEE, 2009, pp. 664–669.

[5] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ACM SIGARCH Computer

Architecture News, vol. 37, no. 3, pp. 2–13, 2009.

[6] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging
non-volatile memories: Opportunities and challenges,” in Proceedings

of the Seventh IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, ser. CODES+ISSS ’11.
ACM, 2011, pp. 325–334.

[7] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in
ACM SIGARCH Computer Architecture News, vol. 37, no. 3. ACM,
2009, pp. 14–23.

[8] W. Zhang and T. Li, “Characterizing and mitigating the impact of
process variations on phase change based memory systems,” in Pro-

ceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 2009, pp. 2–13.

[9] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to
improve pram write performance, energy and endurance,” in Microar-

chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International

Symposium on. IEEE, 2009, pp. 347–357.

[10] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in Proceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture. ACM,
2009, pp. 14–23.

[11] “Cortex-m specification summary,” ARM Holdings. [Online]. Available:
http://arm.com/products/processors/cortex-m

[12] J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, and E. H.-M. Sha, “Software
enabled wear-leveling for hybrid pcm main memory on embedded
systems,” in Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2013. IEEE, 2013, pp. 599–602.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Acm Sigplan

Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop on. IEEE, 2001, pp. 3–14.

