
Design of safety critical systems by refinement
Alex Iliasov, Arseniy Alekseyev, Danil Sokolov and Andrey Mokhov

Newcastle University, Newcastle upon Tyne

Abstract—An increasingly large number of safety-critical em-
bedded systems rely on software to prevent and mitigate hazards
occurring due to design errors and unexpected interactions of
the system with its users and the environment. Implementing
a safety instrumented function in the way advocated by the
traditional software methods requires an intimate understanding
and thorough validation of a complex ecosystem of programming
languages, compilers, operating systems and hardware. We pro-
pose to consider an alternative where a system designer, for each
individual problem, creates in a correct-by-construction manner
both the design of a system and its compilation and execution
infrastructure. This permits an uninterrupted chain of a formal
correctness argument spanning from formalised requirements all
the way to the gate-level characterisation of an execution envi-
ronment. The past decade of advances in verification technology
turned the mechanical verification of large-scale models into a
reality while the pressure of certification makes the cost of a
formally verified development routine increasingly acceptable.

The proposal fits the Grand Challenge for Computer Research
posed by Hoare in 2003, namely, development of a Verifying
Compiler which not only mechanically translates a given program
from one language to another but also verifies its correctness
according to a formal specification. This allows meeting the most
stringent software certification requirements such as SIL 4. We
illustrate the vision with a small case-study developed using the
Event-B modelling notation and tools.

I. INTRODUCTION

Presently, the design of safety-critical embedded systems is
based on the principles of mainstream software development:
a collection of requirements posit a problem a solution to
which is encoded in one or more high-level programming
language artifacts; the final product is obtained in the form
of compiled software executed by an off-the-shelf processor
module. The correctness of such product depends on the
accuracy of requirements, the correctness of a program, the
correctness of compilers employed to construct machine code,
and, finally, the correctness and operational properties of
hardware running compiled code. No amount of testing would
provide a definite guarantee that the behaviour exhibited by
a product is the intended behaviour as stated in the original
requirements document.

It is widely recognised that the introduction of a modelling
stage, in particular formal modelling, may considerably im-
prove the quality of delivered product. A range of industrial
applications demonstrate that building a large-scale formal
specification is possible and, in certain application domains,
delivers tangible economic benefits. Formal reasoning has been
fruitfully applied at various development stages such as vali-
dation of requirements, early design, code-level and hardware-
level verification. However, the techniques vary considerably
between the stages resulting in the lack of continuity in the

correctness argument constructed with a formal model. At the
practical level, this makes formal modelling less appealing.

In this work we put forward an approach to the construction
of safety critical systems that advocates a strict, top-down,
formally verified derivation of an implementation starting from
a set of requirements and ending with an RTL-level hardware
description. Taking into the consideration the advances, during
the last decade, in automated verification technology, we
believe that it may be feasible, technologically, and viable,
financially, to develop a safety critical information system,
such as an embedded control system, completely by formal
refinement without involving a programming language, and,
to a certain extent, off-the-shelf CPU components. One may
expect such a development method to help to meet the most
stringent software certification requirements, e.g., SIL 4 of
the European IEC EN 61508 standard. A formal proof of
model consistency and refinement by construction subsumes
the MCDC testing procedure (modified condition/decision
coverage testing) recommended for IEC 61508 SIL 4 as well
as DO-178B, level A.

One novelty of the work is a two-stage transition into a
final product. To reduce the gap between a specification and
its implementation we first develop a virtual machine (VM)
tailored to the problem at hand and encode the specification
as program to be run by the VM. Then we proceed with the
mapping of a VM definition into a deployable hardware format
such as FPGA or ASIC. The program and hardware thus
obtained are formal derivations of a high-level specification
with explicit proofs available for an independent check. This
leads to an extremely compact trusted base potentially reduced
to solely a proof checking routine. This also makes the last
stage - the hardware synthesis - independent of the overall
system scale since hardware complexity correlates only with
number of VM instructions.

II. OVERVIEW

Our proposal consists in replacing the dominant approach
to embedded system development based on informal transition
from requirements to a non-specific implementation and then
to final product by a design flow based on small, verifiable
transformation steps spanning across requirements and final,
deployable product (Figure 1, Existing flow).

By a non-specific implementation we understand a
hardware-software complex where the hardware is abstracted
in the form of executable software and the software has few
explicit constraints on the prospective execution environment.
To realise our vision we advocate the use of assisted formal
refinement steps. This forces us to abandon use of traditional
compilation, programming languages and invites to explore the978-3-9815370-2-4/DATE14/ c© 2014 EDAA



Human

refinement

Hardware
−software

proof

proof

D
ir
e
c
t 
m

a
p
p
in

g
(c

o
rr

e
c
t 
b
y
 d

e
s
ig

n
)

(c
o
m

p
le

x
)

V
a
lid

a
ti
o
n

test

Convoluted
compilation

System
integration

Design
(mainly by hand)

Platform
configuration

refinement
Assisted

Non−specific implementationNon−specific implementation

Specific implementation

Application−specific platform
(optimal)

Abstract specification
(must be formal)

Off−the−shelf platform
(suboptimal)

Specific implementation

Abstract specification
(may be informal)

V
e
ri
fi
c
a
ti
o
n
 s

te
p
s

(s
m

a
ll 

a
n
d
 s

im
p
le

)

test

(c
o
m

p
le

x
)

Existing flow Proposed flow
E

x
h
a
u
s
ti
v
e
 t
e
s
ti
n
g

Fig. 1. Existing and proposed design flows.

benefits of application-specific hardware platforms (Figure 1,
Proposed flow).

As a starting point, we assume the existence of a structured
requirements document written in a natural language.

a) Abstract specification: The first step is the analysis
of requirements with a formal notation and verification of
high-level properties with the aim to uncover any requirement
inconsistencies. An abstract design gradually incorporates sys-
tem requirements in a succession of refinement steps.

b) Non-specific implementation: At this stage a modeller
starts incorporating concrete solutions. The initial refinement
steps concentrate on the architectural design, perhaps employ-
ing a form of graphical notation. The design grows to include
concrete behaviour and instances of algorithms and protocols.
Once a modeller is convinced that the design is precise enough
- nothing of importance is left under-specified - the focus shifts
to the design of the prospective execution environment.

c) Virtual machine design: Now, with a good understand-
ing of the concrete design, a modeller needs to construct a VM
that would run a program realising the concrete design. He
needs to identify an optimal architecture (e.g. LOAD/STORE
or a stack machine) and an instruction set to match the
prospective implementation. It is necessary to balance the
effort of refining a concrete design into a program of a VM and
the cost of synthesising provably correct hardware realising
a VM. A VM description comes in the form of a formal
specification of an interpreter executing a program made of
VM instructions.

Further concerns, such as performance, power efficiency,
and hard real time requirements may affect the choice of
architecture and instruction set.

d) Refinement patterns: The final refinement step of the
concrete design is likely to be a large model, perhaps many
thousands of statements. This model needs to be refined into
the virtual machine specification running a certain program. A
set of refinement patterns is developed to transform the specific
instance of concrete design into a model made of exactly the
execution steps provided by the VM. This patterns may be

statically checked (shown correct for all possible inputs) or
have their output verified as in the case of a manual program
construction.

e) Compilation-by-refinement: This stage is concerned
with the construction a provably correct program implement-
ing the concrete design from step d). First, a generic procedure
converts a concrete design into a program to be run by the de-
veloped VM; another procedure generates a special version of
the VM specification, instantiated with the generated program,
to construct a refinement proof. This VM specification must be
proven to be a refinement of the concrete design. Technically,
this is a tricky case of refinement combining large-scale data
and behaviour refinement in one step: all the variables of
concrete design disappear and become memory cell addresses
or register names; the abstract behaviour is encoded in a data
structure - a program of the virtual machine. From this point,
the focus shifts to the construction of hardware realising a
virtual machine.

f) Specific implementation based on VM: A modeller
needs to expand the definition of each instruction into a
circuit netlist and provide a proof of the implementations
being equivalent to the specifications. This is fulfilled in
a combination of the following techniques. The instruction
operations are implemented by conventional logic synthesis
tools (e.g., Synopsys Design Compiler) and then checked
against specifications by the equivalence checking tools (e.g.,
Synopsis Formality) [1]. The latter are based on SAT solvers
and can handle components with thousands of gates [2]. To
further simplify the equivalence checking effort, a library of
certified efficient implementations may be provided for com-
mon functionality such as arithmetic operations. The top-level
logic is subsequently constructed using a generic template for
the control flow - a set of multiplexors to select instruction
operation and its parameters. This template is instantiated with
the previously verified operation blocks, resulting in a verified
netlist for the whole circuit. The key idea is to separately prove
the refinement of a generic control flow template and the re-
finement of each individual instruction operation, thus making
this method linearly scalable with the size of instruction set.
Ultimately the equivalence is shown by existence of refinement
from the abstract virtual machine interpreter constructed at
step c) to the hardware implementation.

III. EXAMPLE

We consider a subsystem of fire safety monitoring and
response logic concerned with monitoring several temperature
sensors. The subsystem implements the following functions:
• information is collected from an array of temperature

sensors;
• on a request, the average temperature is reported;
• the controller may be reset to make it forget any accu-

mulated information.
We use the Event-B method [3] and the Rodin Platform[4]

to capture abstract specification and carry out formal refine-
ment and verification. The end result of the development
are formally defined and verified computing platform and

2



firmware. Our verification technology is theorem proving and
constraint solving and the vast majority of the verification
conditions in the development were discharged automatically.

A. Abstract design

In the abstract design we try to faithfully reproduce informal
requirements. The model state captures accumulated sensor
readings, the last reported average and a flag indicating the
freshness of the average value: n ∈ N ∧ arr ∈ 1 .. n →
Z, answer ∈ Z, done ∈ BOOL. Here, n and arr define a
finite array as a total function over some integer range. The
initial state is n := 0 ‖ arr := ∅ ‖ answer :∈ Z ‖ done :=
FALSE. Each operation of the controller is formalised in a
dedicated atomic state transition.

read = any x where
x ∈ Z

then
arr := arr ∪ {n + 1 7→ x}
n := n + 1 ‖ done := FALSE

end
. . .

This kind of model may be presented to a customer to sign
off, together with accompanying explanations, and, perhaps,
animation results, as a formalised requirements document from
which a certified product is to be created.

B. Concrete design

The complete record of sensor readings saved in arr is
superfluous. In the concrete design we elect to simply maintain
the sum of reported values. Abstract variable arr is replaced
by concrete variable sum; the two are linked by the refinement
invariant sum =

∑
i arr(i). The read operation is now

refined to become the following

read = any x where
x ∈ Z

then
n := n + 1 ‖ done := FALSE ‖ sum := sum + x

end

Other operations are changed in an obvious manner: reset
sets sum to zero and mean good uses sum in place of
SUM(arr). The concrete design for our simple problem is now
complete. The Rodin Platform automatically generates proof
obligations necessary to establish that the concrete design
simulates the abstract design.

C. Virtual machine model

To construct the final embedded system we are going to
decompose the design into the specification of a virtual ma-
chine (to be refined into computing platform) and a firmware
to be run by the virtual machine. We apply refinement to show
that the specific combination of VM and firmware correctly
implement the concrete design. The first step is to build a
formal model of a VM. One can do either from a scratch,
as we in this simple example, specify the ISA and memory
architecture of existing platform, or use an existing model
corresponding to the desired platform [5].

Our system requires little memory, few arithmetic instruc-
tions and some basic control flow and means for communi-
cating with the environment. As a memory model we use
a register file with rn registers of finite type V ⊂ Z:
m ∈ 0 .. rn→ V. Inputs i and outputs o are modelled by
register banks i and o: i ∈ 0 .. in → V, o ∈ 0 .. on → V.
Identifiers rn, ri, ro and V are the parameters of our VM
specification and will to be instantiated with concrete values.

A program is stored in ROM and is encoded as a sequence
(oc, p1, p2) of instruction code oc and parameters p1 and p2:
oc ∈ 0 .. pl→ II, p1, p2 ∈ 0 .. pl→P. Finite set P ⊂ N defines
the type of instruction parameter; II is the set of machine
instructions: II = {SET, MOV, IN, OUT, ADD, SUB, JLE}.

A program counter pc ∈ 0 .. pl + 1 gives the index of
the current instruction (pc = pl + 1 halts the machine).
An individual instruction for some pc value is defined by
(oc(pc), p1(pc), p2(pc)).

The following is an excerpt from the VM specification. For
most cases, one Event-B event defines a single instruction.
Each instruction contains a decoder (i.e., oc(pc) = ADD), a
program counter increment and the instruction body.

add = when
oc(pc) = ADD

then
m(p1(pc)) := m(p1(pc)) + m(p2(pc))
pc := pc + 1

end
jle1 = when

oc(pc) = JLE ∧m(p1(pc)) ≤ 0
then

pc := p2(pc)
end

. . .

In order to simplify the verification VM design, the integer
division operation was left out. Instead, we are going to further
refine the concrete design to realise division via an iterated
subtraction.

D. Compilation by refinement

With the VM model in place, we proceed to extract the
firmware from the concrete design and prove that the VM
running the firmware simulates the concrete design. This is
a stage, called compilation by refinement, when a concrete
specification is turned into a program (firmware) for a given
platform while proving a refinement relationship between the
concrete specification and the platform initialised with a given
firmware.

The complexity of a refinement link and the abundance
of details make compilation by refinement challenging for
a modeller to conduct manually. To a considerable extent it
may be automated by defining refinement patterns: mechanised
rewrite procedures automatically building a new refinement
step. There are two major pattern classes.

The first kind ’flattens’ a model by expanding complex
substitutions of the form t := a× b+ c into atoms t′ := a× b
and t := t′ + c. Such expansions must provably preserve the
semantics of the original statement, however, they should not
require a significant extra verification effort. Atelier B BART

3



0

k−1

k−1

0

en

in

in

out

pc’

mn−1

m0

n−1en

en0

in PC out

p1 p2 oc

in1
in2
pc

in1
in2
pc

out

pc’

input
ports

output
ports

en

out

out

out

out

addr

ad
dr

_d
ec

od
er

memory instructions

addr
ROM

program

out

out

in
/o

ut
in

te
rfa

ce

k−10

k−10

i

op

op

j

a) b)

SET zero 0
SET one 1
SET c 0
SET sum 0
start:
IN o d
JLE o reset
SUB o one
JLE o insert
mean:
SET i 0
MOV a sum
loop1:
JLE a loop2
SUB a c
ADD i one
JLE zero loop1

loop2:
SET b 0
SUB b a
JLE b done
ADD a c
SUB i one
done:
OUT i
JLE zero start
reset:
SET sum 0
SET c 0
JLE zero start
insert:
ADD sum d
ADD c one
JLE zero start

Fig. 2. (a) Extracted program in the VM1 assembler; (b) a circuit architecture implementing VM1.

tool [6] is one example of mechanising such patterns; for this
example we did such transformation mahnually.

The second kind constitutes patterns that seek to reduce
atoms not present in the target VM (e.g., the division operation
in our example) into a specification that might be compilable
into the VM. One example is the integer devision operation
that has to be expanded into a loop realising division via
iterated subtraction. It is, essentially, a form of template-based
complition though at the level of a formal model.

E. Circuit synthesis

The VM is implemented as a digital circuit which consists
of (a) program - a ROM of opcodes and parameter addresses;
(b) memory - a bank of registers to store program variables; (c)
instructions - synthesised components for operations; (d) in/out
interface - a set of ports to communicate to the environment;
(e) control structure to conduct the flow of data. A high-level
schematic of such a circuit is shown in Fig. 2 with components
{a .. b} shaded out and the control structure being the rest
of the circuit. Formally, this circuit implements a function
(m′, out) = f(m, in), where m is the memory state (including
the pc register), in and out are the states of input and output
ports respectively, and the next-state function f is calculated
by program, instructions and control components.

Historically, in order to simplify the design of large sys-
tems, the circuit is assumed to change its state instantly and
simultaneously for all the registers. In practice this behaviour
is enforced by a periodic global clock signal. At each beat
of the clock (not shown for clarity) a register, if enabled
through input ’en’, overwrites its stored value ’out’ by the
data supplied at input ’in’. If a register is not enabled it
holds its previous state; this can be efficiently implemented
through clock gating mechanism [1]. The period of the clock
waveform is chosen long enough to allow the combinational
logic (which implements the next-state function f ) to complete
all the switching. The minimal clock period that satisfies
this requirement is estimated by static timing analysis (e.g.
Synopsys PrimeTime) [1].

Note the uniformity and potential for scalability of the
control logic. It uses the opcode oc and parameters p1 and

p2 of the current program instruction to select which of k
operations to perform and which of n registers to use. In
the example of Figure 2, one can distinguish two families of
instructions: those which take two registers as an input (opi),
and those which take one register and a constant (opj). The
addr decoder component selects where to store the instruction
result; in the basic case, it converts the p1 address from a
binary form into one-hot encoding.

IV. CONCLUSION

We have outlined initial ideas on how to design in a formal,
top-down manner a program without the use of a programming
language and an accompanying compiler. The intermediate
stages of a formal the development process may be presented
as an objective certificate of correctness to a certifying body.

Our approach starts at the level of an abstract design,
naturally flowing from a requirements study thus permitting
the verification of a complete system rather then its implemen-
tation aspects. This allows to elude numerous challenges of
reasoning about programs written in imperative language, ver-
ifying their transformation into runnable code (which, despite
a resounding success of the CompCert project [7], remains
a formidable obstacle), and dealing with intricate and often
poorely documented off-the-shelf hardware designs.

The technique has the potential to scale to large problems
due to the factoring of overall design into a firmware data and
a VM specification.

REFERENCES

[1] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC System Design,
Verification, and Testing (Electronic Design Automation for Integrated
Circuits Handbook). Boca Raton, FL, USA: CRC Press, Inc., 2006.

[2] S. Disch and C. Schollm, “Combinational equivalence checking using
incremental sat solving, output ordering, and resets,” in Proceedings of
the 2007 Asia and South Pacific Design Automation Conference, ser. ASP-
DAC ’07. IEEE Computer Society, 2007, pp. 938–943.

[3] J.-R. Abrial, Modelling in Event-B. Cambridge University Press, 2010.
[4] The RODIN platform, online at http://rodin-b-sharp.sourceforge.net/.
[5] J. D. Carpinelli, Computer Systems Organization & Architecture. Pearson

Education, 2001.
[6] Clearsy, “AtelierB: User and Reference Manuals,” available at

http://www.atelierb.societe.com/index uk.html.
[7] X. Leroy, “A formally verified compiler back-end,” Journal of Automated

Reasoning, 2009.

4


