
Code Generation for Embedded Heterogeneous
Architectures on Android

Richard Membarth, Oliver Reiche, Frank Hannig, and Jürgen Teich

Department of Computer Science,
University of Erlangen-Nuremberg, Germany.

Abstract—The success of Android is based on its unified Java
programming model that allows to write platform-independent pro-
grams for a variety of different target platforms. However, this
comes at the cost of performance. As a consequence, Google intro-
duced APIs that allow to write native applications and to exploit
multiple cores as well as embedded GPUs for compute-intensive
parts. This paper proposes code generation techniques in order to
target the Renderscript and Filterscript APIs. Renderscript har-
nesses multi-core CPUs and unified shader GPUs, while the more
restricted Filterscript also supports GPUs with earlier shader mod-
els. Our techniques focus on image processing applications and allow
to target these APIs and OpenCL from a common description. We
further supersede memory transfers by sharing the same memory
region among different processing elements on HSA platforms. As
reference, we use an embedded platform hosting a multi-core ARM
CPU and an ARM Mali GPU. We show that our generated source
code is faster than native implementations in OpenCV as well
as the pre-implemented script intrinsics provided by Google for
acceleration on the embedded GPU.

I. INTRODUCTION

The steady desire for new applications, augmented reality, and
higher display resolutions drives the development of embedded
platforms and the need for faster, more powerful processors at the
same time. As a consequence, today’s mobile platforms found in
smartphones and tablets host multi-core Central Processing Units
(CPUs) and even programmable embedded Graphics Processing
Units (GPUs) to deliver the demanded performance. This raises
the question how to harness the processing power of these parallel
and heterogeneous platforms. As a remedy, Google proposed
two new parallel programming concepts for Android that allow
to target CPUs as well as GPUs: Renderscript and Filterscript.
These programming models were designed for the predominant
application domain of image processing with portability in mind.

While applications in Android use Java as programming
language, Renderscript and Filterscript are based on C99. Hence,
Java programmers have to write low-level C code in order to
benefit from the high performance that is provided by these new
programming models. As a remedy, this work proposes code
generators that allow to automatically generate Renderscript and
Filterscript code. The generated target code is derived from a
Domain-Specific Language (DSL) for image processing algorithms
as introduced in [1]. The proposed code generators for Renderscript
and Filterscript are based on the existing compiler infrastructure,
which provides back ends for CUDA and OpenCL on discrete,
standalone GPU accelerators.

The focus of this work is on the code generation that allows to
target the different components in today’s heterogeneous embedded
platforms:

• We present the first code generator for Renderscript and
Filterscript on Android platforms starting from an abstract

high-level representation. The generated implementations are
even faster compared to the target-specific implementations in
the Open Source Computer Vision (OpenCV) framework.
At the same time, the algorithm description is compact
and requires only a fraction compared to available highly
optimized implementations.

• We generate target code for embedded Heterogeneous System
Architecture (HSA) platforms. With HSA, CPU and GPU
share the same physical memory (see Figure 1). This allows
us to avoid extensive memory transfers and enables the
employment of heterogeneous resources where the same
data has to be accessed frequently from different compute
resources.

Embedded GPU

CU PE • • • PE

•
•
•

CU PE • • • PE

Cache

RAM

CPU Cache

Figure 1: Structure of a typical HSA platform with an embedded GPU.

II. PROGRAMMING MODELS ON EMBEDDED DEVICES

The Android operating system is widespread on end user mobile
devices but it becomes more and more interesting to use it also on
other embedded devices as found in the industrial automation or the
automotive sector. For example, compute-intensive advanced driver
assistance systems such as self- and convoy-driving technology,
parking guidance, and better infotainment systems are becoming
more and more important for automotive.

For such compute-intensive tasks, energy efficient embedded
GPUs are of particular interest. However, there exists no common
programming language that allows to harness also embedded GPUs.
Android, for example, provides multiple programming models
that allow to target a huge variety of devices with different usage
scenarios in mind:

a) SDK: The Android Software Development Kit (SDK) is
based on the Java programming language. The SDK source code is
compiled to bytecode that is executed by the DalvikVM, which
is either directly interpreting the bytecode or compiling it into
machine-specific instructions and executing it. Hardware-specific
characteristics are hidden and not exposed to the programmer. For
that reason it is not possible to gain benefit from certain hardware-
specific optimizations like vectorization. This dramatically limits
the overall achievable performance.978-3-9815370-2-4/DATE14/ c©2014 EDAA



b) NDK: The Android Native Development Kit (NDK)
promises much better execution performance. Even though com-
plete Android applications can be developed using C/C++ in the
NDK, native code is usually executed by an application that is
written using the SDK through the Java Native Interface (JNI).

Using the NDK, hardware-specific characteristics are transparent
to the programmer and can be utilized, for instance, by compiler
intrinsics. For efficiently supporting a wide range of different CPU
architectures, native code needs to be rewritten beforehand in a
way that exploits particular architecture features to achieve high
performance. For that reason, usually only compute-intensive code
segments are realized in native parts of an Android application.

c) Renderscript: Google first introduced the Renderscript
programming language in 2011. The aim of this new language is to
provide a programming model that avoids performance issues of
the SDK without introducing portability problems the NDK suffers
from. Renderscript is based on C99 and provides additional support
for vector types. The Renderscript front end compiler generates an
intermediate representation which is then further compiled to native
code that is optimized for a specific available target architecture
like CPUs, Digital Signal Processors (DSPs), and GPUs.

Unlike other parallel computing Application Programming
Interfaces (APIs) such as OpenCL or CUDA, Renderscript was not
designed with performance as the primary goal. Hardware-specific
features like local memory are hidden from the programmer and,
hence, target-specific optimizations like tiling may not be exploited.
The number of threads is directly inferred from the output buffer
where each element is processed by a single thread. Another
limitation is that the actual execution target (CPU, GPU, DSP)
cannot be specified and is automatically chosen by the runtime
system. These limitations ensure portability at the expense of
absolute performance.

d) Filterscript: Filterscript is a subset of Renderscript with
certain limitations and stricter constraints to ensure a wider
compatibility among CPUs, GPUs, and DSPs. Filterscript files are
used and compiled the same way as Renderscript.

The major difference is that pointers are not allowed. Therefore,
memory cannot be directly read using linear arrays. Instead, the
provided access API functions must be used. Only gather reads are
supported, which means that only one output value can be written
per thread (in contrast to scatter writes). Instead of assigning the
value to a buffer, it is returned by the kernel function and written to
the global ID of the current thread. Further limitations are relaxed
floating point precision and lack of 64-bit built-in types.

e) OpenCL: The Open Compute Language (OpenCL) pro-
gramming model is not officially supported on Android devices.
However, on recent devices, like the Nexus 4 smartphone and the
Nexus 10 tablet, a working OpenCL driver can be found within the
system libraries. Note that Google pulled the unofficial OpenCL
support in Android 4.3.

Providing a well known common API like OpenCL cannot hide
the fact that embedded GPU architectures vary considerably from
their desktop counterparts. For instance, the local memory is not
dedicated on-chip memory, but is instead mapped to global memory.
Another major difference is that compute cores of most embedded
GPUs are Very Long Instruction Word (VLIW) architectures and
gain a huge benefit from vectorization or the use of vector types.

OpenCL supports the allocation of host accessible memory using
map() and unmap(). On desktop GPUs, this feature can be used
to define page-locked host memory, which may speed up memory

transfers. On HSA platforms like the ARM Mali [2] and AMD
Fusion [3], these operations are used to avoid copying buffers.
Because the main memory is shared among CPU and GPU, both
can access the same memory region without copies.

III. TARGET CODE GENERATION

This section introduces the target code generation for the parallel
computing APIs introduced in Section II. We use a DSL for image
processing as basis for target code generation and employ source-to-
source translation to target different parallel programming models.

A. The Heterogeneous Image Processing Acceleration (HIPAcc)
Framework

The DSL provided by the HIPAcc framework [1] is based on C++
and provides built-in classes for two-dimensional images and other
objects such as filter masks. An image in the DSL stores the image
pixels and can be initialized from plain C data arrays:
uchar *image = readPGM(&width, &height, "lena.pgm");
Image<uchar> in(width, height);
in = image;

Similarly, a filter mask can store the stencil used for a convolution:
const float filter_mask[] = {
0.057118f, 0.124758f, 0.057118f,
0.124758f, 0.272496f, 0.124758f,
0.057118f, 0.124758f, 0.057118f

}
Mask<float> mask(3, 3);
mask = filter_mask;

Using these data abstraction classes, computations on multi-
dimensional image objects can be defined. A computational kernel
is defined as a C++ class that holds a kernel()method describing
the computation on a single pixel. Within the kernel method, all
memory accesses are relative to the current pixel and only members
of the C++ class can be accessed. Considering the Gaussian blur
filter as an example, its computation can be expressed using relative
memory accesses to the mask filter mask and the input image.
The result is written back using the output() method:
void kernel() {
float sum = 0;
int range = size/2;

for (int yf = -range; yf <= range; ++yf)
for (int xf = -range; xf <= range; ++xf)

sum += mask(xf, yf) * input(xf, yf);

output() = (uchar) sum;
}

A more concise and expressive syntax for common computational
patterns such as convolutions are provided by the HIPAcc DSL as
well: the convolve() method describes the convolution of an
image with a mask:
void kernel() {

output() = convolve(mask, SUM, [&] () -> float {
return mask() * input(mask);

});
}

Using the convolve method is not only more compact, it gives the
source-to-source compiler also more freedom to optimize the code.

The HIPAcc compiler [1] generates target CUDA and OpenCL
code from programs written in this DSL. Using source-to-
source translation, instances of DSL C++ classes are replaced
by corresponding API calls to the CUDA and OpenCL runtime



library provided by HIPAcc. Compute kernels, in contrast, are
not mapped one-to-one to corresponding CUDA and OpenCL.
Instead, the Abstract Syntax Tree (AST) of a kernel is analyzed
and optimizations are applied such as staging image pixels into
local memory or mapping multiple iterations to one GPU thread
(loop unrolling).

Memory accesses are then redirected to memory fetches from
global memory, texture memory, or local memory—depending on
the target device. Similarly, Mask accesses get mapped to constant
memory or propagated as constants in case the operator is described
using the convolve() function.

B. Renderscript and Filterscript Support for HIPAcc

We have extended HIPAcc for Renderscript and Filterscript
support, adding a new back end for each API. Program parts
of the DSL responsible for resource management are mapped
to corresponding commands in the runtime library, which we
provide. The compute-intensive kernels, however, are translated
into Renderscript and Filterscript kernels. These get initialized at
program start and can be executed afterwards.

1) Memory Access Mapping: As highlighted in Section II,
memory accesses are handled differently in OpenCL, Renderscript,
and Filterscript. Therefore, the introduced back ends map reads
and writes to an Image to corresponding API calls and memory
array accesses. To illustrate this, we consider a simple read from
an Image, followed by a write in HIPAcc:

Image<uchar> input;
...
void kernel() {

uchar val = input();
output() = val;

}

In OpenCL, these memory accesses are mapped to 1D memory
arrays that are added to the signature of the kernel function with
corresponding attributes indicating that the arrays reside in global
CPU or GPU memory. In case neighboring pixels are read, the x
and y index is adjusted accordingly:

__kernel void kernel(__global const uchar *input,
__global uchar *output, ...) {

uchar val = input[y*width + x];
output[y*width + x] = val;

}

Renderscript provides data buffers for storing image data
(rs_allocation) and rsGetElementAt API calls for read-
ing/writing data elements. Rather than writing the result to the
current iteration point (i. e., writing to the first kernel parameter),
the result is stored to _iter, the currently processed pixel:
rs_allocation input;
...
void kernel(uchar *_iter, uint32_t x, uint32_t y) {

uchar val = rsGetElementAt_uchar(input, x, y);
*_iter = val;

}

In Filterscript, data buffers are defined and read as in Renderscript,
but no API calls are provided for storing results. Instead, the result
for the current thread (pixel) is returned by the kernel:
rs_allocation input;
...
uchar __attribute__((kernel)) kernel(uint32_t x,

uint32_t y) {
uchar val = rsGetElementAt_uchar(input, x, y);
return val;

}

In order to map the execution of a kernel in Renderscript and
Filterscript either to the CPU or to the GPU, environment variables
are used.

In order to achieve high performance, the kernel has to be
mapped to the memory hierarchy of the target architecture. GPUs
provide multiple memory types apart from the global memory that
are optimized for different access patterns such as constant memory,
texture memory, or local memory. OpenCL allows to explicitly
use these memory types in the source program. For example, filter
masks are typically mapped to constant memory and read-only
images with high spatial or temporal locality to texture memory or
local memory. In contrast to this, Renderscript and Filterscript do
not support any explicit mapping to the memory hierarchy.

2) Iteration Space Mapping: HIPAcc allows the programmer
to define a Region of Interest (ROI) in the output image to be
computed. Similarly, only an ROI on input images can be read.
This allows to work on images of different size in one kernel
and to process only image regions of interest. The ROI on the
output image defines also the iteration space and the number of
threads required for kernel execution. This iteration space size
is used as launch configuration in parallel compute APIs such as
CUDA and OpenCL and offsets to the image are passed to the
kernel in order to process only the ROI. However, the native API of
Renderscript and Filterscript does not provide launch configurations
up to Android 4.4. Instead, the buffer holding the image data defines
also the launch configuration. That is, for each pixel in the image a
thread is started resulting in an index space that is larger than the
iteration space defined by the programmer.

To overcome this deficiency, there exist three approaches. First,
we can define a buffer with the size of the iteration space. This
temporary buffer stores the result of the kernel and is copied back to
the ROI in the output image as specified by the programmer. This
approach requires additional memory of ROIwidth ×ROIheight
and requires one additional memory transfer of the same size.
Second, we can define a dummy buffer with dimensions equal
to the iteration space and use this buffer to provide the index
space. Result pixels are not stored to this buffer, but to the buffer
associated with the output image of the kernel. This approach
requires in theory no additional memory and no additional memory
transfers, but can only be used for Renderscript1. In Filterscript,
the output pixel is not written to a buffer, but returned within the
kernel. Third, we can use an index space with a size of the whole
output image and add guards to the kernel so that only threads of
the index space calculate pixels that are also part of the iteration
space. This launches (IMGwidth × IMGheight)− (ROIwidth ×
ROIheight) additional threads that do not compute pixels. While
this approach is valid for Renderscript, the behavior is undefined
in Filterscript in case no return statement is executed. Hence, we
read the corresponding pixel value from the output image for index
points outside of the iteration space and return those. This requires
(IMGwidth×IMGheight)−(ROIwidth×ROIheight) additional
memory reads and writes for the Filterscript implementation, but
has no memory allocation overhead. This approach is the only one
that provides a valid iteration space mapping for Filterscript with
only little overhead. Thus, this approach is followed by the code
generator in this work.

1However, it turns out that the Renderscript runtime still allocates memory for
the buffer although no data is associated with the buffer.



3) Vector Support: HIPAcc supports scalar data types for discrete
GPUs from AMD and NVIDIA. These GPUs schedule scalar
instructions to single lanes of their Single Instruction, Multiple
Data (SIMD)-like architecture. Adjacent threads are mapped to
adjacent lanes. The embedded CPUs and GPUs considered here
require vector instructions, though. Otherwise only a fraction of
peak performance can be achieved. Therefore, we add vector type
support to HIPAcc, which is compatible with the syntax in OpenCL
and Renderscript.

C. Support for HSA Memory Management
The HIPAcc DSL was designed for desktop systems and therefore

has no particular support for HSA platforms. Device memory is
abstracted from the developer by the Image class in HIPAcc.
Memory transfers to the device are handled implicitly by the
framework. On HSA targets, it is possible to share memory between
CPU and GPU by using host accessible memory that must be
allocated using OpenCL API calls.

We added support for HSA platforms to HIPAcc by extending
its memory management to abstract host memory as well and im-
plicitly manage map() and unmap() operations. This additional
abstraction has the benefit that a) faster page-locked memory can
be utilized on desktop systems, and b) the same memory region
can be used for the CPU and GPU on HSA platforms in order to
avoid memory copies. In case memory is allocated by third party
frameworks (e. g., OpenCV or FreeImage), the programmer can
still manage host memory explicitly.

IV. EVALUATION AND RESULTS

We evaluate our results on an Arndale Board with a Samsung
Exynos 5250 running Android 4.2 [4]. To ensure a fair comparison
of the generated code, we first analyze timing behavior for every
target API. The portability and performance of the described
Renderscript and Filterscript back ends are then evaluated by
considering the Gaussian blur filter—the only filter available as
script intrinsic2 with execution enabled on the GPU. We further
compare the performance of our implementations in OpenCL
against script intrinsics and the vectorized implementations
provided by the OpenCV library. Moreover, in order to also
evaluate non-functional properties such as productivity, several
applications written in HIPAcc for execution on mobile platforms
are evaluated in terms of Lines of Code (LoC).

A. Evaluation Environment
The Exynos 5250 MPSoC as found on the Arndale Board [4] is

based on a dual-core ARM Cortex-A15 CPU with NEON SIMD
extension (128-bit), an ARM Mali T604 GPU with four cores (each
SIMD4, 128-bit), and 2 GB of DDR3 RAM. Similar hardware can
also be found in the Nexus 10 tablet. While the GPU has twice as
many cores, they run at only 533MHz compared to 1.7GHz for
the CPU cores. This allows for many computationally intensive
tasks a more energy efficient processing on the GPU.

To cross-compile the generated target code we use the standalone
toolchain provided by the NDK. We compare the execution times
of 100 runs of box blur implementations using different APIs
(filter window size of 3 × 3; image size of 2048 × 2048). The
corresponding box plot (see Figure 2) shows that all measurements
have outliers with significantly higher execution time (up to 2×),

2Script intrinsics are optimized and pre-implemented filtering functions provided
in Android.

RS-CPU RS-GPU FS-CPU FS-GPU CL-GPU CL-GPU(E)

200

400

600

ex
ec

ut
io

n
tim

e
[m

s]

Figure 2: Box plot for 100 runs of the box filter when using the CPU
and GPU back ends for Renderscript (RS), Filterscript (FS), and OpenCL
(CL). CL-GPU(E) performs timing on the embedded GPU while all other
variants perform timing on the CPU.

which we attribute to the power/thermal management. This is the
case even for the execution times of the OpenCL implementation
using events on the GPU for time measurement (CL-GPU(E)).
Therefore, we use the median in the following when execution
times are stated and time kernels on the CPU with the same time
measurement overhead for all APIs.

B. Gaussian Blur Filter
The Gaussian blur filter implementation from Section III-A

requires (sizex × sizey) + 1 memory reads/writes to execute the
kernel. Since a separated implementation requires only sizex+1+
sizey+1 reads/writes, we separate the filter into a row and column
component for evaluation. This reduces the memory accesses for a
filter window size of 5× 5 from 26 to 12 per pixel. Also the other
considered implementations in OpenCV and script intrinsics use
this implementation variant.

1) Implementation Variants: In the following, we further
consider three implementation variants based on different properties
in the source code: the implementation as indicated in Section III-A
using a) nested loops and a filter mask that is not constant, b) nested
loops and a constant filter mask, and c) the convolve() method
and a constant filter mask.

The generated target code variants employ optimizations that
make use of the properties each source code variant features: a)
the filter mask is allocated on the host side, b) the filter mask is
defined as statically allocated constant array at global scope within
the kernel source file, and c) the lambda-function is completely
unrolled and the filter mask constants are inserted for each iteration
(constant propagation).

2) Implementation Results: Table I shows the execution times
for the different generated code variants. It can be seen that using
the different GPU back ends leads to similar execution times with
OpenCL being the fastest. GPU execution is faster than execution
on the CPU, which emphasizes also additional power efficiency
benefits of embedded GPUs. When looking at Filterscript results,
it has to be considered that Filterscript uses relaxed floating point
precision and leads, hence, for compute-bounded kernels using
floating-point arithmetic to much faster execution times.

The different code variants reflect the optimization potential in
particular on embedded GPUs: using constant memory improves
the performance slightly (≈ 5% for Filterscript and OpenCL)
and loop unrolling in combination with constant propagation



Table I: Execution times in ms for the Gaussian blur filter for the
generated implementations (Renderscript, Filterscript, and OpenCL) as
well as for hand-tuned implementations in OpenCV and script intrinsic
implementations for an image of 2048× 2048 pixels and a filter window
size of 5× 5.

RS-CPU RS-GPU FS-CPU FS-GPU CL-GPU

Normal 393.04 263.06 278.79 279.72 214.66
ConstMask 323.83 265.86 287.34 270.63 203.27
ConstProp 285.53 193.42 223.95 182.67 153.05

CV-CPU SI-CPU SI-GPU

Hand-tuned 847.48 110.12 343.55

improves performance significantly (up to 35% for Filterscript).
This highlights the need of device-specific optimizations: on
discrete GPUs, the benefit of constant propagation compared to
using constant memory is negligible since discrete GPUs feature
special caches that are optimized for this memory access patterns.
Similarly, using local memory in order to benefit from locality has
the opposite effect on embedded GPUs: there is no dedicated local
memory and the execution takes twice as long (not shown) using
OpenCL.

Similar performance improvements can be observed on the CPU.
For the second variant using FS-CPU and RS-GPU, the execution
is slightly slower, which we attribute to problems in the compiler.

Comparing the results against script intrinsics and implemen-
tations in OpenCV (see also Table I) shows that our generated
code is significantly faster (2.25×) compared to script intrinsics
on the GPU. However, script intrinsics on the CPU are twice as
fast as our generated code. Compared to the highly optimized
OpenCV implementation using NEON-specific optimizations, our
generated Renderscript implementation on the CPU is 2.60× faster.
The current OpenCV implementation only supports vectorization,
but no parallelization. Assuming no parallelization overhead in
OpenCV, their implementation would still be slower.

3) Discussion: Although Renderscript does not provide any
options for hardware-specific optimizations, we have shown that we
get competitive performance, even without sacrificing portability
requirements. If OpenCL were officially supported on Android, it
would probably be number one choice for most developers.

It can be seen that our GPU implementation (RS/FS/CL-GPU)
performs better than the pre-implemented and hand-tuned script
intrinsics version of the filter (SI-GPU). On the CPU, it was
quite astonishing to see that script intrinsics is by far the fastest
implementation (SI-CPU). The reason for that is that script
intrinsics heavily utilizes cache-aware interleaving of pixel rows,
which is highly optimized for CPU targets. These optimizations
cannot be provided in parallel programming models such as
OpenCL or Renderscript. This is due to the fact that these models
only allow to describe an algorithm (with respect to architectural
characteristics, such as data layout or local memory), but not to
manually define a fine-grained schedule.

C. Application Performance
We consider Sobel and Laplace operators, the Gaussian blur and

FIR filters, as well as a Harris Corner detector [5] for performance
and memory transfer overhead considerations. Corresponding
highly optimized implementations in OpenCV serve as reference.

All implementations in OpenCV are vectorized while our
algorithm description of the Harris Corner detection operates

Sobel Gaussian Laplace FIR Harris
0

2

4

6

8

ex
ec

ut
io

n
sp

ee
du

p

CV-CPU
RS-CPU
RS-GPU
FS-CPU
FS-GPU
CL-GPU

Figure 3: Execution speedup of Sobel and Laplace operators, the Gaussian
blur and FIR filters, as well as a Harris Corner detector using different
APIs. The graphs are normalized to OpenCV (CV-CPU) on the CPU.

Sobel Gaussian Laplace FIR Harris
0

0.5

1
HSA

HSA
HSA

HSA

HSA

copycopycopycopycopy

ex
ec

ut
io

n
tim

e

write/unmap execution read/map

Figure 4: Execution times of the different applications in OpenCL. Timings
include time spent on read/write (memory transfers) and map/unmap
(HSA). The graphs are normalized to the execution without HSA (copy)
on the CPU.

only on the luminance channel. Figure 3 shows the speedup
of the applications using different APIs on the Arndale board
compared to the hand-tuned implementations from OpenCV. The
results affirm that our generated code is faster than the hand-tuned
implementations in OpenCV. Only for the Harris Corner detector
the lack of vectorization in our algorithm description is noticeable.

Figure 4 shows the benefit of exploiting the HSA feature to avoid
memory copies between CPU and GPU. The benefit is inversely
proportional to the time spent on the actual computation. For
short-running applications, the savings are up to 50% (Sobel),
while for long-running applications only small improvements can
be expected. HSA suffers from overheads for synchronization
(waiting for writes to finish, flushing caches), instead of memory
transfer overheads. Interestingly, the execution time itself with HSA
enabled is slightly higher (3–8%) for all applications, which might
improve in the future. This leads to a marginally higher overall
execution time for the more complex Harris Corner application,
where memory transfers are negligible. This shows that HSA can
reduce memory transfer overheads significantly for applications
that share data frequently between CPU and GPU.

D. Productivity and Portability

The high efficiency of OpenCV comes at the cost of portability
and productivity. For example, the manually vectorized implementa-
tions of the Gaussian blur filter for only the CPU requires 1641LoC



in order to support different vector extensions. This includes
neither the LoC for the available GPU back end using CUDA
as target language nor the LoC for the currently developed GPU
back end using OpenCL as target language. The LoC include only
the hardware-specific implementation variants without any object-
orient class abstraction. In contrast, the description of the separated
Gaussian blur filter algorithm requires only 22LoC in HIPAcc.
From this high-level algorithm description, our Renderscript back
end (CPU) generates 1951LoC tailored to the target architecture
as well as to the algorithm at hand (i. e., considering characteristics
such as the filter mask size, the memory access pattern, or data
reuse). The large code length results from aggressive loop unrolling
and constant propagation of local operators described as lambda-
function in order to increase Instruction-Level Parallelism (ILP)
and reduce memory accesses. Note that the iterations of the iteration
space have not been unrolled in the generated code.

Table II summarizes the LoC for the considered applications,
showing that HIPAcc may improve productivity significantly.
The implementation and optimization efforts associated with
manual implementations lead to situations where an algorithm
is only available for one back end (e. g., the CPU), but not for
another (e. g., the GPU). Generating the implementation from a
common description in a high-level language provides a remedy
for this dilemma and provides portability across different target
architectures without rewriting applications for each target.

V. RELATED WORK

While there exist a wide range of frameworks and compilers
that generate low-level assembly code for embedded architectures,
there is only little related work on targeting the new compute APIs
Renderscript and Filterscript.

For example, the Portland Group introduced the PGCL frame-
work [6], which adds support for OpenCL to Android on the
ST-Ericsson NovaThor platform. Their compiler supports the
NEON instruction set and vectorization for ARM multi-core CPUs.
Halide [7], a DSL for image processing provides a back end for
ARM NEON, and the OpenCV [8] library utilizes also the ARM
NEON instruction set. These frameworks have all in common to
target only the CPU. More recently, a source-to-source translator for
mapping annotated Java code (using pragmas similar to OpenMP
within source code comments) to Renderscript and OpenCL was
presented [9]. Hence, the developer requires profound knowledge
of OpenMP, while our domain-specific approach abstracts from
low-level architecture details.

Qian, Zhu, and Li [10] compare and analyze the programming
model of the SDK, NDK, and Renderscript considering usability
aspects such as programmability, but also performance. They
conclude that Renderscript provides the best performance while
preserving portability at the cost of manual memory management
and difficult library extensibility. The solution presented in this
work does not have these limitations since the Renderscript code

Table II: Lines of code for the OpenCV implementation, HIPAcc DSL
code and generated Renderscript code.

Sobel Gaussian Laplace FIR Harris

OpenCV 1681 1641 1712 982 2247
HIPAcc DSL 16 22 11 11 68
Renderscript 1915 1951 8575 3680 4265

and the supporting files are automatically generated. Moreover, we
support also Filterscript and OpenCL as back ends, which allows
to map program parts to the GPU and CPU.

GMAC [11] provides similar memory management abstrac-
tions for discrete GPUs (CUDA, OpenCL), but do not consider
HSA platforms. However, the proposed abstractions can also be
integrated into GMAC.

VI. CONCLUSION

We presented a code generator for Renderscript and Filterscript
in the domain of image processing by utilizing the HIPAcc DSL.
All code variants are automatically generated from a common
description that is highly portable and performs well on both
the CPU and the GPU. The code generator has been integrated
into the HIPAcc framework and is available as open-source under
http://hipacc-lang.org.

Using this code generator, we have shown that we are able to
produce efficient code for different parallel programming models
on embedded devices. We were able to show that—when it comes
to performance—our generated Renderscript and Filterscript code
is actually faster than implementations using other APIs with
comparable portability. We also perform better than the target-
optimized OpenCV library on the CPU. On the GPU, it was
even possible to surpass the heavily optimized proprietary script
intrinsics implementation.

ACKNOWLEDGMENT

This work is supported by the German Research Foundation
(DFG), as part of the Research Training Group 1773 “Heteroge-
neous Image Systems”.

REFERENCES

[1] R. Membarth, F. Hannig, J. Teich, M. Körner, and W. Eckert,
“Generating Device-specific GPU Code for Local Operators
in Medical Imaging”, in International Parallel & Distributed
Processing Symposium (IPDPS), IEEE, May 2012, pp. 569–581.

[2] ARM. (2013). Mali-T600 Series GPU OpenCL – Developer Guide.
[3] B. A. Hechtman and D. J. Sorin, “Evaluating Cache Coherent

Shared Virtual Memory for Heterogeneous Multicore Chips”, in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Jun. 2013.

[4] ArndaleBoard, Samsung Exynos 5 Dual Arndale Board, http :
//www.arndaleboard.org, 2012–2013.

[5] C. Harris and M. Stephens, “A Combined Corner and Edge
Detector”, in Alvey Vision Conference, 1988, pp. 147–151.

[6] The Portland Group, PGI OpenCL Compiler for ARM, http://www.
pgroup.com/products/pgcl.htm, 2011–2013.

[7] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe,
and F. Durand, “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines”, ACM Transactions
on Graphics (TOG), vol. 31, no. 4, 32:1–32:12, Jul. 2012.

[8] Willow Garage, Open Source Computer Vision (OpenCV), http:
//opencv.willowgarage.com/wiki, 1999–2013.

[9] A. Acosta and F. Almeida, “Towards an Unified Heterogeneous
Development Model in Android”, in International Workshop
on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Platforms (HeteroPar), Springer, Aug. 2013.

[10] X. Qian, G. Zhu, and X.-F. Li, “Comparison and Analysis of the
Three Programming Models in Google Android”, in Asia-Pacific
Programming Languages and Compilers Workshop (APPLC), ACM,
Beijing, China, Jun. 2012, pp. 1–9.

[11] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-M. W.
Hwu, “An Asymmetric Distributed Shared Memory Model for
Heterogeneous Parallel Systems”, in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), ACM, Mar. 2010, pp. 347–358.


