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Abstract—In a shared-memory based tiled many-core
system-on-chip architecture, memory accesses present a
huge performance bottleneck in terms of access latency as
well as bandwidth requirements. The best practice approach
to address this issue is to provide a multi-level cache hi-
erarchy and a suitable cache-coherency mechanism. This
paper presents a method to increase the memory access per-
formance in distributed-directory-coherency-protocol based
tiled many-core systems. The proposed method introduces
an alternate design for the system-wide shared last-level
caches (LLC) placed between the memory and the node
private caches (NPC). The proposed system-wide shared
LLC layer is distributed over the entire network and it
interacts with the home directories of specific cache lines.
Results from simulating SPEC2000 benchmark applications
executed on a SystemC model of the proposed design show a
minimum performance improvement of 20-25% when com-
pared to a model without the shared cache layer at the
expense of an additional 2% of the total cache memory
space (NPC + LLC memory). In addition, the proposed
design shows a minimum 7-15% and an average 14-15%
improvement in performance in comparison to centralized
system-wide shared LLC of equivalent size and dynamic
mapped distributed LLC of equivalent size respectively.

I. Introduction

Among tiled multiprocessor system-on-chip platforms (MP-
SoC), shared-memory arcitectures represent an emerging trend
in complex embedded and consumer hardware designs [1].
In such systems, due to pin-count restrictions, the number
of memory carrying nodes are limited and this imposes a
performance bottleneck for memory-access. The performance
of memory accesses can be improved mainly 1) by reducing
the request traversal time or 2) by introducing cache memories
[2]. However in MPSoC systems, private caches either at the
processor or at the node level introduce cache incoherency
and memory inconsistency issues and hence need to implement
coherency and consistency management schemes, [2].

In scalable NoC-based MPSoCs which implement direc-
tory based cache coherency protocols, distributed-directory ap-
proaches outperform the centralized directory scheme as it nul-
lifies the formation of hotspots at the directory. However even
in distributed-directory based systems, accesses for evictions,
writes and reads of cache lines from the LLC to the memory
node still cause a bottleneck. In addition, since the number
of memory nodes is finite, these memory nodes can create
hotspots if there are a large number of such memory accesses.
There are several approaches in the literature to address this
performance bottleneck. One of the methods is to introduce
cooperation between node-private-caches (NPC) such as in
cache-to-cache forwarding [3] or in cooperative caching of NPCs
[4]. As these cache models do not carry a system-wide shared

LL caching, they require a direct interaction with memory for
many read-write replacements outside to the limits of data-
cooperation. This leads to memory hotspots. Another method
is to use a system-wide shared LL caching such as in [5]–[7].
It can be classified as either statically or dynamically mapped,
based on the kind of mapping of memory space to its LLC. In
[5], [7], the LLC caches are banked into a few limited number of
cache nodes. This causes NPCs in compute nodes to constantly
interact with these specific cache nodes during any NPC cache
misses, creating a hotspot at the cache nodes. Considering the
dynamic shared LLC like in [6], though the LL cache node for a
cache line is distributed, they are mapped dynamically. Hence
the NPCs require to interact with the home directory to find the
LLC node for any cache line. This in effect adds considerable
traffic in the system. In addition, in both static as well as
dynamic mapped LLCs architectures, there is no cooperation
between the home directory and the cacheable LLC node of
a particular cache-line. This hence eliminates any possibility
to merge cache request/response transactions and coherence
management transactions.

This paper proposes the concept of distributed cooperative
shared caching (DCSC). By optimally positioning the dis-
tributed system-wide shared LLC caches and by coordinating
the cache layer with the distributed directories, this design
provides the ability to locally deduce the system-wide shared
LLC node positions along with their respective home nodes.
Not only is the size of cache introduced in this design very tiny
in comparison to MPSoCs such as Core i7 or Niagara, due to its
two main features it is able to minimize the negative effects of
memory and LLC hotspots along with reducing the execution
time. Hence it is a good candidate for embedded and consumer
systems.

The paper is organized as follows. A detailed description of
the proposed cache design is provided in section II, following
a quantitative analysis in section III. Section IV explains the
details of a SystemC model based simulations, results and
analysis. Finally section VI concludes the paper.

II. Distributed Cooperative Shared Cache

Distributed Cooperative Shared Cache (DCSC) is a system-
wide shared LLC. In a multi-core system containing NPCs
with distributed-directory coherence scheme and system-wide
shared LLCs, DCSC can be viewed as an alternative improved
design for the existing LLC architecture. In systems without a
system-wide shared LLC, DCSC is introduced as a new thin
cache layer between the NPC and the memory.

A. DCSC Layer

Fig. 1 represents the cache hierarchy of the final system in-
cluding the DCSC layer along with the node-private caches and978-3-9815370-2-4/DATE14/ c©2014 EDAA



memory nodes. The DCSC cache has the following properties:

a) Any tile can include a DCSC in addition to NPCs, directo-
ries, processing elements, IO or memory.

b) The DCSC node for an address is decided by its address
space. In Fig. 1, each DCSC can cache only its respective
shaded portion of the memory space. The NPCs can access
any DCSC over the NoC decided by the address of the
request.

c) In the system, only DCSC interacts directly with memory.
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Fig. 1: Cache hierarchy of DCSC
B. DCSC Cooperation

The DCSC works in cooperation with the distributed-
directory coherence scheme. The DCSC cache for a specific
cache line is placed at a node, at a configurable distance away
from the node carrying home directory of the cache line. A
cache line to home directory node-translation can be done
statically or dynamically. But, home directory node to DCSC
node translation is done using the address of memory request.
Assuming a continuous numbering of tiles in the NoC system,
the maximum distance between a cache line’s home directory
node and the DCSC cache node is defined as Cooperation
Width or Degree of Cooperation (DoC). If an NPC knows the
DoC value of the system, home directory node and the memory
address to be processed, it can locally calculate the DCSC node
for the particular request without any extra hardware control
or communication.

In view of the above description, translating a memory
address to the corresponding DCSC node may be understood
considering the following example system.

1) Memory address division: Any memory address may be
divided into 4 sections: A cache line section, the width of which
depends on the cache line size, a home directory Node section,
the width of which depends on the number of nodes containing
directories in the system, and a DCSC Cooperation section, the
width of which depends on the degree of cooperation following
the address tag section.

2) Translation of home directory node: In case of a static
directory translation scheme, home directory node is calculated
as {(Cacheline index) mod (Total number of dir-nodes)}.

3) DCSC node translation: The DCSC node (Ndcsc) is cal-
culated using the equation below using 1) DoC of the system
(DoC), 2) Home directory node (Nhd) and 3) DCSC coopera-
tion value(Vdoc).

{Least significant DoC bits of(Nhd + Vdoc)} mod (2DoC)

Considering an example memory request with Address =
16’hAEC2 raised by a NPC cache with cache line width of

32bytes in a 4x4 NoC structure having a degree of cooperation
of 1, Ndcsc can be found in below steps.

1. Total number of dir-nodes = 16, Vdoc = 1′b1
2. Cacheline Index = 16’hAEC2 >> 5 = 11’h576
3. Nhd = 11’h576 %(16) = 11’h6, 6 is the home node.
4. Ndcsc = ({LSB of ( 11’h6 + 1’b1 ) } mod 21) = 11’h7

Hence DCSC node for the address 16’hAEC2 is node7.
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Fig. 2: DCSC Read-Write Operations

The interactions between the NPC, directory, memory and
DCSC cache for a case of cache line read and write is provided
in the Fig. 2. In summary, the main contribution of this paper
is to introduce two main features of DCSC. Firstly, DCSC
cache is placed in a node which is at most at DoC distant
away from home directory in order to reduce traffic hotspots
by distributing the traffic more evenly. As the distance between
home directory and DCSC is defined using the requested
memory address, NPCs can locally calculate the LLC position,
avoiding all traffics required for finding the node carrying the
LLC. Secondly, memory requests from a NPC is redirected to
DCSC cache by the home directory of the cache line. This
way, additional traffic due to directory acknowledgements and
request interactions between NPC to LLC are reduced, thereby
increasing the performance.

III. Preliminary Analysis

We next present a mathematical model of the proposed cache
hierarchy design to analyse the benefits of DCSC quantita-
tively. It is based on the basic equation for average memory
access time (TAMA) in cacheable shared memory systems, i.e.,

TAMA = Rh × Th + Rm × Tm (1)

In the Eq. 1, the following assumptions are taken. 1) The NPC
cache parameters such as Rh, Th and Rm remains constant for
all different models considered here. 2) The term Tm is a system
state depended variable, [2]. Considering the architectural mod-
els of systems without a system-wide shared LLC such as [3] as
Model A, systems with limited distribution based system-wide
shared LLC such as [5], [7] as Model B and finally a system with
DCSC as Model C, the following can be inferred. The Tm of
the NPC depends on multiple factors such as 1) data retrieval



delay (Td), 2) coherence management delay, (Tc) and 3)NoC
traversal delay (Tn), [2]. i.e.,

Tm = Td + Tc + Tn (2)

Tc in the Eq. 2 represents the NPC coherence management
delays, [3]–[5], [7], which can be assumed to be equal for all
three models. The communication delay Tn in the Eq. 2, can
be calculated as the number of data traversals( Ndt) times
average delay for a single traversal (Tna), [1]. As long as the
average NoC delay per data traversal, Tna, remains same for
models A, B and C, Tn(A, B, C) ∝ Ndt. Model A requires to
converse with home directories for finding the forward stated
cache, data requests and other coherence requests. Hence,
Ndt(A) > Ndt(B, C), [3]–[5]. In DCSC architecture, the home
directory merges some of the coherence and memory requests
from NPC. Also the directory redirects memory requests to a
DCSC which is inside DoC limit. Hence Ndt(C) << Ndt(A, B).

In Eq. 2, the term Td represents the delays at caches (Tdc)
and memories (Tdm) along with data queueing time (Tqc, Tqm)
at the respective nodes, i.e.

Td = Ch ∗ (Tdc + Tqc) + Mh ∗ (Tdm + Tqm) (3)

where, Ch represents the probability of data-retrieval from For-
ward state cache for Model A, while for B and C it represents
the cache hit rate of LLC or DCSC. Similarly, Mh represents the
rate of NPC to memory interaction for A, whereas it represents
cache miss rate in case of Model B and C. When compared to
A, models B and C have additional cache layer over the DCSC
by virtue of LLC and DCSC respectively [3]–[5]. Due to this
additional cache layer, we can expect that the hit rate of B
and C is higher compared to A, i.e. Ch(B, C) > Ch(A). Due to
the same reason, Mh(B, C) < Mh(A). Because of the hotspots
generated at the cache in case of B, it can be inferred that
Tqc(C, A) < Tqc(B). Due to hotspots at memory nodes in case
of models A and B, Tqm(C) < Tqm(A, B). The other factors
such as delay for memory (Tdm) or cache (Tdc) processing delays
can be considered equal for all models.

From the description above and from Eq.1 and 3, Tm of
Model C w.r.t A becomes

Tm(C) = Tm(A) − a1 ∗ (Tqc(A) + Tdc)

− a2 ∗ (Tdm + Tqm(A)) − a3 ∗ Ndt(A) ∗ Tna (4)

where the reduced cache delay ratio in DCSC w.r.t model A is
named as a1, reduced memory delay ratio as a2 and reduced
traffic ratio as a3. Similarly naming reduced cache delay ratio
in DCSC w.r.t model B as b1, reduced memory delay ratio as
b2 and reduced traffic ratio as b3, Tm in DCSC in comparison
to Model B is :

Tm(C) = Tm(B) − b1 ∗ (Tqc(B) + Tdc)

− b2 ∗ (Tdm + Tqm(B)) − b3 ∗ Ndt(B) ∗ Tna (5)

where, a1 ≈ Ch(A) − Ch(C)

b1 ≈ Ch(B) − {Ch(C) ∗
Tqc(C)+Tdc

Tqc(B)+Tdc
}

a2 ≈ Mh(A) − {Mh(C) ∗
Tqm(C)+Tdm

Tqm(A)+Tdm
}

b2 ≈ Mh(B) − {Mh(C) ∗
Tqm(C)+Tdm

Tqm(B)+Tdm
}

a3 ≈ {1 − Ndt(C)
Ndt(A)

} and b3 ≈ {1 − Ndt(C)
Ndt(B)

}
To understand the implications of Eqs. 4 and 5 and

to compare TAMA(C), TAMA(A) and TAMA(B), an exam-
ple configuration is taken with NPC parameters of Rh =

0, 95, Th = 15cycles, Rm = 0.05 and other constants as Tdm =
480cycles, Tdc = 15cycles, Tna = 40cycles. Fig. 3 presents the
speedup comparisons of models A, B and C.
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Fig. 3: Average memory access speed up comparison

From Equations 2 to 5 and Fig. 3, it can be observed that
for a range of LLC hit rate between 0.1 to 0.99, the memory
access time in model C is decreased to 10-60% in comparison to
A and is decreased to 10-15% in comparison to B. For in-depth
understanding of the environment depended variable delay, a
simulation based analysis is conducted further.

IV. Simulations and Results

A. Simulation Setup

The simulation environment utilized for benchmarking the
DCSC architecture using SPEC2000 applications is given in
Fig. 4. To analyse the effects of the DCSC cache on the per-
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Fig. 4: SystemC model of DCSC cache system

formance of the system, four different cycle accurate SystemC
architectural models are implemented. All these models consist
of a tiled multi-processor system interconnected using a generic
NoC implementation, with tiles subdivided as compute nodes
or memory nodes according to their respective constituents.
The first model (Model 1) implements a cache system without a
system-wide shared LLC. Whereas the models 2-4 implements
a system with system-wide shared LLC, Model-2:centralized
LLC, Model-3:distributed LLC with dynamic mapping and
Model-4: DCSC architecture. The architectural view of the
SystemC model with DCSC cache is shown in Fig. 4.

SPEC2000 benchmark applications (such as fft, cholesky,
barnes etc.) were scheduled over different number of ALPHA
processors (single application in 1-8 processors) by Linux OS
using the GEM5 open-source simulator [8]. The memory ac-
cesses of these benchmark programs were tapped out to gener-
ate trace files. These files were fed to the trace based SystemC
processors to carry out the below simulations.
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Fig. 5: Simulations on system without LLC vs system with DCSC
(Fig. A and B), system with centralized/dynamic mapped
LLC vs DCSC (Fig. C)

B. Simulation Results and Analysis

1) Comparison of system without LLC vs system with DCSC:
Memory request execution time in model 4 and 1 is compared in
three different aspects, 1) effect of data sharing between NPCs,
2) trade-off in memory area to performance and 3) effects of
DCSC on system scaling. For the first two comparisons a sim-
ulation system was configured with NPC cache of 128kB/tile,
DCSC size of 32B/tile(0.03%, i.e. least possible cache size or
single cache line size) to 64kB/tile(53.33%, half the size of NPC
cache) in a 4x4 NoC tile, with three different scenarios of NPC
data share ratios.

From the Fig. 5-A, it can be seen that the performance
improvement differs according to the percentage of node-to-
node data share. At very low data-share scenarios the DCSC
architecture is able to provide a minimum 20-25% of perfor-
mance enhancement. At high sharing environments the per-
centage reduction in execution time in DCSC reaches around
60-70%. Now considering the case of a particular data-share
scenario in Fig. 5-A, it can be observed that as the DCSC
cache sizes increase (implying an increase in cache hit rate) the
performance enhancement in execution time also increases, as
predicted from the Fig. 3. The gain value settles at a cache size
of 2kB (1.667%), as shown in the Fig. 5-A. With an additional
cache size of only around 2% in comparison to model 1, DCSC
design is able to provide execution performance enhancement
of roughly 20% to 75% on varied data-share environments. In
order to understand the effects of system scaling on the cache
policy, a simulation setup was modified for NoC sizes ranging
from 2x2 to 6x6, with a DCSC size of 2kB/tile and an average
data sharing ratio of 5-10% as shown in Fig. 5-B. When the
system is scaled up between a NoC size range of 2x2 to 6x6,
the speedup in DCSC approximately doubled, with an average
speedup of 25-40%, in comparison to model 1. Thus, we claim
that the DCSC architecture is highly scalable. However, the
fact is acknowledged that simulations need to be run for even
higher ratios of scaling to fully understand this property.

2) Comparison of system with centralized/distributed system-
wide shared LLC vs DCSC: Using the same simulation con-
figurations as above, the speedup enhancements in DCSC is
compared with model 2 and 3 (with equal total LLC size) in
Fig. 5-C. From the Fig. 5-A and Fig. 5-C it can be observed
that models 2, 3 and 4 show higher performance in comparison
to model 1. But in comparison to centralized LLC architecture,
DCSC model shows a performance enhancement for all cases
of data share ratios with a considerable increment in speedup
(7.7% to 34%) on increasing the data share ratios. But it can be
concluded that even for very small data share scenarios, DCSC
can promise 7-15% of performance enhancement in comparison
to model 2. Fig. 5-C also represents the execution speed up in
DCSC in comparison to dynamically allocated LLC, such as
in [6]. It can be observed that DCSC provides around 14-15%
performance enhancement in different data-share scenarios,
showing a correlation to the quantitative analysis in Fig. 3.

V. Conclusion

This paper focuses on enhancing the memory access per-
formance in tiled multicore systems with distributed-directory
cache coherence. The Distributed Cooperative Shared Cache
architecture introduces two main features which deal with
the positioning of the system-wide shared LLC caches and
their interactions with node-private caches and directory. The
SystemC simulation results show that the DCSC layer can
provide a performance improvement of minimum 20-25% for
SPEC2000 benchmark applications in comparison to system
without LL caching. At the same time, the additional memory
added for the DCSC layer is less than 2% of the node-private
cache size. The results also show a performance enhancement
of minimum 7-15% in comparison to the centralized system-
wide shared LLC architectures of equivalent size and an average
of 14-15% in comparison to dynamic mapped distributed LLC
architectures of equivalent size. Thus, incorporating the DCSC
design, can provide a significant improvement in performance.
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