
ALLARM: Optimizing Sparse Directories

for Thread-Local Data

Amitabha Roy

EPFL

amitabha.roy@epfl.ch

Timothy M. Jones

University of Cambridge

timothy.jones@cl.cam.ac.uk

Abstract—Large-scale cache-coherent systems often impose
unnecessary overhead on data that is thread-private for the whole
of its lifetime. These include resources devoted to tracking the
coherence state of the data, as well as unnecessary coherence
messages sent out over the interconnect. In this paper we show
how the memory allocation strategy for non-uniform memory ac-
cess (NUMA) systems can be exploited to remove any coherence-
related traffic for thread-local data, as well removing the need to
track those cache lines in sparse directories. Our strategy is to
allocate directory state only on a miss from a node in a different
affinity domain from the directory. We call this ALLocAte on
Remote Miss, or ALLARM. Our solution is entirely backward
compatible with existing operating systems and software, and
provides a means to scale cache coherence into the many-core
era. On a mix of SPLASH2 and Parsec workloads, ALLARM is
able to improve performance by 13% on average while reducing
dynamic energy consumption by 9% in the on-chip network and
15% in the directory controller. This is achieved through a 46%
reduction in the number of sparse directory entries evicted.

I. INTRODUCTION

The projected move towards dies with a large number of
cores has raised an interesting question about the need for
cache coherence in such systems. One line of argument is that
the cost of cache coherence is an unnecessary overhead in
terms of both network traffic and die area needed to maintain
directory state. Along these lines, some researchers have
suggested moving away from shared memory models [16]. On
the other hand, Martin et al. have argued that cache coherence
can be scaled with the number of cores without undue impact
on either network traffic or die area [18]. Specifically, they
show that directory state can accurately track the state of lines
with an asymptotic cost of O(

√
n) while network traffic due to

coherence is an amortized constant independent of the number
of cores. Mainstream systems today are cache coherent and
will likely remain so in the foreseeable future.

In addition to this, there is no need to move away from ro-
bust shared-memory operating systems, as some have pointed
out [9]; and we are at a point where mainstream program-
ming languages are being enhanced with memory consistency
models [8], and cache-coherence-linked abstractions, such as
transactional memory, have appeared in hardware [1]. There is
no need to discard these useful advances.

However, the area overheads and network traffic implica-
tions of cache coherence still remain high. Although the growth
in coherence overheads may be manageable with an increasing
number of cores, one would like as few overheads as possible

from cache coherence, especially for workloads with small
amounts of communication between cores. Given increasing
wire delays and dark silicon, reducing network traffic and
directory size can bring large returns in terms of performance
and dynamic power.

This paper presents a technique to further these aims.
It is called ALLARM, or ALLocAte on Remote Miss. It
works by removing the coherence overheads for data that
is local to a particular thread for the whole of its lifetime.
Others have already pointed out the prevalence of thread-
private data and proposed changes to coherence protocols
to reduce its overheads in purely snoopy systems [15] and
with sparse directories [12]. Unlike these approaches, however,
ALLARM is completely compatible with existing software,
requiring no changes to take advantage of it. Other than the
microarchitectural support for ALLARM, all the ingredients
for our proposal already exist and are deployed in systems
today. ALLARM has the following features:

• Is transparent to existing software;

• Requires no directory entries for thread-private data;

• Creates no coherence network traffic when accessing
thread-private data;

• Incurs only small and simple changes to the existing
directory controller microarchitecture.

ALLARM allows the construction of systems where the
area devoted to cache line tracking in the directory and the
amount of network traffic generated depends solely on the
amount of data that is shared between threads. We therefore
reward programmers who invest effort in separating data that
is accessed by different threads. This is already a concern
for many developers, since fine-grained sharing of data leads
to problems of synchronization. We believe that investing
time in data partitioning for a cache-coherent system is less
demanding than managing data on a non-coherent one. This is
in line with recent arguments about disciplined shared-memory
programming as a means to extract better performance from
shared-memory hierarchies [10]. However, for applications
that have not been optimized in this manner, ALLARM will
continue to work seamlessly under the hood.

We evaluate ALLARM on a range of SPLASH2 and Parsec
applications, showing that it is able to reduce the number of
sparse directory entries evicted by 46% on average, leading to
a 13% performance increase and dynamic energy reductions of
9% in the on-chip network and 15% in the directory controller.978-3-9815370-2-4/DATE14/ c©2014 EDAA



CPU

Router

Memory

Controller DRAM

1 2

34

Cache

On-Chip Links

Off-Chip Links

Probe
Filter

Fig. 1: A 2x2 mesh of nodes. Each node contains a core, cache
and sparse directory (probe filter) attached to the memory
controller.

II. ALLARM

ALLARM is targeted towards Non-Uniform Memory Al-
location (NUMA) systems with sparse-directory-based cache
coherence, which are standard in deployed systems. An exam-
ple of such a system is shown in Figure 1.

In NUMA systems latency from the core to memory de-
pends on the location of the core, so careful memory allocation
is critical for reducing latency. This is done by partitioning
the system into sets of cores and associated local memory
called affinity domains. A popular (and, in fact, for most
operating systems, default) mode of allocation is first-touch
allocation. This policy allocates a page of memory from the
affinity domain in which the first access to allocated memory
is made, assuming that the first access is a good hint about
which processor is likely to most frequently access the page.

A commonly-employed modification to first-touch alloca-
tion is next-touch allocation, which fixes problems with access
patterns where a large amount of data is initialized by one
thread (first-touch) but used (exclusively) by another thread
(next-touch). ALLARM works seamlessly with both first-touch
and next-touch allocation strategies.

A. Detecting Private Data

Given a policy of first-touch memory allocation, we assume
that requests from remote cores are to shared data and requests
from the local core are to thread-private data.

The first assumption holds true under first-touch allocation
as thread-local data must be allocated in the local node. The
second assumption holds true in the common case. Requests
to shared data are more likely to originate from one of the
remote cores rather than from the local core. We note that
first-touch allocation is a best-effort policy. In the event that
the operating system is unable to allocate requested memory in
the local node, it is allocated at one of the remote nodes. The
assumptions therefore hold true in the common case. ALLARM
does not depend on them for correctness, but depends on them
for performance. A nice property of this detection scheme
is that it is stateless; we do not add any tracking state to
any software or hardware structure, nor do we incur cost
or complexity in updating any state. A positive aspect of
ALLARM, in comparison to other proposals [12], [15], is
simplicity. Requests from the local core are serviced without
allocating a probe filter entry. A probe filter entry is therefore
only allocated on a remote miss.

Within ALLARM, the probe filter continues to be the
single point of reference for state, and we therefore lookup
the probe filter on any incoming request (local or remote). If
the requested cache line has an entry in the probe filter, we
proceed as normal. If the requested line is not present in the
probe filter, however, we follow one of two different paths
depending on whether the request is from a local core or a
remote one. If the request is from the local core, we do not
allocate a line in the probe filter. On the other hand, if the
request is from a remote core, we allocate a probe filter entry
and probe the (unique) local core to determine the state of the
line. The probe response determines the final state of the line
and the request is then handled as normal.

B. Benefits of ALLARM

ALLARM eliminates probe filter entry allocation for re-
quests from the local core. Since first-touch allocation attempts
to allocate pages for thread-local data on the local affinity
node, most thread-local data benefits from ALLARM. The
elimination of probe filter entry allocation for thread-local data
has the following benefits:

1) Reduced dynamic power in the probe filter;
2) Better cache hit rates since there are no probe filter

evictions removing a needed line from underlying
cores;

3) Reduced network traffic because a probe filter evic-
tion would have necessitated an invalidate message
being sent out to one or more cores.

Each probe filter eviction requires a read-out of tag and data
for the replacement way. The replacement is then written into
the probe filter. Both these operations consume dynamic power
and we therefore expect a reduction in probe filter evictions
to reduce the dynamic energy consumption of the probe filter.

A probe filter eviction also invalidates the cache line in
all caches. For some workloads sensitive to cache misses this
can cause a degradation of performance due to the increased
miss rate. ALLARM, therefore, can improve performance by
increasing cache hit rates.

Last but not least, each eviction requires at least one
invalidate message to be sent out on the network, which is
responded to by an acknowledgment message. Reducing probe
filter evictions, therefore, also reduces network traffic.

C. Microarchitectural Changes

A key goal with ALLARM is to minimize the amount
of microarchitectural change needed for implementation. AL-
LARM requires only the following microarchitectural changes:

a) Network: An extra message type is needed to be able
to query a local cache about the current state of a line.

b) Cache: The cache needs to be able to respond to a
probe message from a directory requesting the state of a line.
The baseline coherence protocol would only support messages
that are part of a request flow from a remote cache.



c) Directory: The most extensive changes necessary for
ALLARM are in the directory controller. It must be modified
for the ALLARM protocol. ALLARM has been deliberately
structured as an addition to the existing protocol. This means
that no additional flops are needed in the implementation of
ALLARM, as it requires no extra storage to track in-flight
requests, beyond those that already exist. The additions are
only control logic, which means that area and power overheads
are negligible and are subsumed by the reductions that we
show in Section III.

An implementation of ALLARM could be optional, based
on physical memory ranges. This could be configured at
boot-time with range registers associated with each directory
controller (analogous to the MTRRs present, for example,
on current x86 microprocessors), specifying ranges on which
ALLARM is active. We note that it is always possible to
move from a non-ALLARM mode to an ALLARM mode at
run-time, as the probe filter is always consulted, regardless of
the mode of operation. Moving from an ALLARM to a non-
ALLARM mode, however, would require flushing that range
of physical addresses from the local core.

D. Impact on Remote Accesses

ALLARM introduces an extra step in the servicing of
requests from a remote core when there is not already a probe
filter entry allocated. Remote accesses that miss in the probe
filter, therefore, see an increase in latency. This increase can
be effectively hidden if the following two conditions hold true:

1) The probe of the local cache returns a miss, so the
cache line is not cached locally;

2) The time to lookup DRAM is larger than the time to
probe the local cache.

When both these conditions hold true, the DRAM lookup
is the necessary critical path and hence the probe of the local
cache happens in parallel and is hidden. The first condition is
mainly true because the first access to a piece of shared data
is more likely to come from one of the numerous remote cores
than the local core. The second assumption also holds true on
most systems. The local probe usually travels exclusively along
on-die links and looks-up fast on-chip SRAM (access latency
< 10 ns). The DRAM read, on the other hand, must traverse
an off-die link to access slower DRAM (access latency > 40
ns). Hence, ALLARM is successful in hiding the impact on
remote accesses. We confirm this fact in our evaluation.

E. Deploying ALLARM

ALLARM may only be enabled for a single core per
affinity domain. This is not an unreasonable assumption as
deployed NUMA systems are often configured as a memory
controller per-die and a shared last-level cache handling coher-
ence between cores on the die (for example, the AMD Mangy-
Cours and Intel Nehalem EX processors). In this situation the
directory sees the single last-level cache as the single core in
its affinity domain, rather than individual cores. For systems
where this is not the case, ALLARM may still be used by
partitioning the physical memory into logical affinity domains
and associating each core in the affinity domain with a single
partition.

Core/Per-Core Cache

Cores 16 Frequency 2Ghz
Block size 64 bytes Access Latency 1ns
ICache 32kB, 4-way DCache 32kB 4-way
L2Cache 256kB 4-way (exclusive)

Directory/DRAM

Directory Tracks 512kB of cached data, 1ns access lat
Memory 2GB, 60ns access lat
OS Linux 2.6.28, NUMA enabled

Network

Topology 4x4 Mesh Flit size 4 bytes
Control Msg 8 bytes Data Msg 72 bytes
Link BW 8 GB/s Link Latency 10ns

TABLE I: Simulated system.

We have also discounted the effect of thread migration in
the discussions above, although ALLARM still works when
migration occurs. Thread migration is generally avoided by
schedulers in NUMA systems because moving a thread causes
its affinity to change, rendering previously-allocated memory
on the local controller remote. In addition, high-end NUMA
systems also support page migration, which allows locally-
allocated memory to move to the new affinity domain. Hence,
although thread migration is generally avoided in NUMA
systems, when it does occur there are existing techniques
to reduce the performance impact and ALLARM can take
advantage of these too.

Finally, large-scale, deployed NUMA systems with sparse
directories scale up to hundreds of thousands of cores. This is
often accomplished through the use of hierarchical directories,
which ALLARM would have no problem in accommodating.

III. EVALUATION

We evaluate ALLARM using the GEM5 full system-
simulator [7] with 16 cores, running the x86 ISA. We boot
Linux on this system with the operating system configured
for NUMA support. The system is organized as a 4x4 mesh,
similar to Figure 1. The system is configured with 2GB of
DRAM divided into sixteen 128MB blocks, each attached to
a directory controller. The system runs the Hammer proto-
col [11] for cache coherence. Each node (memory, directory
controller and core) is an affinity domain for the operating
system. Each core has separate instruction and data caches and
private L2 cache. Shared L2 caches would decrease the number
of coherence agents and cause more lines to appear private to
ALLARM, thus the private L2 we have evaluated represents a
more challenging scenario. The size of the caches and latencies
in the system are shown in Table I. The probe filter provides 2X
coverage of an L2 cache (exactly the same as deployed AMD
Hammer systems). The baseline performance model includes
support for notifying the directory when an exclusively owned
block is evicted from cache and thus represents an already
optimized implementation. Our baseline therefore accurately
reflects real deployed systems. We do not bind threads to cores,
meaning that the Linux scheduler is free to migrate threads.

We evaluate ALLARM on a subset of the SPLASH2 [20]
and Parsec [6] benchmarks, both well-known multi-threaded



 0

 0.2

 0.4

 0.6

 0.8

 1

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

F
ra

c
ti
o
n
 o

f
T

o
ta

l 
R

e
q
u
e
s
ts

Local
Remote

Fig. 2: Ratio of local to remote accesses.

benchmark suites, using standard inputs (simmedium for Par-
sec). Simulation time requires us to use smaller input sets but
we scale cache sizes down as is standard in related work [12],
[15]. Hence, as these works claim, the simulation results in this
paper are valid for the larger input sets on the native systems.

A critical determinant of performance in ALLARM is
the ratio of local to remote accesses. Figure 2 shows how
this varies (averaged over all directories) for our benchmarks.
We have deliberately picked benchmarks with the majority
of accesses being remote, to ensure that we pick the most
challenging workloads possible for ALLARM and test our
hypothesis from Section II-D.

A. Multi-Threaded Performance

The first set of experiments we perform are 16-threaded
runs of all the benchmarks.

1) Speedup: Figure 3a shows that on average we obtain a
12% speedup over the baseline performance. The gains vary
across applications, with the ocean benchmarks showing the
largest speedups of up to 40%. The SPLASH2 benchmarks
show larger speedups than Parsec as they are more NUMA-
friendly (Figure 2) and show better data isolation [4]. Although
all benchmarks show a significant fraction of remote accesses,
the only benchmark with a degradation of performance is
fluidanimate.

The fluidanimate benchmark, has a large fraction of local
accesses (Figure 2) but shows a slowdown with ALLARM
(Figure 3a). This is because of its large working set [6]
compared to the other benchmarks, leading to capacity misses
dominating traffic to memory. This is also confirmed by
relatively small change in cache miss rate, notwithstanding
the reduction in probe filter evictions. ALLARM is unable to
therefore balance its (modest) overheads through gains from
reduced probe filter evictions. We note that ALLARM can
be made optional both on a per-directory and per-physical-
memory range basis. This can be used to avoid slowdowns
in benchmarks like fluidanimate, where capacity misses rather
than coherence misses dominate last level cache misses.

2) Probe Filter, Network, and Caches: The primary driver
for improved performance is reduced probe filter evictions.
Figure 3b shows the reduction in evictions over the baseline.
On average we obtain a 45% reduction in probe filter evic-
tions. This reduction correlates well with the fraction of local
accesses seen by a directory (Figure 2). The larger this fraction,
the better ALLARM is at reducing probe filter evictions.

A direct consequence of reduced probe filter evictions
is lower network traffic. Figure 3c shows the reduction in

network traffic (measured in bytes) achieved with ALLARM.
On average we reduce network traffic by 12% across the
benchmarks. This reduction is dependent on the average num-
ber of invalidation messages and responses per probe filter
eviction. We plot the average number of messages sent per
eviction in Figure 3d. number of messages often exceeds
two, ALLARM also reduces cache misses due to unnecessary
invalidations, shown in Figure 3e. On average, ALLARM
reduces L2 cache misses by 9%.

3) Dynamic Energy: Reducing the number of probe fil-
ter evictions and the amount of network traffic reduces the
dynamic energy consumption of both components. We eval-
uate the dynamic energy consumption of ALLARM using
McPAT [17], assuming a 32nm process. Figure 3f shows
the reduction in dynamic energy achieved by ALLARM. On
average we reduce dynamic energy consumption by 8% for the
on-chip network and by 14% for the probe filter. The savings
are as high as 30% in the case of ocean-contiguous. ALLARM,
therefore, improves performance and reduces dynamic energy
consumption, leading to lower energy consumption across the
set of benchmarks.

4) Hiding the Latency of Remote Misses: An important
component of ALLARM that enables it to perform well, even
with a large fraction of remote accesses, is its ability to hide
the extra latency for servicing a remote request at a directory
(Section II-D). To test this hypothesis, we measured the
fraction of requests where the extra local probe in ALLARM
was not on the critical path, averaged across all the directories.
The results, shown in Figure 3g, show that for a large fraction
of remote requests (81% on average) the local probe is indeed
not on the critical path to resolving the request.

5) Decreasing Probe Filter Size: Finally, we consider the
performance of ALLARM when we decrease the size of the
probe filter. Figure 3h shows these results, with each bar
normalized to the baseline with a 512kB probe filter. With
a 256kB probe filter, ALLARM maintains high performance
for the majority of benchmarks. Only blackscholes is strongly
affected, due to its pattern of sharing between threads. In
this benchmark, a large amount of data is shared from the
probe filter for CPU 0, which initializes the data for the
other threads. Therefore, reducing the probe filter size for this
benchmark causes significant reductions in performance. For
other benchmarks the reductions are less pronounced. Reduc-
ing again to a 128kB probe filter size with ALLARM causes
slowdowns on additional benchmarks (ocean non-contiguous
and x264 mainly). For barnes and ocean contiguous though,
performance is only reduced to the baseline level, meaning
that ALLARM can enable a 4× reduction in probe filter size
for these types of workload.

B. Multi-Process Performance

Our key motivation with ALLARM was to optimize for
workloads or application phases that are geared towards ac-
cessing thread-private data. In a multi-process scenario there
is little sharing between the processes and is a common form
of parallelism seen in data centers and programs communi-
cating with MPI. We simulated this setup with the SPLASH2
benchmarks by running two copies of the benchmark, with
each copy using a single thread. The copies are co-ordinated



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

S
p
e
e
d
u
p

(a) Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

N
o
rm

a
lis

e
d
 E

v
ic

ti
o
n
s

(b) Reduction in probe filter evictions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

N
o
rm

a
lis

e
d
 T

ra
ff
ic

(c) Reduction in network traffic (bytes)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264

M
e
s
s
a
g
e
s

(d) Average messages per PF eviction

 0

 0.2

 0.4

 0.6

 0.8

 1

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264

N
o
rm

a
lis

e
d
 L

2
 M

is
s
e
s

(e) Reduction in cache misses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

N
o
rm

a
lis

e
d
 D

y
n
a
m

ic
 E

n
e
rg

y

NoC
PF

(f) Dynamic energy consumed.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264

F
ra

c
ti
o

n
 W

it
h

o
u

t 
L

o
c
a

l
S

n
o

o
p

 i
n

 C
ri
ti
c
a

l 
P

a
th

(g) Hiding latency for remote accesses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

barnes

blackscholes

cholesky

dedup
fluidanimate

ocean-cont

ocean-non-cont

x264
geomean

S
p

e
e

d
u

p

512kB
256kB
128kB

(h) Decreasing the size of the probe filter.

Fig. 3: Speedup and impact of ALLARM on the system.

(using shared memory segments) to start their region of interest
together and we measured the time taken for both copies
to finish executing. Figure 4a shows that for the baseline,
performance suffers with a decreasing probe filter size. On
the other hand, Figure 4d shows that on enabling ALLARM,
the execution of the tasks is largely unaffected by the size of
the probe filter, showing only a minor degradation past 32kB.

The reason for the better performance of ALLARM is
its effect on the number of evictions from the probe filter.
As Figure 4b illustrates, the growth in the number of probe
filter evictions is dramatic due to the pressure from the
reduced probe filter size. In contrast, as Figure 4e shows (note
different y-axis scale), the number of probe filter evictions with
ALLARM only grows significantly when the size drops lower
than 64kB: as capacity limitations at a single memory con-
troller means some frequently used data needs to be allocated
remotely. Reducing the directory size dramatically increases
the eviction rate for these entries. However, note that a majority
of data for the benchmark is allocated locally and therefore
performance only gradually degrades with ALLARM.

The same observation also extends to the amount of
network traffic. On reducing the probe filter size, the amount
of network traffic grows, as shows in Figure 4c. On the other
hand, with ALLARM network traffic remains roughly constant
and is unaffected by the size of the probe filter, as shown
in Figure 4f. Again, we see a more moderated growth in
network traffic with ALLARM. A interesting point to note is
that network traffic growth, although correlated to the growth
in probe filter evictions, is at a lower rate. This is because
not all probe filter evictions lead to a writeback, while the

triggering allocation at the directory always requires a 64 byte
cache line transfer back to the requesting core. Therefore, an
increase in invalidations has a scaled impact on overall traffic
in bytes.

We note that current deployments of sparse directories in
x86 microprocessors reserve a part of the last-level cache to
serve as the probe filter. Reducing the size of the probe filter
and returning the on-chip SRAM to cache can significantly
boost benefits provided that the lower probe filter capacity
does not impact performance. The table below quantifies the
area benefits of ALLARM (using McPAT) as we vary the size
of the probe filter, showing the amount of space that can be
reused as cache again.

PF Configuration 512kB 256kB 128kB 64kB 32kB

Area (mm2) 70.89 26.95 19.90 8.20 5.93

IV. RELATED WORK

Distinguishing thread-private data at run-time and using
it to improve processor performance has been explored by a
number of researchers. Three closely-related pieces of work,
are those of Kim et al. [15], Cuesta et al. [12] and Das
et al. [13]. These approaches track sharing at a page granular-
ity. In particular, Cuesta et al. also consider reducing coherence
overheads in the Hammer protocol. Further, they also do not
allocate probe filter entries for thread-private data. Both the
sub-space snooping approach of Kim et al. and the coherence
deactivation approach of Cuesta et al., however, track page
sharing information using spare page table bits. The dynamic
directories approach of Das et al. uses information encoded in



 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

512kB 256kB 128kB 64kB 32kB

S
p
e
e
d
u
p

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(a) Baseline

 0

 50

 100

 150

 200

 250

512kB 256kB 128kB 64kB 32kB

N
o
rm

a
lis

e
d
 E

v
ic

ti
o
n
s

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(b) Baseline

 0

 0.5

 1

 1.5

 2

512kB 256kB 128kB 64kB 32kB

N
o
rm

a
lis

e
d
 T

ra
ff
ic

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(c) Baseline

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

512kB 256kB 128kB 64kB 32kB

S
p
e
e
d
u
p

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(d) ALLARM

 0

 0.5

 1

 1.5

 2

 2.5

 3

512kB 256kB 128kB 64kB 32kB

N
o
rm

a
lis

e
d
 E

v
ic

ti
o
n
s

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(e) ALLARM

 0

 0.5

 1

 1.5

 2

512kB 256kB 128kB 64kB 32kB

N
o
rm

a
lis

e
d
 T

ra
ff
ic

PF Configuration

barnes
cholesky

ocean-contiguous
ocean-non-contiguous

(f) ALLARM

Fig. 4: Speedup, evictions and NoC traffic for each workload, normalized to the baseline with a 512kB probe filter.

page tables to place directories close to the CMP tiles request-
ing it. These approaches are limited by the number of available
bits and require operating system modifications in support.
In addition, these approaches do not consider the impact of
aliasing, a problem known to researchers who have considered
the interaction of coherence and virtual addresses [5]. With
virtual aliasing (a common feature on many modern operating
systems due to copy-on-write), two page table entries can point
to the same physical page. In contrast, ALLARM is stateless
and requires no new features in the operating system.

A way to reduce overheads in general for directories is
to reduce the cost of encoding sharer sets. We note that the
Hammer protocol used in this paper, does not track sharers.
Variants range from sharer pointers [2] to recent proposals for
tagless directories using Bloom filters [21].

Another related direction of research is hardware structures
to detect sharing at larger granularities than a cache line to
filter coherence traffic, such as Region Scout [19]. A purely
software-based is Fensch et al.’s [14] proposed coherence
scheme that uses OS support for coherence. There have also
been proposals to track sharing and filter redundant snoops
in the network, such as Agarwal et al.’s in-network coherence
filtering [3] that maintains some amount of state at each router
in the on-chip network to filter snoops. In contrast to all
these proposals, ALLARM requires only simple changes to
the directory controller that can be optionally disabled on a
per-controller, or even on a per-physical memory range basis.

V. CONCLUSION

We have presented ALLARM, a technique for sparse
directories that provides significant savings in energy while
simultaneously improving performance. ALLARM enables the
construction of mainstream shared-memory systems where the
area devoted to directories and amount of network traffic grows
only in relation to the data that is actually shared.

ACKNOWLEDGMENTS

This work was funded by the Royal Academy of Engineer-
ing and EPSRC.

REFERENCES

[1] Intel Architectures Instruction Set Extensions Programming Reference,
February 2012.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In ISCA, 1988.

[3] N. Agarwal, L.-S. Peh, and N. K. Jha. In-network coherence filtering:
snoopy coherence without broadcasts. In MICRO, 2009.

[4] N. Barrow-Williams, C. Fensch, and S. Moore. A communication
characterization of SPLASH-2 and PARSEC. In IISWC, 2009.

[5] A. Basu, M. D. Hill, and M. M. Swift. Reducing memory reference
energy with opportunistic virtual caching. In ISCA, 2012.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT, 2008.

[7] N. Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2), 2011.

[8] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In PLDI, 2008.

[9] S. Boyd-Wickizer et al. An analysis of Linux scalability to many cores.
In OSDI, 2010.

[10] B. Choi et al. Denovo: Rethinking the memory hierarchy for disciplined
parallelism. In PACT, 2011.

[11] P. Conway et al. Cache hierarchy and memory subsystem of the amd
opteron processor. IEEE Micro, 30(2), 2010.

[12] B. A. Cuesta et al. Increasing the effectiveness of directory caches by
deactivating coherence for private memory blocks. In ISCA, 2011.

[13] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, and A. N.
Choudhary. Dynamic directories: A mechanism for reducing on-chip
interconnect power in multicores. In DATE, pages 479–484, 2012.

[14] C. Fensch and M. Cintra. An OS-based alternative to full hardware
coherence on tiled CMPs. In HPCA, 2008.

[15] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace snooping: filtering snoops
with operating system support. In PACT, 2010.

[16] E. A. Lee. The problem with threads. IEEE Computer, 39(5), 2006.

[17] S. Li et al. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO, 2009.

[18] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache
coherence is here to stay. Communications of the ACM, 55(7), 2012.

[19] A. Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-
based coherence. In ISCA, 2005.

[20] S. C. Woo et al. The SPLASH-2 programs: characterization and
methodological considerations. In ISCA, 1995.

[21] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos. A tagless
coherence directory. In MICRO, 2009.


