
Achieving Efficient Packet-based Memory System
by Exploiting Correlation of Memory Requests

Tianyue Lu†§, Licheng Chen†§, and Mingyu Chen†
†State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

§University of Chinese Academy of Sciences
{lutianyue, chenlicheng, cmy}@ict.ac.cn

Abstract—Packet-based interface is a trend for future memory
system to alleviate memory capacity and bandwidth bottlenecks.
On the other hand fine-grained memory access has been proven to
efficiently reduce memory power. However leveraging both these
two technologies will result in high packet overhead, because
previous implementations of packet-based interface all adopt
a simple design that a single packet is dedicated to a single
request (SPSR). In this paper, we propose three optimizations
to overcome the problem by exploiting correlations of memory
requests. First, we propose a novel single packet multiple requests
(SPMR) interface that encapsulates multiple requests into a
packet to share packet header and tail. Second, we propose
an adaptive address compression mechanism within a packet
by adopting a base-difference algorithm. Third, we propose a
mechanism to merge multiple memory requests with continuous
access addresses into a single request before packing. By this way,
the granularity constraint of cache line size is broken to enable
efficiently row buffer scheduling. The experimental results show
that, for certain memory-intensive workloads, the optimizations
can effectively reduce packet overhead by about 53.9% and
improve system performance by about 63.6% in average.

I. INTRODUCTION

With the trend that increasing number of cores will be
integrated into a processor chip, combined with significantly
increasing working-set of applications (e.g. Big Data Pro-
cessing), DRAM memory system will confront serious ca-
pacity and bandwidth pressure. However the conventional
synchronous parallel DDRx (e.g. 3 or 4) bus interface, which
is used to communicate between processor cores and DRAM
memory channels, is failed to scale. It is due to a large
number of interface pin counts (e.g. 240 processor pins for a
DDR3 DRAM channel) and limited data rate on parallel bus.
The memory capacity and bandwidth have become the main
bottlenecks in chip-multi-processor (CMP) system.

Recently, emerging memory systems with asynchronous
packet-based interface have been proposed to alleviate
processor-pin limitations, which are capable of providing high
capacity and high bandwidth (e.g. BOB [17], HMC [5]). In
such interface the memory controller is divided into two parts:
on-chip controller and off-chip controller. The on-chip con-
troller communicates with the off-chip controller over a faster

This work is partially supported by the National Basic Research Program
of China (973 Program) under a grant number 2011CB302502, the Strategic
Priority Research Program under a grant number XDA06010401, the National
Natural Science Foundation of China (NSFC) under grant numbers 60925009,
61221062, 61331008, and the Huawei Research Program under a grant number
YBCB2011030.
978-3-9815370-2-4/DATE14/©2014 EDAA

and narrower serial link bus with high level packet protocol,
thus it can significantly reduce pin-counts for each memory
channel and support more memory channels to achieve higher
capacity. Furthermore, the serial link bus can work at a higher
frequency than conventional DDRx bus (e.g. as fast as CPU
clock rate) to provide sufficient memory bandwidth.

Meanwhile, memory power has become a severe problem.
It has been reported that DRAM memory system contributes
up to about 40% of the total system power in large systems
[23, 25]. Thus how to improve memory power efficiency has
become an important consideration. Previous work has shown
that conventional coarse-grained memory accesses, which al-
ways read or write a cache block data (e.g. 64B), are very
inefficient in terms of power and bandwidth when spatial
locality is low [29, 30]. Since it often brings back a large
portion of useless data from memory. Memory system that
supports fine-grained memory access is an attractive alternative
approach. It usually adopts sub-ranked memory which groups
DRAM devices (in a wide 64-bit rank) into multiple narrow
sub-ranks (e.g. 8-bit, 16-bit, 32-bit), and each sub-rank can be
accessed independently. For a fine-grained memory request, it
only needs to activate and access part of the devices (within a
sub-rank), therefore it can significantly reduce memory power.
In addition, only really useful data is returned instead of a
whole cache block . Thus it can also improve memory bus
efficiency.

The two trends expose the demand on future memory
system to support both packet-based interface and fine-grained
access. However, communicating with packet-protocol for fine-
grained access is not a free lunch. Besides payload (request or
data), extra data such as destination identifier, packet meta-
data (e.g. size), or redundant data for integrity (e.g. CRC), are
needed to add as packet header or packet tail. These are named
as packet overhead in this paper. In previous implementations
such as BOB [17], HMC [5], they all adopt the simplest design
that a single packet is dedicated to a single request, which
is named as SPSR (Single-Packet-Single-Request). However
the SPSR approach will result in heavy packet overhead.
This is because that in fine-grained access, much smaller size
of data (e.g. 8 bytes) is read from or written to memory
devices, which is served as payload in a packet. As the payload
decreases, the packet overhead is increasing. The memory
bus efficiency is also decreased because a large portion of
bandwidth is contributed to transferring extra packet-protocol
data. Take HMC [5] for example,it adopts SPSR and the packet
header and tail has fixed size in each packet, which are both 8-
byte (64-bits), despite of what size of the payload data. HMC



CUB[2:0] RES[2:0] ADRS[33:0] TAG[8:0] DLN[3:0] LNG[3:0] CMD[5:0]

63 60 57 23 14 10 6 561 58 24 15 11 7 0

RES

Fig. 1: The detailed request packet header layout in HMC [5], the size of it is 8-byte (or 64-bit).

can support multiple memory access granularity ranging from
16-bytes to 128-bytes. For a packet with the maximum 128-
bytes data, the packet overhead (including memory address)
is only 12.5%. However, for a packet with the minimum 16-
bytes data, the packet overhead will increase up to 100% (as
shown in Figure 2), which means that only half of the memory
bandwidth is really used for transferring effective data.

To overcome the high packet overhead problem in SPSR,
we propose a novel packet interface named SPMR (Single-
Packet-Multiple-Requests) that supports to encapsulate multi-
ple memory requests into a single packet. Memory requests are
first buffered in the request queue of on-chip controller before
they are packed. Then it will provide the opportunity for multi-
ple memory requests that access the same destination memory
module to be encapsulated into a single request packet. The
SPMR mechanism is also appropriate for response packet. In
SPMR, the packet header and packet tail are the same as in
SPSR, but they are now shared by multiple requests in a packet.
So the packet payload is the aggregation of all the requests
(address and data). The SPMR can significantly reduce packet
overhead and improve bus efficiency. Furthermore, SPMR
provides the opportunity to exploit correlation of memory
requests within a packet to reduce packet size, such as address
compression, contiguous memory request merging.

Overall, we have made the following contributions:
• We propose a novel packet-interface named Single-

Packet-Multiple-Requests to reduce packet overhead by about
53.9% and improve bandwidth efficiency compared with the
conventional SPSR, SPMR can also improve system perfor-
mance by about 63.6%.

• We further propose a self-adaptive compression mecha-
nism for addresses of multiple requests within a packet, and we
adopt a simple but efficient packing scheduling algorithm that
memory requests with high locality and similarity are prefer-
entially selected to be packed in a packet. The experimental
result shows that addresses can be effectively compressed with
a ratio of 1.95 on average.

• Finally, aiming at applications with good locality, we
propose a mechanism to merging contiguous small granularity
requests into a single large granularity request. It can further
reduce address-field overhead (especially for read request
packets), improve DRAM row buffer locality and improve
system performance by 17.0%.

The rest of the paper is organized as follows: Section II
introduces the background and summarizes the related work.
Section III describes our optimizations on packet-based mem-
ory system to reduce packet overhead and improve memory
power and bandwidth efficiency. We describes the experimental
methodology in Section IV, and demonstrate the experimental
results and discussion in Section V. Finally, Section VI gives
the conclusion of this paper.

II. BACKGROUND AND RELATED WORK

A. Packet-based Interface Memory System
Packet-based interface is considered as a probable trend for

future memory system, which has been shown to work well
with different memory technologies, such as DDRx DRAM

Tail

Bit 0

Head

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

63127 Data Payload

Data Payload

Fig. 2: The packet layout with 16B data payload, in which
the packet overhead is 100% (for packet header and tail).

[17], 3D-Stacking DRAM [5], and Phase Change Memory
[20]. Within this interface the conventional integrated mem-
ory controller is divided into on-chip controller and off-chip
controller. The on-chip controller is simplified and decoupled
from memory scheduling, thus it has no need to take care of
low level device timing constraints any more. After it receives
a memory request from CPU core, the request is simply en-
capsulated into a request packet as payload (contains address,
request type etc.). Then the request packet is relayed to the
off-chip controller over a narrower and faster link bus. The
off-chip controller is the intermediate logic located between
on-chip controller and DRAM memory channels, and it is
responsible to schedule memory requests to DRAM devices
meanwhile taking care of timing constraints. For a memory
read request, after it is served, a response packet which
contains read-return data will be sent back to the on-chip
controller, and finally the data will be returned back to the
requested CPU core.

A packet usually contains three parts: packet header, data
payload and packet tail. The packet header usually includes
command, addressing information, and some other control
fields. Figure 1 shows the detailed request packet header layout
in HMC [5], and the size of it is fixed 8-byte. The CUB and
ADRS field is addressing information, which indicates HMC
identifier (for multi-HMC chain) and request address within an
HMC respectively. The TAG field represents the tag number
which identifies this request uniquely. The DLN and LNG field
represents the packet length in FLITs (1 FLIT is 128 bits).
And the CMD field indicates the memory command (e.g. read,
write) and the access granularity (16B to 128B). The packet
tail usually includes flow and link-retry control fields, along
with some redundant information (e.g. CRC). Figure 2 shows
the packet layout with 16B data payload in HMC, the packet
is transferred within two flits, the first flit contains the packet
header and the low half of data, while the second flit contains
the high half of data and the packet tail. Thus we can see that
the packet overhead (packet header and tail) is 100%.

Recently, several works on packet-based interface memory
system have been proposed. Buffer-On-Board (BOB) [17]
memory system is proposed for regular JEDEC-standardized
DDRx DRAM, such as Intel SMB [3], IBM Power 795 mem-
ory system [21] and our recently work MIMS [16]. In BOB,
A simple controller communicates with a BOB controller over
a narrower and faster link bus with packet protocol. Hybrid
Memory Cube (HMC) [5] has been proposed to work with
3D-stacking DRAM dies, in which a logic die communicates
with the memory controller over multiple 16-lane, full-duplex
serialized links (with high bandwidth SerDes I/O interface).



Ham et al. [20] extend packet-based interface memory system
and propose disintegrating memory controllers to support
heterogeneous command protocols (DRAM and PCM). Fang
et al. [18] propose UniMA to enable universal inter-operability
between processors and memory modules by adopting a unified
communication interface. Udipi et al. [27] propose a novel
packet based interface with silicon-photonic and 3D-stacking
DRAM memory. Previous commercial product Fully-Buffered-
DIMM (FBDIMM) [19] also adopts packet interface among
AMBs, which were organized as a daisy chain. However, to
the best of our knowledge, all of these previous works adopted
SPSR approach, which would result in high packet overhead
when working with fine grained memory access.

B. Fine Grained Memory Access
Conventional coarse-grained memory access which always

reads or writes a cache block data (e.g. 64-byte) would waste
memory power and bandwidth when spatial locality is poor.
Thus fine grained memory access which only accesses partial
really useful data within a cache block was proposed. AGMS
[29] augments the virtual memory interface to configure prefer-
able access granularity for each page based on page access
profiling, while DGMS [30] adopts hardware prediction control
mechanism to dynamically adapt memory access granularity,
and it has shown that DGMS can reduce DRAM power by
about 13% and reduce DRAM traffic by about 44%. Both of
them adopt sub-ranked memory which groups DRAM devices
into multiple independent narrow sub-ranks to support fine
grained access. Sub-ranked memory can improve power ef-
ficiency and leveraged memory level parallelism. Many works
have contributed to it, such as Rambus’s Micro-threading [28],
Mini-rank [32], Multi-core DIMM [10, 11], Convey’s S/G
DIMM [15]. Zhang et al. [31] propose Heterogeneous Multi-
Channel to balance the performance and power consumption
of the DRAM system by grouping physical DRAM devices
into logical sub-ranks with different data bus width. Skinflint
DRAM system [22] minimizes DRAM write power by selec-
tively only accessing DRAM chips that with really modified
sub-block data.

III. OPTIMIZATIONS ON PACKET-BASED MEMORY
SYSTEM

A. SPMR: Single Packet Multiple Requests
As shown in the section I, SPSR approach with fine grained

memory access will result in high packet overhead. Thus in
this paper we propose a new packet interface SPMR to reduce
the transferring size for extra packet-protocol bits. To support
encapsulating multiple requests into a single packet, a new
adaptive packet header layout is introduced based on HMC’s
packet header. As shown in Figure 3, a packet header now
has a universal header field with multiple ADDR and GRAN
fields. The universal header is the same as shown in Figure 1
which includes CUB, TAG, LNG, DLN and CMD fields. The
ADDR field is now no longer dedicated to a single packet,
thus it is decoupled from the universal packet header. Instead,
multiple ADDR fields along with multiple GRAN fields are
integrated into a packet, and each ADDR and GRAN represents
the memory address and the granularity of each memory
request respectively. The packet tail is remained the same
as in a SPSR packet, because it has nothing correlated with
requests information. It is worth noting that multiple requests
that access the same memory module (with a dedicated off-

chip controller) and with the same type of operation can be
encapsulated into a SPMR packet, and they can share the same
memory module identifier (e.g. CUB) field and the same CMD
filed in the universal header.

Thus, the total size of a SPMR packet with N memory
requests is:

PKT SZ SPMR(N) = UNI HEADER SZ+

N ∗ (ADDR SZ + GRAN SZ)
(1)

Where PKT SZ SPMR(N) represents the total size of a
SPMR packet, UNI HEADER SZ represents the size of a uni-
versal header, N represents the number of requests, ADDR SZ
and GRAN SZ represent the size of address and granularity
field of a memory request respectively.

For comparison, with SPSR, N memory requests need N
separate packets, thus the total size is:

PKT SZ SPSR(N) = N ∗ PKT SZ =

N ∗ UNI HEADER SZ+

N ∗ (ADDR SZ + GRAN SZ)

(2)

Where PKT SZ represents the size of a single SPSR packet
which contains a universal header and a dedicated memory
request (including address and granularity field).

Thus the SPMR with N requests can save up to (N-
1)*UNI HEADER SZ space, and it can reduce packet over-
head and improve memory bandwidth efficiency.

SPMR can also work with response packet in the same
way, multiple return-data from the same memory module can
be selected to encapsulate into a single response packet, with
a separate DATA and GRAN field for each memory request,
thus multiple return-data can share the same universal header.

Figure 4 shows the architecture of discrete memory con-
trollers that support SPMR packet interface. There are separate
read queue and write queue in the on-chip controller, which are
used to buffer read requests and write requests respectively. A
packing scheduler is added to select multiple requests with the
same destination memory module and the same type in a batch.
Then the selected requests are sent to the packet generator
and encapsulated into a SPMR request packet there. This is
done by generating a corresponding universal header, multiple
address and granularity fields for requests and a packet tail.
Request packets are sent to the off-chip controller through
SerDes module over a serial link bus. The packet decoder in
the off-chip controller is enhanced to support SPMR packets: it
firstly decodes the universal header to get the size of the packet
(which indicates the number of requests) and the request type;
then it can retrieve the address and granularity information
for each request. All decoded memory requests are put in
the request queue and scheduled by the command (CMD)
scheduler into DDRx commands. The DDRx commands are
finally scheduled to the DDRx interface which supports Sub-
ranked memory to access destination DRAM devices.

Decoding a SPMR packet might introduce extra processing
latency if it retrieves multiple requests in serial. Two opti-
mizations can be adopted to reduce the decoding latency: 1)
multiple requests can be decoded in parallel, since the size of
the ADDR and GRAN field is fixed, the offset of each request
in a packet can be efficiently calculated in advance; 2) a SPMR
packet can be decoded before it is received completely in a
pipeline manner: decoding requests from the previous flit can
be pipelined with receiving the next flit.



Universal Header[31:0] ADDR1

31 0...

ADDR2 ... ADDRn GRAN1 GRAN2 ... GRANn

Addresses for multiple requests Granularities for multiple requests

 

Fig. 3: The new request packet header layout of SPMR with multiple memory requests, each request needs a separate ADDR
and GRAN field.

Read 

Buffer

Write

Buffer

Packet

Generator

Packet

Decoder

D
D

R
x Interface

S
ub-R

anked 

Packing 

Scheduler

On-Chip Controller SerDes

SerDes

CMD 

Scheduler

Off-Chip 

Controller

Serial 

Link Bus

 

Fig. 4: The architecture of discrete memory controllers that
support SPMR packet interface.

B. Address compression
Further optimization focuses on the multiple ADDR fields

which represent memory addresses of multiple requests in
a SPMR packet. Due to the locality of memory address
accessed by a process or a thread, high bits of many 48-
bits addresses may be the same. We propose an address-
compression technology that makes the ADDR domain shorter.
Our compression only pays attention to the request packet here
since the response packet does not have the ADDR domain.

As the high bits of addresses could be repeated, our
address-compression algorithm uses the format of base address
with difference address. The algorithm can be divided into
three categories: full-bits base with difference (has symbol
bit), high-bits base with difference (has not symbol bit), base
number with difference (has symbol bit).

Full-bits base with difference algorithm selects memory
requests with similar addresses and put them into one packet,
and chooses one of them as the base address. This base address
is written into ADDR domain with other difference addresses
which are calculated from it. The new ADDR domain’s format
is at Figure 5. High-bits base with difference algorithm has
the method similarly, just takes only the high-bits of address
as the base address and removes the symbol bit of difference
addresses to save the bits transferred.

0xf0 0xa8

0x46e44bf0 0x46e44ba8 0x46e44bc0 0x46e44b08

0x46e44b 0xc0 0x08 Saved Space

Base Diff

Address

Compress

Fig. 5: The new ADRS Field of Base address and Difference
address.

Base number with difference algorithm needs base address
table in both requester and responder of the bus. A base address
table keeps some full-bits addresses in it and one of the items
in table is selected as the base address. This algorithm makes

each address in the packet has its own base address and each
base address is written into ADDR domain in the form of base
number (this number is its position in the base address table) as
shown in Figure 6. The base address table needs update when
there is not an item matching the address of a new memory
request so that extra transmission is occurred to write a new
base address. But if the program has good locality, the base
address table does not need update frequently and the tables
are set to each thread because that the memory accesses from
same thread may have good locality. This algorithm has better
effect than the other two owing to saving of bits transferred as
a result of the replacement of base number to base address.

00 0xf0 0x50

0x46e44bf0 ...

0x46e44b

0x7e5f00

0x93fce6

0x23f56e

10

Base Table

BaseNum0 BaseNum2

0x46e44b

0x7e5f00

0x93fce6

0x23f56e

Base Table

0x93fce650 0x7e5f00e8

0x46e44bf0 ...0x93fce650 0x7e5f00e8

0xe801

BaseNum1

Compress

Decompress

Source

Destination

...

Fig. 6: The ADRS field of Base number and Difference
address with synchronous base-address table approach.

To the base number with difference address-compression
algorithm above, further improvement is feasible. First, to re-
duce the frequency of base address table’s update, we propose
self-adaptive algorithm. Self-adaptive algorithm means that at
every time a base address in table is used, this base address is
replaced automatically to the real address transferred this time
so that when the memory request sequence is increased or
decreased progressively, one specific base address is used for
this sequence from beginning to end instead of a long sequence
uses several base addresses which occupy many items in the
base address table. Second is two-level base address table
structure. Sometimes we find that the whole base address may
not be rewritten entirely, only the low bits are covered. So
we divide a base address into two parts of high bits and low
bits and put them into first-level table and second-level table
separately. To some programs that have not very good locality
which bring many base address update, this structure can make
the first-level base address table that keeps the high bits of base



ROB 2.7GHz, 256-entry, max fetch/retire per cycle: 4/2
L1 Cache Private, 32KB, 4-way, 64B-block, 4-cycle hit
L2 Cache Private, 256KB, 8-way, 64B-block, 10-cycle hit
L3 Cache Shared, 1MB/core, 16-way, 64B-block, 40-cycle hit
Link Bus 2.7GHz, p2p, read/write bus width: 32/32

DRAM Parameters

Memory 2 64-bit Channels, 2 Ranks/Channel, 8 devices/Rank,
8 sub-ranks/rank, x8-width (1 device) sub-rank

Device
DDR3-1333MHz, x8, 8 banks, 8 KB Row Buffer,
32768 Rows/bank, 1024 Columns/Row, BL=8,
Time/power parameters from Micron SDRAM [1]

TABLE I: System Configurations.

address not been updated as often despite the second-level base
address table still update frequently. It will save half the cost
than replacing the whole address every time in average.

C. Merging Continuous Memory Requests
Address-compression technology has obvious effect on

some applications, because these programs have good locality.
Some of these programs not only have locality but also
have continuity that program requests for a continuous large
memory space in a short time. Because of the limit of cache
line, a large memory space access is cut into a batch of 64 bytes
memory operations.In a multi-core environment, a batch of
continuous requests may be broken into many noncontinuous
parts.Memory behavior of program is hidden in this case so
that the burden of request scheduling is increased. We propose
request-merging technology that increase the upper limit from
64 bytes to 4KB thus the original continuous memory access
can be issued in a single request. Requests can be merged
in reorder buffer when it finds the continuity among several
requests in instruction window or be merged by compiler
when compiler discovers several memory requests which have
continuous addresses. No matter how the requests are merged,
it will need a modification to CPU core. In this paper, we do
not discuss this technology in detail and just evaluate its effect.

IV. EVALUATION METHODOLOGY

In this section, we will introduce our simulator and bench-
mark using in our evaluation.

A. Simulator and workloads
In our evaluation, we use a memory simulator extended

from DRAMSim2[26]. We modify the memory module with
serial bus system and packet-based communication to simulate
the structure and protocol of HMC. To estimate the perfor-
mance of fine-grained memory access, we add the function
of sub-rank to support the minimum granularity of 8 bytes.
We use Pin[24] to collect the memory access traces and
input these traces into a cache simulator to get granularity
message of each memory access trace. At last, we input
all traces with type of cache miss into memory simulator.
We choose several multi-thread memory intensive applica-
tions from BFS in Graph500[9], PARSEC[14], Listrank[12],
Pagerank[4], GUPS[7] and SSCA2[13]. To address com-
pression and continuous requests merger, we also choose
some programs with good locality from STREAM[8], perM,
SPECCPU2006[2] and NAS[6].

B. System configurations
We test our work in different configurations. The same

parts are shown in table I in detail.

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

S
P
S
R

S
P
M
R

GUPS BFS canneal SSCA2 listrank pagerank average

P
ro

p
o

rt
io

n
 o

f 
p

a
ck

et
 c

o
m

p
o

n
en

ts
 

data address head+tail

Fig. 7: The proportion of packet components with original
SPSR and with our proposed SPMR.

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

N
o

rm
a

li
ze

d
 B

a
n

d
w

id
th

 E
ff

ic
ie

n
cy

 

S
p

ee
d

u
p

 

N
o

rm
a

li
ze

d
 P

er
fo

rm
a

n
ce

 S
p

ee
d

u
p

 Performance Bandwidth Efficiency

Fig. 8: The performance and memory bandwidth efficiency
improvement of combining multiple requests in one packet.

V. RESULTS AND DISCUSSION

A. Combine several requests in one packet
As shown in Figure 7, we find that the proportion of each

part in packet has large difference before and after putting
several memory requests in one packet. The proportion of
necessary address and data becomes large as the proportion
of packet header and packet tail becomes small. In average,
the packet header and tail reduce by 53.9% which means
that the efficiency of serial bus is improved. From the result
shown in Figure 8, we can see that the improvement of bus
system’s efficiency brings 63.6% improvement of performance
of whole memory system in average. The program with best
effect(GUPS) has an improvement of 152% because of the
great reduction of packet header and packet tail.

B. Address compression
In table II, we show the result of address compression with

the best algorithm introduced above. We use the base address
table to save a series of base address and transmit the base
address number in packet. Although base address table use
extra registers to save the table, this strategy brings the best
effect of reducing the bits for transmission. The compress ratio
shows this reduction that ADDR field in packet become short
from 44.2% to 69.4% as before. Shorter packet length benefits
the efficiency of serial bus reflected in bus utilization reduction.
In this table, we also find the trend that address compression
has better results on programs that have mainly small-grained
memory access which infers the proportion of address is large
in packet.



Compress Ratio Bus Utilization Reduction
streamcluster 1.61 7.93%

STREAM 2.26 3.71%
perM 2.01 4.36%

ScaleParC 2.26 12.25%
SPECCPU/437 1.44 4.93%
SPECCPU/458 2.14 7.46%

TABLE II: The compress ratio and memory bus utilization
reduction of addresses compression in SPMR.

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0%

20%

40%

60%

80%

100%

N
o

rm
a

li
ze

d
 p

er
fo

rm
a

n
ce

 

sp
ee

d
u

p
 

P
ro

p
o

rt
io

n
 o

f 
m

er
g

in
g

 

m
em

o
ry

 a
cc

es
s 

g
ra

n
u

la
ri

ty
 8B-64BB 72B-128B 136B-512B 520B-4096B Performance

Fig. 9: The memory access granularity and performance
improvement after merging continuous memory requests.

C. Merge continuous memory requests
Figure 9 shows the result of memory access granularity and

performance improvement after merging continuous requests.
We can find that some workloads have really good memory
access locality (or continuity) so that a large number of
large-grained memory requests are successfully generated after
combining the continuous memory requests. The contention
on memory controller is reduced by this combination and row
buffer utilization is improved. Thus the overall performance
of memory system can be improved. In Figure 9, we can
find the average improvement is about 17.0%, while the max
improvement is about 24.9% for FT workload.

VI. CONCLUSION

In this paper, we find that previous implementations of
packet-based interface memory systems (referred as SPSR)
will result in high packet overhead when working with fine-
grained memory access, since a single packet is dedicated to
a single memory request. Then we propose a novel SPMR
mechanism that supports to encapsulate multiple memory
requests into a packet. Since the packet header and tail are
shared by multiple requests, the SPMR can efficiently reduce
packet overhead. We also present an address compression
mechanism that the shared addresses part among different
memory requests is transmitted only once. For workloads with
good locality, this compression mechanism can reduce the size
of request packets. Finally, we propose another enhancement
to merge several memory requests with continuous memory
addresses into one memory request with larger granularity. By
breaking the constraint of maximum granularity of 64 bytes,
the utilization of row buffer on memory chip will be improved.
As a result, our works improve the performance of memory
system and reduce the energy of serial bus, especially works
well on workloads with intensive memory access. SPMR
opens new opportunities to exploit more correlations among
subsequent memory request other than presented. Further im-
provement might be achieved by adding semantic information
to the packet, which will be our future work.

REFERENCES
[1] “Ddr3 sdram,” http://download.micron.com/pdf/datasheets/dram/ddr3/

2Gb DDR3 SDRAM.pdf, 2006, Micron Technology, Inc.
[2] “Standard performance evaluation corporation,”

http://www.spec.org/cpu2006/, 2006.
[3] “Intel 7500/7510/7512 Scalable Memory Buffer,”

http://www.intel.la/content/dam/doc/datasheet/
7500-7510-7512-scalable-memory-buffer-datasheet.pdf, 2011,
datasheet, Intel Corporation.

[4] “Graphlab: Distributed graph-parallel api,”
http://docs.graphlab.org/index.html, 2012.

[5] “Hybrid memory cube specification 1.0.” Hybrid Memory Cube
Consortium, 2012.

[6] “Nas parallel benchmarks,” http://www.nas.nasa.gov/publications/npb.html,
2012.

[7] “Randomaccess – gups (giga updates per second),” https://icl.cs.utk.edu/
projectsfiles/hpcc/RandomAccess/, 2012.

[8] “Stream: Sustainable memory bandwidth in high performance comput-
ers,” http://www.cs.virginia.edu/stream/, 2012.

[9] “The graph500 list,” http://www.graph500.org/, 2013.
[10] J. H. Ahn et al., “Future scaling of processor-memory interfaces,” in SC

2009, 2009, pp. 42:1–42:12.
[11] J. H. Ahn et al., “Multicore dimm: an energy efficient memory module

with independently controlled drams,” Computer Architecture Letters,
vol. 8, no. 1, pp. 5 –8, jan. 2009.

[12] D. A. Bader, G. Cong, and J. Feo, “On the architectural requirements
for efficient execution of graph algorithms,” in ICPP 2005, pp. 547–556.

[13] D. A. Bader and K. Madduri, “Design and implementation of the hpcs
graph analysis benchmark on symmetric multiprocessors,” in HiPC 2005,
pp. 465–476.

[14] C. Bienia et al., “The parsec benchmark suite: characterization and
architectural implications,” in PACT 2008, pp. 72–81.

[15] T. Brewer, “Instruction set innovations for the convey hc-1 computer,”
Micro, IEEE, vol. 30, no. 2, pp. 70 –79, march-april 2010.

[16] L. Chen et al., “Mims: Towards a message interface based memory
system,” in Technical Report: arXiv:1301.0051v1 Jan 2013.

[17] E. Cooper-Balis, P. Rosenfeld, and B. Jacob, “Buffer-on-board memory
systems,” in ISCA 2012, pp. 392–403.

[18] K. Fang et al., “Memory architecture for integrating emerging memory
technologies,” in PACT 2011, pp. 403 –412.

[19] B. Ganesh et al., “Fully-buffered dimm memory architectures: Under-
standing mechanisms, overheads and scaling,” in HPCA 2007, pp. 109
–120.

[20] T. J. Ham et al., “Disintegrated control for energy-efficient and hetero-
geneous memory systems,” in HPCA 2013, pp. 424–435.

[21] R. Kalla et al., “Power7: Ibm’s next-generation server processor,” Micro,
IEEE, vol. 30, no. 2, pp. 7 –15, 2010.

[22] Y. Lee et al., “Skinflint dram system: Minimizing dram chip writes for
low power,” in HPCA 2013, pp. 25–34.

[23] K. Lim et al., “Understanding and designing new server architectures
for emerging warehouse-computing environments,” in ISCA 2008, pp.
315–326.

[24] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI 2005, pp. 190–200.

[25] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating server
idle power,” in ASPLOS 2009, pp. 205–216.

[26] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16 –19, jan.-june 2011.

[27] A. N. Udipi et al., “Combining memory and a controller with photonics
through 3d-stacking to enable scalable and energy-efficient systems,” in
ISCA 2011, pp. 425–436.

[28] F. Ware and C. Hampel, “Improving power and data efficiency with
threaded memory modules,” in ICCD 2006, pp. 417 –424.

[29] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive granularity memory
systems: a tradeoff between storage efficiency and throughput,” in ISCA
2011, pp. 295–306.

[30] D. H. Yoon et al., “The dynamic granularity memory system,” in ISCA
2012, pp. 548–559.

[31] G. Zhang et al., “Heterogeneous multi-channel: fine-grained dram con-
trol for both system performance and power efficiency,” in DAC 2012,
pp. 876–881.

[32] H. Zheng et al., “Mini-rank: Adaptive dram architecture for improving
memory power efficiency,” in MICRO 2008, pp. 210–221.


