
Increasing the Efficiency of Syndrome Coding for

PUFs with Helper Data Compression

Matthias Hiller and Georg Sigl

Institute for Security in Information Technology

Technische Universität München, Munich, Germany

{matthias.hiller, sigl}@tum.de

Abstract—Physical Unclonable Functions (PUFs) provide se-
cure cryptographic keys for resource constrained embedded
systems without secure storage. A PUF measures internal man-
ufacturing variations to create a unique, but noisy secret inside
a device. Syndrome coding schemes create and store helper data
about the structure of a specific PUF to correct errors within
subsequent PUF measurements and generate a reliable key.

This helper data can contain redundancy. We analyze existing
schemes and show that data compression can be applied to
decrease the size of the helper data of existing implementations.

We introduce compressed Differential Sequence Coding (DSC),
which is the most efficient syndrome coding scheme known to
date for a popular reference scenario.

Adding helper data compression to the DSC algorithm leads
to an overall decrease of 68% in helper data size compared to
other algorithms in a reference scenario. This is achieved without
increasing the number of PUF bits and a minimal increase in
logic size.

Index Terms—Physical Unclonable Functions (PUFs), Syn-
drome Coding, Data Compression, Differential Sequence Coding
(DSC), Fuzzy Extractor, Run-Length Encoding (RLE), FPGA.

I. INTRODUCTION

Secure cryptographic keys for low prices are a prerequisite

to protect simple embedded systems from theft of sensitive

data and intellectual property. Silicon Physical Unclonable

Functions (PUFs) enable secret key generation in standard

CMOS technology for devices without secure storage. Similar

to reading out a biometric pattern, PUFs generate a unique

and relatively stable secret during runtime inside a chip. A

PUF evaluates manufacturing variations within the circuit to

create a unique signal within every device. A PUF output

measures the physical properties inside the device and maps

the measurement result into a PUF response, which is typ-

ically a digital signal. Since physical properties depend on

environmental conditions and measurements always contain

noise, PUF responses of the same device are highly correlated,

but not fully identical.

Therefore, syndrome coding schemes such as Code-Offset

Syndrome Coding [1], Index-Based Syndrome Coding (IBS)

[2] or Differential Sequence Coding (DSC) [3] enable error

correction for PUFs to increase the reliability of the output

key. A syndrome coding scheme creates helper data from a

PUF response and an external secret. The helper data permits

to restore either the initial PUF response or a stable secret that

can be directly used as key. The helper data must not leak

any substantial information about the resulting key so that it

can be placed in unsecured external storage. In this work, we

will present a concept to improve the efficiency of syndrome

coding schemes.

Typically, syndrome coding is concatenated with error-

correcting codes (ECCs) to further reduce the output bit error

probability. We focus on the helper data representation in this

work, so ECC properties are not addressed in detail. A fuzzy

extractor is a special case of syndrome coding, and optionally

ECC. Instead of storing and reproducing a user-defined key, a

fuzzy extractor generates a device-dependent key that cannot

be chosen arbitrarily.

Syndrome coding schemes usually use non-uniform helper

data. This motivated us to investigate for the first time how

data compression increases the efficiency of syndrome coding

schemes. Information Theory offers a full toolbox of powerful

data compression algorithms for different purposes [4]. If the

elements in a sequence are not independent or the letters of

the alphabet of the elements are not distributed uniformly, a

data compression, or more general, a source coding algorithm

can be applied to remove redundancy in the given sequence

to represent the sequence by a shorter sequence. A decoder

restores the initial sequence.

Our contributions: We show that helper data compression

can be applied to several syndrome coding schemes. We use

DSC, a very recent syndrome coding scheme, to give a sample

implementation of helper data compression and discuss the

efficiency. Applying Run-Length Encoding (RLE) [5], a data

compression algorithm, to the DSC helper data reduces its

size significantly with low implementation overhead. We study

different parameter sets to provide an efficient solution for a

real world scenario.

The FPGA implementation demonstrates the efficiency in

practice. Our implementation uses 32% of the helper data

of the best published non-DSC work. The hardware effort to

decompress the helper data adds only 4% more slices.

Outline: Section II introduces related work. Section III

demonstrates that helper data compression can be widely

applied. We give a summary over DSC, a recent approach

to store helper data, in Section IV. In Section V, RLE is

presented. The efficiency of RLE is addressed in Section VI

and the yield is analyzed in Section VII. We present and

evaluate our FPGA implementation in Section VIII.978-3-9815370-2-4/DATE14/ c© 2014 EDAA

II. RELATED WORK

Quantitative comparisons of ASICs with popular PUFs are

presented in [6]. A comprehensive introduction to the topic

can be found in [7].

Code-Offset Syndrome Coding by Dodis et al. [1] XORs

the PUF response with a random codeword of an ECC and

stores the result as helper data. We will compare our results

to the code-offset implementations of Bösch et al. [8], as well

as Maes et al. [9]. Other implementations were presented by

Maes et al. [10] and van der Leest et al. [11].

Index-Based Syndrome Coding (IBS) by Yu and Devadas

[2] uses pointers for information hiding that refer to PUF

outputs with specific properties. Complementary IBS by Hiller

et al. [12] applied an iterative IBS encoding several times on

the same set of PUF outputs to increase the reliability. In [13],

Yu et al. compared previous work with focus on security and

reliability.

In this work, we will design our implementation to fulfill

the requirements defined by Guajardo et al. [14] with the

PUF output distribution by Maes et al. [15]. A 128 bit key

with key error probability < 10−6 is derived from an SRAM

PUF with average bit error probability 15%. During helper

data generation, the SRAM cells are read out several times to

estimate the reliability. During key reproduction the SRAM is

read out once. Therefore, our results can be directly compared

to the reference implementations in [9], [12], and partly [8].

III. MOTIVATION

Several implementations of syndrome coding schemes con-

tain different parts of helper data: (nearly) uniform parts and

also non-uniform parts. For PUFs with a high uniqueness,

we can assume that the code-offset bits in [8] and [9], the

IBS pointers in [2] and [12], and the inversion bits in DSC

[3] as uniform and independent. Therefore, they cannot be

compressed.

In contrast, e.g. the reliability information in [9] and [12]

depends on the non-uniform reliability distribution of the PUF

outputs. Therefore, the size can be reduced with data com-

pression algorithms. DSC distance pointers are not uniformly

distributed either. In [9], 9 helper data bits contain the code-

offset and 8 bit reliability information. Every helper data

block in [12] combines a 4 bit pointer and 5 bit reliability

information. The distributions of the reliability information

can be found in [15], [16]. For DSC, every code-sequence

bit is mapped to a 7 bit distance value and one inversion bit.

We can calculate the entropy of the helper data easily since

all distributions are known. The results in Table I show that

existing fuzzy extractor implementations have relatively large

amounts of non-uniform helper data that could be compressed.

We are aiming for a low hardware complexity so the com-

pression algorithm has to be chosen carefully according to

distribution.

For the DSC implementation, the non-uniform part of the

helper data has an entropy of 858 bit but occupies 1, 904 bit of

storage. In theory, this part could be compressed by 55%. In

this work, we will show that we can achieve a compression of

Scheme Code-Offset [9] C-IBS [12] DSC

Uniform
Helper Data 1, 536 4, 096 272

Non-Uniform
Helper Data 12, 228 5, 120 1, 904

Entropy of the Non-
Uniform Helper Data 10, 929 2, 959 858

Max Compression of Non-
Uniform Helper Data 11% 42% 55%

Max Overall
Compression 9.5% 23% 48%

Table I: Helper data structure and maximum compression

rates in previous fuzzy extractor implementations

49% of the non-uniform part in practice with a low hardware

overhead. In the end, this leads to an overall decrease of 43%
of the entire helper data. This shows that the theoretical idea

of helper data compression can lead to profound benefits in

practice.

IV. DIFFERENTIAL SEQUENCE CODING

Differential Sequence Coding (DSC) is a new syndrome

coding scheme, introduced in [3]. It ensures that no unreliable

PUF outputs will contribute to the key generation process. The

reliability of specific PUF outputs varies due to the stochastic

manufacturing process. We are able to predict the statistical

properties of a long sequence of PUF outputs but it is hard to

predict the properties of a small block. Instead of splitting

a PUF response into fixed blocks, DSC assigns a variable

number of PUF outputs to every code sequence bit.

In a two stage scenario, the helper data generation contains

an ECC encoder and a DSC encoder. We concatenate a

DSC encoder and a convolutional code [17]. A random input

sequence is encoded to a code sequence ck with length k in the

convolutional encoder. The DSC algorithm encodes one code

sequence bit ci (i ∈ {1, ..., k}) in every iteration and executes

the same loop multiple times. DSC indexes only reliable

PUF outputs with an error probability smaller than a given

maximum bit error probability pmax with 0 < pmax < 0.5.

The DSC encoder searches the PUF outputs Rn sequentially

and the offset counter o keeps track of the absolute position of

the last indexed PUF output. In iteration i, the DSC encoder

searches the PUF outputs Rn for the first PUF output Rj and

j ∈ N that fulfills

Pr[rj+o = 1] ≥ 1− pmax ∨ Pr[rj+o = 0] ≥ 1− pmax (1)

The helper data wi contains a distance pointer ui that points

from the last indexed PUF output to the current indexed PUF

output and an inversion bit vi. The inversion bit marks if the

expected PUF response and the code sequence bit are identical

or inverse.

vi =

{

0 if Pr[rj+o = ci] ≥ 1− pmax

1 else
(2)

Figure 1 shows a small example for DSC encoding. White

boxes represent a zero and black boxes represent a one. A PUF

output R with Pr[r = 0] ≥ 1 − pmax is also denoted with a

white box. Accordingly, a black box indicates Pr[r = 1] ≥
1 − pmax and gray boxed stand for unreliable PUF outputs

with pmax < Pr[r = 1] < 1− pmax.

1 0 3 4

4
c

16
R

4
u

4
v

Figure 1: Example for DSC encoding

The code sequence c4 = (0, 1, 1, 0) and the PUF outputs

R16 are encoded to four helper data blocks w4 = (u, v)4.

R2 is the first reliable PUF output. We count the unreliable

PUF outputs between two reliable ones as distance pointer, so

u1 = 1. For the first inversion bit, v1 = 0 since both boxes

have the same color. R3 is the next reliable PUF output, so

u2 = 0 and again v2 = 0. After skipping three unreliable

PUF outputs, R7 is indexed by u3 = 3. Since a white box is

indexed for a black code bit, v3 = 1. u4 and v4 are computed

accordingly, such that u4 = (1, 0, 3, 4) and v4 = (0, 0, 1, 1).
As a generalization of the example, the encoding algorithm

presented in Algorithm 1 searches n PUF outputs Rn with

PUF responses rn for PUF outputs fulfilling Equation 1.

The helper data sequence wk contains the syndrome. Every

element wi = (ui, vi), i = 1, ..., k, contains the distance ui ∈
{0, ..., 2l − 1} for a fixed l ∈ N, and an inversion bit vi ∈
{0, 1}.

In Algorithm 1, there are two possible sources of error, for

which we decide that the PUF is not usable and discard the

chip: error 1: the number of PUF bits meeting the required

error probability smaller pmax in the entire PUF is too small

(with error probability ǫ1) or error 2: the distance between

any indexed PUF bits exceeds the maximum l bit counter value

(with error probability ǫ2).

For PUF outputs Rn with cumulative distribution function

cdf over their expectations, the probability p that a PUF output

is indexed is given by

p = cdf(pmax) + 1− cdf(1− pmax) (3)

Since u corresponds to the number of unsuccessful trials to

find a good PUF output, the offset pointers uk are distributed

according to a geometric distribution Pp with parameter p,

such that

Pp(u) = p(1− p)u (4)

We evaluated different parameter sets of DSC and convo-

lutional codes to find an efficient combination that fulfills the

required key error probability of 10−6 in [15] for a 128 bit

key using an SRAM PUF with average bit error probability

of 15%. Using p = 0.264 and a (2, 1, [7]) convolutional code

Algorithm 1: DSC Encoding

o := 0 (The offset counter o tracks absolute the position

within Rn)

for i := 1 → k do

Search for one PUF output for each code sequence bit.

for j := 1 → 2l do

if o+ j > n then

Return error 1 (Not enough PUF outputs within

the specification)

else if

Pr[rj+o = 0] ≥ 1− pmax ∨ Pr[rj+o = 1] ≥ 1− pmax

then

ui := j − 1
if Pr[rj+o = ci] ≥ Pr[rj+o = ci ⊕ 1] then

vi := 0 (No inversion)

else

vi := 1 (Inversion)

end if

o := o+ j
Break

else if j = 2l then

Return error 2 (Counter overflow)

end if

end for

end for

[17] led to the best results. In this case, ǫ1 + ǫ2 < 10−3

for n/k = 4.5. Therefore, we will focus on an efficient

representation for p = 0.264 in the following. See [3] for

a detailed reliability and security analysis of DSC.

By default, the same storage size is assigned to all helper

data elements ui such that every element can store the highest

specified pointer that only occurs with a small probability.

So, the maximum pointer defines the size for all elements.

However, almost all elements store smaller pointers that could

be represented in a smaller memory.

In this work, we will tackle this open problem by apply-

ing a data compression algorithm that assigns variable size

representations to the index pointers.

V. RUN-LENGTH ENCODING

Golomb’s Run-Length Encoding (RLE) [5] is a source

coding algorithm designed for sequences with geometric prob-

ability distribution. An improved version was presented by

Gallager and van Voorhis [18] in 1975.

The helper data distribution given in Equation 4 is geomet-

ric, so RLE can be applied to our problem. Note that [5] treats

runs of successful draws ended by an unsuccessful one and in

our case, the successful draw ends a run.

RLE represents any integer number u by a series of ones

followed by a small number of a finite alphabet A with

elements aj ∈ A, j = 0, ...,m − 1 and |A| = m. For the

run-length part, m determines how many unsuccessful trials

are represented by every 1 and a gives the number in the

remaining u mod m trials. As straight-forward approach, the

binary representation of j is chosen as aj .

The algorithm can be interpreted as Euclidean division of

u by m with different representations of the quotient and

remainder. The quotient is represented in a series of ones,

followed by a zero, and the remainder in the finite alphabet

A. Therefore, the compressed representation q(u) of u is given

by

q(u) = 1⌊
u

m
⌋0a(umodm) (5)

According to [18], optimal codes can be constructed for an

integer m chosen in dependency of p ∈ [0, 1] such that

(1 − p)m + (1 − p)m+1 ≤ 1 < (1− p)m−1 + (1− p)m (6)

As an example, Table II shows RLE representations of small

integers for m = 1, m = 2 and m = 4. For different

parameters m, the size of the fixed length part and the overall

length l show large variations. Therefore, the selection of m
will be addressed later in this work.

integer uncoded m = 1 m = 2 m = 4

0 0000 0 00 000

1 0001 10 01 001

2 0010 110 100 010

3 0011 1110 101 011

4 0100 11110 1100 1000

5 0101 111110 1101 1001

6 0110 1111110 11100 1010

7 0111 11111110 11101 1011

8 1000 111111110 111100 11000

9 1001 1111111110 111101 11001

10 1010 11111111110 1111100 11010

Table II: Run-length encoding with m = 1, m = 2 and

m = 4 according to [5]

The length l(u), i.e. the number of bits to represent u is

given by the individual length of the run-length part and the

fixed length of the finite alphabet.

l(u) =
⌊ u

m

⌋

+ 1+ log2 m (7)

Therefore, we try to minimize the expectation E(l), where

l(u) is distributed with the geometric probability distribution

Pp(u) given in Equation 4.

VI. HELPER DATA COMPRESSION

Goal of this section is to identify a suitable parameter set to

increase the efficiency of DSC with helper data compression.

The pointer lengths in RLE differ depending on the input

and the code parameters. This section shows compressions

for different parameter sets to identify the optimal parameter

for our problem. For increasing p in geometric distributions,

higher integer numbers u are selected less likely, so the

average amount of information per symbol decreases 1.

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10

11

p

E
(l
)

Entropy

m = 1

m = 2

m = 4

m = 8

Figure 2: Average RLE encoded pointer sizes and entropy

In Figure 2, p is plotted on a logarithmic x-axis and the

average length is shown on the linear y-axis. The entropy (solid

cyan line) is the lower bound for every lossless compression,

so we try to approach this limit as closely as possible. The

other plots show the average pointer sizes for different RLE

parameters.

For low m, the fixed part is rather small whereas the

RLE part increases rapidly with increasing source entropy.

In contrast, high m have a large fixed part and only slowly

increasing RLE parts.

For p = 0.264, m = 2 approaches the entropy closest. With

an average pointer size of 3.18, the encoded representation is

only 0.03 bit higher as the entropy.

Varying m gives very low overheads for various parameters

p such that RLE enables near optimal compression for DSC

independently of the parameter p.

VII. YIELD ANALYSIS

The last section demonstrated that in average at least 3.18
bit have to be assigned to each pointer and also the inversion

bit has to be stored. For an embedded system, we have

to assign a specific amount of memory for the helper data

pointers to generate one single key.

We aim for a yield greater 99.9%, thus tolerating helper

data overflow errors with a probability of ǫ2 ≤ 5 · 10−4.

Figure 3 shows the empirical helper data size distributions

Sm(l) with RLE parameter m for helper data size l and 107

simulated samples. The distribution for m = 2 has the lowest

mean value.

Figure 4 demonstrates that the size of the helper data

can be reduced significantly compared to the 2, 176 bits of

1For very low p, the expression (1− p)u only decreases very slowly with
increasing u. Therefore, many u have similar probabilities which results in
a high entropy. For high p, small u are chosen with a high probability and
(1− p)u decreases much faster. This leads to a low entropy.

1000 1100 1200 1300 1400 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Helper Data Size

E
m

p
ir
ic

a
l
P

ro
b
a
b
ili

ty
 D

is
tr

ib
u
ti
o
n

m = 1

m = 2

m = 4

m = 8

Figure 3: Helper data length distribution functions based on

107 simulated PUFs with DSC encoding with p = 0.264,

RLE helper data compression and a (2, 1, [7]) convolutional

code

1000 1050 1100 1150 1200 1250 1300 1350 1400
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Helper Data Size

E
rr

o
r

P
ro

b
a
b
ili

ty
 ε

2

Figure 4: Overflow error probabilities for different fixed

helper data sizes and 107 simulated PUFs with DSC

encoding with p = 0.264, helper data compression with

m = 2 and a (2, 1, [7]) convolutional code

the uncompressed version without reducing the yield. For

uncompressed helper data, dedicated storage is assigned to

every pointer, so no overflow can be tolerated for any pointer.

Here, several small pointers can compensate one extremely

large one. The compensation permits to assign a smaller

storage overhead, because now only a large number of large

pointers can cause an overflow instead of one single large

pointer.

At least 1150 bits should be assigned for a reasonable yield.

However, ǫ2(l) decreases rapidly around 1200 helper data bits.

The error probability decreases by several orders of magnitude

for spending 5% to 10% more helper data bits. As a result,

ǫ2(l) ≤ 5 · 10−4 can be achieved by l = 1224.

VIII. IMPLEMENTATION

The DSC hardware implementation with helper data com-

pression is similar to a DSC implementation without helper

data compression with major modifications in the DSC de-

coder.

PUF Key

Helper Data

DSC DEC ECC

DEC

HASH
8

XOR

SE

PA

SRC DEC

DSCcmpr DEC

8

Figure 5: DSC reproduction with helper data compression

The new DSCcmpr DEC module provides the joint func-

tionality of the basic DSC decoder and the RLE decoder.

The new module permits to remove the large counters in the

DSC module. Through this synergy, the number of registers

decreased and also required logic decreased slightly. A small

serial parallel converter (SE PA) is added to the helper data

path to convert the serially incoming helper data into chunks

of 8 for the SPONGENT hash function.

Table III compares our new hardware implementation with

previous work. The exact DSC cycle counts depend on the

pointers in a specific device. To get a pessimistic estimate,

both DSC cycle counts were obtained by setting half of the

distance pointers to 4 and the other half to 5 so that all PUF

response bits are read in. The DSC helper data is compressed

by 43% with a minimal hardware overhead. Thus, our new

DSC fuzzy extractor with helper data compression requires

only 9% to 32% of the helper data of the comparable non-

DSC approaches.

Loading in the data bitwise instead of bytewise increases

the overhead for the communication at the input side. This

leads to the 10% increase in execution time.

However, the implementation is still highly efficient. Our

compressed DSC approach leads to the lowest PUF and helper

data sizes, which are very important measures. The reference

implementation by Bösch et al. [8] requires about 3× more

PUF outputs, helper data and slices with a slight benefit in

execution time. The fast soft decision implementations by

Maes et al. [9] and Hiller et al. [12] require about one third

of the execution time and are about 10% smaller. However,

they require more PUF outputs and more substancial, 6.5×
and over 11× more helper data.

Tables IV presents detailed synthesis results for a Xilinx

Spartan-3E xc3s1200e-5fg320 legacy FPGA to provide num-

bers that are comparable to the reference implementations.

The Spartan-6 (xc6slx45-3fgg484) implementation in Table V

shows the complexity on an entry level state-of-the-art FPGA

and can be used as reference point for future implementations.

Designing DSC in simple loops for low complexity and

choosing a very specialized data compression algorithm pay

PUF Output Bits Helper Data Bits Slices Block RAM Bits Clock Cycles

Code-Offset Golay [8] 3, 696 3, 824 ≥ 907 0 > 24, 024

Code-Offset RM-GMC [9] 1, 536 13, 952 237 32, 768 10, 298

C-IBS RM-GMC [12] 2, 304 9, 216 250 0 –

DSC Conv. Code [3] 1, 224 2, 176 262 11, 264 30, 846

Compressed DSC Conv. Code. 1, 224 1, 224 272 11, 264 33, 925

Table III: FPGA implementations of reproduction procedures of the DSC and reference implementations synthesized for

Xilinx Spartan 3E FPGAs

DSCcmpr Dec Viterbi Dec SPONGENT XOR Mod Entire Module

Slices Total 17 91 78 61 272

Registers 9 32 109 43 219

Logic LUTs 26 154 146 109 410

Block RAM Bits − 11, 264 − − 11, 264

Table IV: Synthesis results of the DSC reproduction procedure implementation for Xilinx Spartan-3E FPGA

DSCcmpr Dec Viterbi Dec SPONGENT XOR Mod Entire Module

Slices Total 7 50 15 24 92

Registers 9 32 21 36 121

Logic LUTs 18 115 34 67 237

8B Block Rams − 4 11 − 15

Table V: Synthesis results of the DSC reproduction procedure implementation for Xilinx Spartan-6 FPGA

off in the implementation. Concatenating DSC with an area

optimized Viterbi decoder results in a compact total imple-

mentation size.

IX. CONCLUSIONS

Helper data compression is a new concept to increase the

efficiency of popular syndrome coding schemes.

For the example of an improved coding scheme called

compressed DSC, we have shown that the helper data size

can be reduced with RLE data compression. We change the

fixed storage assignment for each helper data element to the

size that is actually required for every single element.

In the benchmark SRAM scenario, RLE decreases the size

of a single helper data element from 8 to in average 4.18.

Our compressed DSC implementation is the most efficient

FPGA implementation for this scenario known to date. The

overall helper data size was lowered by 43% compared to the

uncompressed DSC helper data. Further, our implementation

requires 32% of the helper data of the best comparable non-

DSC candidate.

Acknowledgements: This work was partly funded by the

German Federal Ministry of Education and Research in the

project SIBASE through grant number 01S13020A.

REFERENCES

[1] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in EUROCRYPT, ser.
LNCS, vol. 3027. Springer, 2004, pp. 523–540.

[2] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE D&T, vol. 27, no. 1, pp. 48–65,
2010.

[3] M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl,
“Breaking through fixed PUF block limitations with differential se-
quence coding and convolutional codes,” in TrustED, 2013, pp. 43–54.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
John Wiley & Sons, 2006.

[5] S. W. Golomb, “Run-length encodings (corresp.),” IEEE Trans. on Inf.

Th., vol. 12, no. 3, pp. 399–401, 1966.
[6] S. Katzenbeisser, U. Kocabas, V. Rozic, A.-R. Sadeghi, I. Verbauwhede,

and C. Wachsmann, “PUFs: Myth, fact or busted? a security evaluation
of physically unclonable functions(PUFs) cast in silicon,” in CHES, ser.
LNCS, vol. 7428. Springer, 2012, pp. 283–301.

[7] R. Maes, “Physically unclonable functions: Constructions, properties and
applications,” Dissertation, Katholieke Universiteit Leuven, 2012.

[8] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient helper data key extractor on FPGAs,” in CHES, ser. LNCS,
vol. 5154. Springer, 2008, pp. 181–197.

[9] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementation
of a soft decision helper data algorithm for SRAM PUFs,” in CHES.
Springer, 2009, pp. 332–347.

[10] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully
functional PUF-based cryptographic key generator,” in CHES, ser.
LNCS, vol. 7428. Springer, 2012, pp. 302–319.

[11] V. van der Leest, B. Preneel, and E. van der Sluis, “Soft decision error
correction for compact memory-based PUFs using a single enrollment,”
in CHES, ser. LNCS, vol. 7428. Springer, 2012, pp. 268–282.

[12] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS:
Application specific error correction for PUFs,” in IEEE HOST, 2012,
pp. 1–6.

[13] M.-D. Yu, D. M’Raihi, S. Devadas, and I. Verbauwhede, “Security and
reliability properties of syndrome coding techniques used in PUF key
generation,” in GOMACTech, 2013, pp. 1–4.

[14] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in CHES, ser. LNCS, vol. 4727.
Springer, 2007, pp. 63–80.

[15] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data
algorithm for SRAM PUFs,” in IEEE ISIT, 2009, pp. 2101–2105.

[16] M. Hiller, F. De Santis, D. Merli, and G. Sigl, “Reliability bound and
channel capacity of IBS-based fuzzy embedders,” in NASA/ESA AHS,
2012, pp. 213–220.

[17] M. Bossert, Channel Coding for Telecommunications. New York: John
Wiley & Sons, 1999.

[18] R. G. Gallager and D. C. Van Voorhis, “Optimal source codes for
geometrically distributed integer alphabets (corresp.),” IEEE Trans. on

Inf. Th., vol. 21, no. 2, pp. 228–230, 1975.

