
Hardware Virtualization Support for Shared

Resources in Mixed-Criticality Multicore Systems

Oliver Sander∗, Timo Sandmann∗, Viet Vu Duy∗, Steffen Bähr∗, Falco Bapp∗, Jürgen Becker∗,

Hans Ulrich Michel†, Dirk Kaule†, Daniel Adam†, Enno Lübbers‡, Jürgen Hairbucher‡,

Andre Richter§, Christian Herber§ and Andreas Herkersdorf§

∗Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, firstname.lastname@kit.edu
†BMW F+T, München, Germany, firstname.lastname@bmw.de
‡Intel GmbH, München, Germany, firstname.lastname@intel.de

§Technical University Munich (TUM), München, Germany, firstname.lastname@tum.de

Abstract—Electric/Electronic architectures in modern auto-
mobiles evolve towards an hierachical approach where functional-
ities from several ECUs are consolidated into few domain comput-
ers. Performance requirements directly lead to multicore solutions
but also to a combination of very different requirements on such
ECUs. Using virtualization in addition is one promising way of
achieving segregation in time and space of shared resources.
Based on examples taken from the automotive domain several
concepts for efficient hardware extensions of coprocessors and I/O
devices are shown in this contribution. These provide mechanisms
to ensure quality of service (QoS) levels in terms of execution time,
throughput and latency. The resulting infotainment architecture
is a feasibility study and is integrated into a vehicle demonstrator
as centralized infotainment platform (VCT).

I. INTRODUCTION

Information and communication systems play an ever in-
creasing role in satisfying customer requirements in today’s
high-end automobiles. Especially in the last two decades
the automobile industry had to face an increasing amount
of functions, mainly realized through electronic systems and
software. For this reason new electronic control unit (ECU)
architectures and interfaces are needed [1].
One possible evolutionary step is a domain specific central-
isation, namely high integration of functions into a small
number of high performance ECUs (domain control units).
Such electric/electronic network architecture has the potential
of a harmonisation among different product lines. Higher
energy efficiency at lower costs is just one advantage. However
the huge amount of functions on one single domain computer
imposes some additional challenges. Each software has its
specific requirements, especially regarding safety (e.g. ISO
26262) or security (common criteria), thus demanding a strict
separation between diverse functions. One possible solution
is the use of virtualization techniques on these centralized
computing platforms [1]. Due to the high integration of com-
plex functionality on one single ECU also a huge amount of
computing power must be provided.
Multicore is the most promising solution to provide this high
level of performance [2]. But multicore also introduces addi-
tional side effects concerning real-time behaviour, access con-
tention, and overall system complexity mostly due to shared
resources like memories, coprocessors or I/O peripherals [3].
Accesses to shared functions need to be coordinated to allow

efficient and predictable sharing of these dedicated resources.
As soon as the traditional exclusive access paradigm of single-
function platforms is lifted, a deeper analysis of the hardware
resources to be shared is necessary.
The focus of our current work is to demonstrate the feasibility
of multicore virtualization as a key enabling technology for
the centralisation of functionality from different infotainment
ECUs onto one single commercial off-the-shelf (COTS) hard-
ware platform - the Virtualized Car Telematics (VCT) com-
puter. This consolidation includes safety relevant instrument
cluster information as well as customer specific applications
that are not qualified by the vehicle manufacturer. Those
functions share dedicated hardware resources among several
virtualized partitions. Although sharing can be managed by
the hypervisor, this solution may not be able to meet strict
performance and latency requirements due to the software
management overhead. The approaches presented in this paper
overcome these limitations by means of virtualization hardware
support for shared resources, namely coprocessors and I/O
peripherals.

II. VCT DEMONSTRATOR FRAMEWORK

The VCT demonstrator features an Intel-based multicore
system, which is connected to various input/output devices
like touch controller, steering wheel control buttons, several
displays and different network types (CAN, Ethernet, Wi-
Fi, UMTS/LTE). There are support computers simulating the
environment and/or acting as proxy for the communication
between the demonstrator computer and the actual vehicle. The
complete hardware platform including support devices (power
supply, input, display and network switches, etc.) are mounted
on a metal rack which is built into the trunk of a BMW 320d
touring car (see Fig. 1).

A. Hardware

The Intel-based computer features an i7-3770T multicore
CPU (3rd Generation Intel Core i7), mounted on an Intel
DQ77MK board. The CPU features four physical cores and
supports up to eight parallel threads via simultaneous mul-
tithreading. It also features hardware support for processor
virtualization (VT-x), extended page tables (EPT), and I/O
virtualization (VT-d). The PCI Express (PCIe) 3.0 x16 bus
add-in card connector, driven directly by the CPU, is used for
connecting a FPGA board as described below.978-3-9815370-2-4/DATE14/ c©2014 EDAA

Fig. 1. Hardware Setup Mounted on the Rack

The FPGA is a Xilinx Virtex 7 that is mounted to a Xil-
inx VC709 board [4]. The FPGA is used for the hardware
implementation of the shared devices - one self-virtualized
I/O controller for the controller area network (CAN) and one
cryptographic coprocessor for vehicle-to-X (Car2X) commu-
nication - and their virtualization support based on the SR-
IOV standard [5]. Furthermore, a custom extension board is
connected via the FMC HPC connector of the FPGA board
and delivers two CAN interfaces, which are needed by the
CAN controller, as well as several debug interfaces.
PCIe is one of the most popular bus standards used in micro-
processor systems and is now emerging in high performance
embedded systems. Its attractiveness stems from the capability
to execute high-speed data transfers. Recently, due to the trend
towards virtualization, the demand for using a single PCIe
device in several virtual machines (VMs) arose. This was
typically dealt with by contacting the governing hypervisor
for each access. However this has an undesired impact on the
resulting latencies [6]. Motivated by this drawback the SR-
IOV standard arose. It allows a device to facilitate access to its
resources across several VMs by making use of PCIe functions.
Those are partitioned in two types: physical functions (PFs),
typically used by hypervisor for configuration, and virtual
functions (VFs), used by the VMs for I/O. The Xilinx Virtex
7 FPGA featured on the VC709 board supports the SR-IOV
specification with up to 2 PFs and 6 VFs, which are fully
utilized and divided evenly between the two shared devices of
the demonstrator.

B. Software

On the software side, a virtualized architecture with 3
VMs running on top of the Wind River (WR) hypervisor are
deployed (see Fig. 2). While the trusted VM based on Ubuntu
contains only software from the vehicle manufacturer (OEM)
which is supposed to be safety critical and free from malicious
code, an untrusted VM running Android is available for the
integration of arbitrary user applications. Furthermore, there
is a server VM running a Linux distribution which provides
services used by the remaining VMs, most of them with respect
to other shared resources which are not the focus of this work

Virtual Machine 1 Virtual Machine 2 Virtual Machine 3

Core 2Core 0 Core 1

Trusted Ubuntu

Core 3

Coprocessor

IF IFIFCfg

CAN Controller

IF IFIFCfg

Wind River Hypervisor

Untrusted

Android
Server Linux

Cust. Apps CTRL / Mgt.Trusted OEM Apps

Fig. 2. Software Architecture of the VCT Intel-based Demonstrator Computer

e.g. audio, graphics and mass storages.
The WR hypervisor takes care of all software aspects of
the virtualization implementation on the target platform. The
core hypervisor includes the control of the cores, the memory
management unit, the interrupt logic, and the management of
VMs. Based on the core function of WR hypervisor, physical
devices can be exposed to the operating system in a VM in
different ways. In particular these cases can be distinguished:

1) Passthrough: a device is used exclusively by one VM.
The guest operating system’s driver controls the device com-
pletely.

2) Shared: a device is used by more than one VM. The
primary driver for the device is located inside the hypervisor;
this is called an actual device driver (ADD). This ADD
controls the device and also decides on the actual sharing.
For each VM there is a virtual device in the hypervisor which
moderates the communication between the ADD and the driver
in the VM’s operating system.

3) Combined: an SR-IOV capable device is a good exam-
ple for this case. SR-IOV has a management interface (PF)
and VM interfaces (VFs) realized in hardware. Such a device
can be treated as passthrough for the VFs and the management
function is realized by an ADD in the hypervisor. In the VCT
computer platform the self-virtualized CAN controller and the
Car2X coprocesor fall into this category of device sharing,
with the PFs assigned to the hypervisor and each VM having
exclusive access to one VF of the CAN controller and one VF
of the Car2X coprocessor. However SR-IOV is currently not
directly supported by the WR hypervisor so driver extensions
have to be implemented.

III. PCIE SR-IOV HARDWARE ADAPTER

Usage of PCIe on the FPGA is provided by Xilinx’s PCIe
Integrated Endpoint IP core [7]. This PCIe Endpoint offers
solely one single shared interface for all transfers of all VFs
and PFs. Thus in order to enable usage for all participants
i.e. coprocessors and I/O modules with their functions, a
communication infrastructure was established. Its main goals
are to allow participants to maintain an interface independent
of the endpoint, decoupling participants from its specifics,
and allow high performance communication. Our infrastructure
developed to achieve this is shown as a SysML model in Fig. 3.

the cryptographic coprocessor first in order to calculate their
valid signatures. Therefore one interface to the coprocessor
is assigned exclusively to each partition. The Car2X app
within the Android partition represents other future Car2X
user applications, which may utilize and potentially misuse the
Car2X communication interface and thus the coprocessor. To
demonstrate the feasibility of the developed temporal isolation
and QoS scheduling concept for coprocessors that is described
below, the Android Car2X app tries to send out the maximum
amount of messages at the maximum speed available and it is
handled in a best-effort manner.

E. Selected Results

To investigate the scalability and robustness of our schedul-
ing approch, we run a simulation setup with an increasing
number of best-effort partitions. The first setup consists of two
active partitions, a request length of 2000 computation cycles
representing a safety-critical partition p1 with 20 assigned slots
and 500 cycles for a best-effort partition p2 with 10 slots, each
slot with a length of 110 cycles. The first partition sends regular
requests, which are assumed to be relatively seldom but highly
safety-critical. Requests from the other partitions are generated
whenever its previous request was finished. Subsequently we
added more partitions to the system, each of them gets 1
slot, which is deducted from the slot amount of partition p2.
Therefore we could add up to 9 additional partitions as listed
in the first column of table I.

TABLE I. EVALUATION OF THE SCALABILITY

Partition p1 Partition p2 Partition pn

|P | max min avg max min avg max min

2 3204 2015 2894 2511 500 1015 - -
3 3205 2015 2892 2623 500 1085 16500 16491
4 3205 2010 2898 2731 500 1173 16500 16381
5 3204 2015 2896 2848 500 1265 16495 16271
6 3205 2015 2896 2958 500 1385 16500 16161
7 3205 2015 2897 3068 500 1531 16500 16051
8 3204 2015 2895 3187 500 1693 16500 15941
9 3205 2015 2892 3297 500 1915 16500 15831

10 3205 2015 2898 6283 500 2173 16495 15721
11 3204 2015 2889 6502 500 2556 16500 16491

For each partition the aggregated maximum, minimum
and average values of a 100.000 cycles lasting simulation
are shown in table I. As a first outcome, the variance of
the response times for safety-critical Partition p1 is minimal.
This shows the guaranteed quality of service, which ensures
an interference-free operation of the safety-critical partition
regardless of the number of active best-effort partitions. As
expected, the average response time of partition p2 increases
nearly linearly with the number of added partitions, because
the number of slots available for partition p2 is reduced
equally. The response times of partition pn, which represents
all remaining partitions, are uneffected, because all these n
partitions get 1 slot for their computations.

V. HARDWARE VIRTUALIZATION OF I/O PERIPHERALS

Automotive communication is constrained by real-time re-
quirements. Because SR-IOV offers the higher predicatability
and lower latencies than other device virtualization approaches,
we developed a self-virtualized I/O controller [10] for CAN,

the most common fieldbus used in automotive settings. This
section gives an overview of the proposed architecture, tem-
poral isolation of the virtual CAN controller instances, and
security extensions.

A. Architecture of a Self-Virtualized CAN Controller

The virtualized CAN controller is connected to the host
system through one physical and multiple virtual interfaces
(PF/VF) as described in Section III. The VFs allow data path
operations (Tx/Rx) to be executed through abstract interfaces.
While VFs can provide status information like counters to
the VMs, it is not possible for VMs to manipulate memory
contents or settings directly.
Privileged requests are issued through the PF. The PF config-

Fig. 6. Architectural overview of a multicore processor connected to the
virtualized CAN controller. VMs can access the CAN bus through virtual
functions (VFs) that are managed by the hypervisor through the physical
function (PF).

ures the VFs (e.g. by assigning an amount of message memory
to a VF) and the protocol specific settings like the CAN bus
frequency. The PF driver will be operated by the hypervisor
or a privileged VM as depicted in Fig. 6.
A key aspect in the virtualization of CAN controllers is how
the access towards the CAN bus is divided among the virtual
controllers. Normally, physical controllers compete on the
CAN bus in a bitwise arbitration scheme, which is based on
the message ID of the frame (with the lowest ID having the
highest priority). Emulating this behavior in the arbitration
module creates a setup, in which virtual controllers compete
with other CAN nodes on the CAN bus.
This is realized by providing priority queues within the Tx
memory for each virtual controller, which are freely allocated
in a RAM module. During an interframe spacing on the CAN
bus, the arbiter module finds the highest priority message and
forwards it to the CAN bus. Using other data structures like
FIFOs would result in priority inversions, causing increases in
worst case latencies that make real-time operation impossible.
Incoming CAN frames are discarded or accepted based on a list
of filters. Configurable interrupts can be issued to all receiving
VMs. This relieves the VMs from the task of message sorting
and avoids duplicating the data locally within the I/O device.

Each VM can read a preconfigured subset of all frames. This
restriction is ensured by the read-out protection module.

B. Temporal Isolation of Virtual CAN Controllers

Hardware modules are shared in order to guarantee
resource-efficiency. This makes the architecture prone to tem-
poral interference among the VFs. To resolve this issue, we
introduce a scheduling mechanism within the host-controller
interface in order to isolate the behavior of each virtual CAN
controller.
Requests from the VMs may arrive at the host-controller
interface at peak rates that cannot be served immediately.
Therefore requests have to be buffered in FIFOs. To enable
a separation of virtual interfaces, a distinct buffer is provided
for each virtual controller v. A scheduling algorithm ensures
that all buffers are served as shown in Fig. 7.
The algorithm is based on a time-based, weighted round-robin

Fig. 7. Scheduling of virtual interfaces: Requests from VMs are buffered
within the host-controller interface and issued to the respective virtual con-
trollers based on a scheduling algorithm.

scheme, in which requests from each buffer are served during
a designated time window. The window size is configured by
the hypervisor. A window configuration, that ensures isolation,
minimizes context-switches, and guarantees low latencies, is
described in [10].

C. Security Extensions

As mentioned earlier, the virtualized CAN controller is
shared between several VMs which might have different trust
levels and criticalities. So in order to guarantee the function-
ality of critical functions security features are added to the
virtualized CAN controller.
In order to detect and prevent denial of service (DoS) attacks
a Bus Guardian (BG) is integrated in the virtualized CAN
controller’s data path. It uses Token Bucket based timing
measurements to detect possible DoS attacks. Thus attacks
which originate from one of the VMs can be prevented by
blocking frames from VMs that violate their minimum cycle
times. On the other hand the BG can also detect attacks
originating at some other CAN node and report the detection
to the hypervisor.
To prevent VMs from malicious injection of CAN messages
the messages are secured with a keyed-hash message authen-
tication code (HMAC). With this HMAC a receiving node can
detect whether the message originates from a trusted node and
shall be processed. Furthermore the HMAC includes a value
that guarantees the freshness of the message and thus prevents
replay attacks. Finally an optional encryption of CAN frames
can be used to prevent eavesdropping on the bus.

Hardware accelerators for the HMAC calculation and encryp-
tion are integrated into the data paths of the virtualized CAN
controller.

VI. CONCLUSION

Performance requirements of centralized ECUs in mod-
ern automobiles demand for multicore based solutions. This
centralization of functions also leads to a combination of
very different safety and security requirements that need to
be fulfilled. Using virtualization in addition is one promising
way of achieving segregation in time and space of shared
resources - both important fundamentals of a safe and secure
system. In this paper we presented selected approaches for
hardware virtualization support that provide mechanisms to
ensure segregation in time and space as well as quality of
service (QoS) levels in terms of exectution time, throughput
and latency. Our future work includes the final integration of
these approaches into the demonstrator vehicle and evaluation
of the overall architecture.

ACKNOWLEDGMENT

This work was funded within the project ARAMiS by the
German Federal Ministry for Education and Research with
the funding IDs 01IS11035. The responsibility for the content
remains with the authors.

REFERENCES

[1] H.-U. Michel, D. Kaule, and M. Salfer, “Vision einer intelligenten
vernetzung,” in Elektronik Automotive, 2012.

[2] A. Herkersdorf, H.-U. Michel, H. Rauchfuss, and T. Wild, “Multicore
enablement for automotive cyber physical systems,” it-Information

Technology, vol. 54, no. 6, pp. 280–287, 2012.

[3] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in ACM

SIGARCH Computer Architecture News, vol. 38, no. 1. ACM, 2010,
pp. 129–142.

[4] XILINX, VC709 Evaluation Board for the Virtex-7 FPGA, 2012, user
Guide.

[5] SR-IOV, Single Root I/O Virtualization and Sharing Specification,
1st ed., 2007.

[6] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel,
“Diagnosing performance overheads in the xen virtual machine environ-
ment,” in Proceedings of the 1st ACM/USENIX international conference

on Virtual execution environments. ACM, 2005, pp. 13–23.

[7] XILINX, Virtex-7 FPGA Gen3 Integrated Block for PCI Express, 2012,
product Guide.

[8] ARM, AMBA AXI and ACE Protocol Specification, 2012, specification.

[9] A. Richter, C. Herber, H. Rauchfuss, T. Wild, and A. Herkersdorf,
“Performance isolation exposure in virtualized platforms with pci
passthrough i/o sharing,” in International Conference on Architecture

of Computing Systems (ARCS), 2014.

[10] C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf, “Spatial
and temporal isolation of virtual can controllers,” in Workshop on

Virtualization for Real-Time Embedded Systems (VtRES 2013), 2013,
pp. 7–13.

